

Foundation Models for Time Series Analysis

Mingsheng Long

School of Software, Tsinghua University June 10, 2023

Timeline

Time Series Forecasting

Past Observations

3

Time Series Forecasting

Past Observations

Long-Term Time Series Forecasting

Past Observations

6

Transformers

Transformers for Time Series Forecasting

Informer [Zhou et al. AAAI 2021], Reformer [Kitaev et al. ICLR 2020], Log Trans [Li et al. NeurIPS 2019]

Long-Term Time Series Forecasting

Longer forecasting horizon

Intricate temporal patterns Deal with long series (complexity)

Past Observations

8

Autoformer

Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long (⊠)

School of Software, BNRist, Tsinghua University, China {whx20,xjh20}@mails.tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

Autoformer vs. Transformer

	Transformer	Autoformer
	Hard to directly find reliable temporal dependencies from raw series	Decomposition architecture to ravel out the entangled temporal patterns
Intricate Temporal Patterns	Plateau Steep Fluctuation Uptrend I I I I I I I I I I I I I I I I I I I	Time Series 444444444444444444444444444444444444

Autoformer vs. Transformer

	Transformer	Autoformer
	Self-Attention discover the temporal dependencies from scattered points	Auto-Correlation to discover the Series-wise temporal dependencies
Time Series		
Continuity		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	(a) Full Attention Time	(d) Auto-Correlation Time

Autoformer vs. Transformer

	Transformer	Autoformer
	 Point-wise Self-Attention is O(L²) Adopt sparse version for efficiency resulting in the trade-off dilemma × 	Auto-Correlation mechanism based on stochastic process theory with inherent $O(L \log L)$ complexity
Computation Efficiency	Auto-Correlation From Autoformer Full Attention From Reformer LSH Attention From Informer ProbSparse Attention From Informer 0 0 0 0 0 0 0 0 0 0 0 0 0	(b) Running Time Efficiency Analysis

Autoformer Architecture

Autoformer Architecture

Decomposition architecture for intricate temporal patterns.

Autoformer Architecture

Series-wise Auto-Correlation for information utilization bottleneck.

Decomposition

Decomposition as Pre-processing

- Limited by the capabilities of decomposition
- Overlooks the potential future interactions among components

Decomposition in Architecture

Decomposition in Architecture

Progressive decomposition capacity

Decompose the trend from the intermediate "future" and refine it in the decoder. 19

Decomposition in Architecture: Input

Decomposition in Architecture: Encoder

Decomposition in Architecture: Decoder

Benefited from the deep decomposition, the seasonal part is highlighted with periodicity.

Conduct the dependencies discovery and representation aggregation at the series level.

Period-based dependencies The same phase position of different periods

Benefited from the deep decomposition, the seasonal part is highlighted with periodicity.

Conduct the dependencies discovery and representation aggregation at the series level.

Discover period-based dependencies with autocorrelation in stochastic process:

$$\mathcal{R}_{\mathcal{X}\mathcal{X}}(\tau) = \lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} \mathcal{X}_t \mathcal{X}_{t-\tau}.$$

Autocorrelation reflects the time delay similarity,

and corresponds to the confidence of period estimation.

Larger autocorrelation $\mathcal{R}(\tau)$ means

- stronger time delay similarity w.r.t. τ
- more confidence of period length as τ

2023全球人工智能技术

1 Discover period-based dependencies

2 Aggregate similar sub-processes from different periods

27

Auto-Correlation Mechanism

Auto-Correlation vs. Self-Attention

2023全球人工智能技力

Auto-Correlation can extend the point-wise aggregation to series-wise.

Informer [Zhou et al. AAAI 2021], Reformer [Kitaev et al. ICLR 2020], Log Trans [Li et al. NeurIPS 2019]

中国人工智能学会 Chinese Association for Artificial Intelligence

Experiments: Multivariate Setting

		Transformers	LSTMs	TCN	
	Models Autoforme	r Informer[41] LogTrans[20] Reformer[17]	LSTNet[19] LSTM[13]	TCN[3]	Prediction Accuracy
	Metric MSE MAI	E MSE MAE MSE MAE MSE MAE	MSE MAE MSE MAE	MSE MAE	Relative Promotion (In MSE)
ſ	96 0.255 0.33 192 0.281 0.34 336 0.339 0.37 720 0.422 0.41	9 0.365 0.453 0.768 0.642 0.658 0.619 0 0.533 0.563 0.989 0.757 1.078 0.827 2 1.363 0.887 1.334 0.872 1.549 0.972 3 3.79 1.388 3.048 1.328 2.631 1.242	3.142 1.365 2.041 1.073 3.154 1.369 2.249 1.112 3.160 1.369 2.568 1.238 3.171 1.368 2.720 1.287	3.041 1.330 3.072 1.339 3.105 1.348 3.135 1.354	174% Input-96-predict-336
Energy	Ar 96 0.201 0.31' 192 0.222 0.33' 336 0.231 0.33' 1720 0.254 0.36'	7 0.274 0.368 0.258 0.357 0.312 0.402 4 0.296 0.386 0.266 0.368 0.348 0.433 8 0.300 0.394 0.280 0.380 0.350 0.433 1 0.373 0.439 0.283 0.376 0.340 0.420	0.6800.6450.3750.4370.7250.6760.4420.4730.8280.7270.4390.4730.9570.8110.9800.814	0.985 0.813 0.996 0.821 1.000 0.824 1.438 0.784	18% Input-96-predict-336
Economics	動 96 0.197 0.32 192 0.300 0.36 192 336 0.509 0.524 1 720 1.447 0.94	30.8470.7520.9680.8121.0650.82991.2040.8951.0400.8511.1880.90611.6721.0361.6591.0811.3570.9762.4781.3101.9411.1271.5101.016	1.5511.0581.4531.0491.4771.0281.8461.1791.5071.0312.1361.2312.2851.2432.9841.427	3.004 1.432 3.048 1.444 3.113 1.459 3.150 1.458	<mark>↑ 61%</mark> Input-96-predict-336
Traffic	96 0.613 0.38 192 0.616 0.38 336 0.622 0.33 720 0.660 0.40	8 0.7190.3910.6840.3840.7320.423 2 0.6960.3790.6850.3900.7330.420 7 0.7770.4200.7330.4080.7420.420 8 0.8640.4720.7170.3960.7550.423	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1.438 & 0.784 \\ 1.463 & 0.794 \\ 1.479 & 0.799 \\ 1.499 & 0.804 \end{array}$	15% Input-96-predict-336
Weather	100 96 0.266 0.33 192 0.307 0.36 336 0.359 0.39 720 0.419 0.423	50.3000.3840.4580.4900.6890.59670.5980.5440.6580.5890.7520.63850.5780.5230.7970.6520.6390.5961.0590.7410.8690.6751.1300.792	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.615 0.589 0.629 0.600 0.639 0.608 0.639 0.610	↑ 21% Input-96-predict-336
Disease	24 3.483 1.28' 36 3.103 1.14' 48 2.669 1.08' 60 2.770 1.12'	7 5.764 1.677 4.480 1.444 4.400 1.382 8 4.755 1.467 4.799 1.467 4.783 1.448 5 4.763 1.469 4.800 1.468 4.832 1.465 5 5.264 1.564 5.278 1.560 4.882 1.483	6.0261.7705.9141.7345.3401.6686.6311.8456.0801.7876.7361.8575.5481.7206.8701.879	6.6241.8306.8581.8796.9681.8927.1271.918	1 43%Input-24-predict-4830
	ETT means the E	TTm2. See supplementary materials for the f	ull benchmark of ETTh1, E	TTh2, ETTm1.	

Experiments: Univariate Setting

Models		Autof	ormer	N-BEA	ATS[23]	Inform	ner[41]	LogTr	ans[20]	Reform	mer[17]	DeepA	AR[28]	Proph	et[33]	ARIN	/ [A[1]
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETT	96	0.065	0.189	0.082	0.219	0.088	0.225	0.082	0.217	0.131	0.288	0.099	0.237	0.287	0.456	0.211	0.362
	192	0.118	0.256	0.120	0.268	0.132	0.283	0.133	0.284	0.186	0.354	0.154	0.310	0.312	0.483	0.261	0.406
	336	0.154	0.305	0.226	0.370	0.180	0.336	0.201	0.361	0.220	0.381	0.277	0.428	0.331	0.474	0.317	0.448
	720	0.182	0.335	0.188	0.338	0.300	0.435	0.268	0.407	0.267	0.430	0.332	0.468	0.534	0.593	0.366	0.487
Exchange	96	0.241	0.387	0.156	0.299	0.591	0.615	0.279	0.441	1.327	0.944	0.417	0.515	0.828	0.762	0.112	0.245
	192	0.273	0.403	0.669	0.665	1.183	0.912	1.950	1.048	1.258	0.924	0.813	0.735	0.909	0.974	0.304	0.404
	336	0.508	0.539	0.611	0.605	1.367	0.984	2.438	1.262	2.179	1.296	1.331	0.962	1.304	0.988	0.736	0.598
	720	0.991	0.768	1.111	0.860	1.872	1.072	2.010	1.247	1.280	0.953	1.894	1.181	3.238	1.566	1.871	0.935

Competitive baseline N-BEATS

(1) ETT dataset with input-96-predict-336 (Energy, with obvious periodicity)

Learned Dependencies

Figure 5: Visualization of learned dependencies. For clearness, we select the top-6 time delay sizes τ_1, \dots, τ_6 of Auto-Correlation and mark them in raw series (red lines). For self-attentions, top-6 similar points with respect to the last time step (red stars) are also marked by orange points.

Auto-Correlation can discover the relevant information more

sufficiently and precisely.

Learned Lags

Figure 6: Statistics of learned lags. For each time series in the test set, we count the top 10 lags learned by decoder for the input-96-predict-336 task. Figure (a)-(d) are the density histograms.

Learned lags can reflect the

human-interpretable prediction.

Efficiency Analysis

Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or self-attentions 10^3 times to get the execution time per step. The output length increases exponentially.

Auto-Correlation presents remarkable $O(L \log L)$ complexity

in both memory and computation.

Summary Motivation Autoformer Intricate **Decomposition** architecture Classic method to ravel out the entangled Temporal of time series analysis Patterns temporal patterns Deal with Series-wise Auto-Correlation Stochastic process theory Long Series with $O(L \log L)$ complexity

Autoformer achieves the remarkable state-of-the-art on extensive benchmarks.

Open Source

wuhaixu2016 M	lerge pull request #134 from elisim/patch-2	e6371e2 on Mar 6	C 75 commits	Decomposition
📄 data_provider	Update data_factory.py		6 months ago	Forecasting" (N
exp	Update exp_main.py		4 months ago	https://arxiv.org
layers	adding the length of the output signal to ir	rfft	3 months ago	deep-learning
models	Update Reformer.py		last year	🛱 Readme
pic	init code		2 years ago	শ্রু MIT license
scripts	updated scripts for all experiments using t	the ETTm1 and ETTm2 data	4 months ago	☆ 1.1k stars⊙ 14 watching
🖿 utils	Update metrics.py		6 months ago	¥ 285 forks
.gitignore	Initial commit		2 years ago	Report repository
Dockerfile	add docker, make and conda env		2 years ago	
LICENSE	Initial commit		2 years ago	Releases
🗋 Makefile	add docker, make and conda env		2 years ago	No releases publish

About Code release for "Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting" (NeurIPS 2021), https://arxiv.org/abs/2106.13008

deep-learning time-series C Readme MIT license ☆ 1.1k stars ● 14 watching ဗု 285 forks

No releases published

https://github.com/thuml/Autoformer

Well-organized code and pre-processed dataset

Corrformer

nature machine intelligence

Article

https://doi.org/10.1038/s42256-023-00667-9

Interpretable weather forecasting for worldwide stations with a unified deep model

Received: 3 July 2022

Haixu Wu, Hang Zhou, Mingsheng Long 🛛 🖂 & Jianmin Wang 🕲 🖂

Accepted: 26 April 2023

https://www.nature.com/articles/s42256-023-00667-9

Partial observations from stations

Weather Forecasting for Worldwide Stations

Real-time collaborative forecasts of **tens of thousands** automatic weather stations (Future prediction in **0-24 hours** near the ground)

Spatiotemporal correlations within a limited area

40

Corrformer: Model Architecture

- Inheriting Decomposition from Autoformer
- Utilizing Multi-Correlation to capture spacial-temporal correlations

Corrformer: Multi-Correlation Mechanism

a Tree-based multiscale structure

b Auto-correlation on each leaf node for temporal modelling

Calculate auto-correlation values

Temporal aggregation based on learned auto-correlations

- Multi-scale structure
 - Series-wise autocorrelation for
 temporal modeling
 Pivot-based crosscorrelation for spatial
 modeling

.

- Log-linear Complexity
- $O(N^2L^2) \rightarrow O(NL\log L)$

C Cross-correlation on each intermediate node for spatial modelling

al Wind from 2019/11/17 23:00 to 2019/11/18 23:00

(a.2) Single station (39°6' N, 115°15'E) in Beijing, China

Interpretable Worldwide Forecasting

b Propagation direction analysis

Service in 2022 Winter Olympics

2023全球人工智能技术大会

Indoors: Temperature

Outdoors: Wind speed

Provides online forecast service of temperature and wind speed for the 2022 Beijing Winter Olympics, assists athletes preparation and schedule planning, works as a solid support for the competition.

Achieves **10-minute** real-time temperature and wind speed forecast based on meteorological observation, and achieves **23% lower forecast error** than the mainstream numerical prediction methods.

General Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

Past Observations

Future Time Series

Future Time Series

General Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

Past Observations

March (?) [Imputation] Data mining (?)

General Time Series Analysis

Industrial Maintenance

Time

[Anomaly Detection]

General Time Series Analysis Industrial Maintenance

Time

48

In Pursing Foundation Models

[Data Universal]

Learn from various modalities

[Task Universal]

Adapt to a wide range of downstream tasks

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.

Foundation Models in CV and NLP

Universal backbone with

task-specific heads for different tasks.

Classification, Object detection, Segmentation

Classification, Generation

TimesNet

TIMESNET: TEMPORAL 2D-VARIATION MODELING FOR GENERAL TIME SERIES ANALYSIS

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, Mingsheng Long[™] School of Software, BNRist, Tsinghua University, Beijing 100084, China {whx20,liuyong21,htg21,h-zhou18}@mails.tsinghua.edu.cn {jimwang,mingsheng}@tsinghua.edu.cn

Differences among Image, Language, Time Series

TimesNet is for time series analysis

Mr w www. LM.

Differences among Image, Language, Time Series

TimesNet is for time series analysis

Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.

Differences among Image, Language, Time Series

TimesNet is for time series analysis

Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.

~ Each time point only saves some scalars.

Temporal Variations of Time Series

More information of time series is in **temporal variations**,

such as continuity, periodicity, trend and etc.

Multi-periodicity View of Time Series

- ✓ Traffic: daily and weekly
- ✓ Weather: daily and yearly

Real-world time series usually present multi-periodicity. Multiple periods overlap and interact with each other.

Intraperiod- and Interperiod-Variations

✓ Intraperiod: adjacent area, short-term variations

✓ Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.

1 Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

1 Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

1 Multi-periodicity 2 Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D space by reshape

Temporal 2D-Variation: A Case Study

- ✓ Reshape the 1D time series
 into 2D according to periods.
- Two dimensions represent
 interperiod- and intraperiod variations respectively.

Temporal 2D-Variation: A Case Study

Temporal 2D-Variation: A Case Study

Capture Temporal 2D-variations by 2D Kernels

With temporal 2D-variations, we can

- ✓ Unify intraperiod- interperiod-variations
- ✓ Learn representations by 2D kernels

Multi-periodicity
 Temporal 2D-variation
 Unify intraperiod- and interperiod-variations in 2D

TimesNet

TimesNet consists of residual-connected TimesBlocks.

TimesBlock learns representations in 2D space.

(1) $1D \rightarrow 2D$ (2) 2D representation learning (3) $2D \rightarrow 1D$

 $1D \rightarrow 2D$

1. Calculate the spectrum

by Fast Fourier Transform

$$\mathbf{A} = \operatorname{Avg}\left(\operatorname{Amp}\left(\operatorname{FFT}(\mathbf{X}_{1D})\right)\right)$$

$1D \rightarrow 2D$

1. Calculate the spectrum

by Fast Fourier Transform

2. Choose Topk Frequency

$$\mathbf{A} = \operatorname{Avg}\left(\operatorname{Amp}\left(\operatorname{FFT}(\mathbf{X}_{1\mathrm{D}})\right)\right), \ \{f_1, \cdots, f_k\} = \underset{f_* \in \{1, \cdots, [\frac{T}{2}]\}}{\operatorname{arg}\operatorname{Topk}} \left(\mathbf{A}\right), \ p_i = \left\lceil \frac{T}{f_i} \right\rceil, i \in \{1, \cdots, k\}$$

$1D \rightarrow 2D$

- 1. Calculate the spectrum
- by Fast Fourier Transform
- 2. Choose Topk Frequency
- 3. For each frequency,reshape 1D time seriesinto 2D tensor

2 2D representation learning

Extract temporal 2D-variations by 2D kernels

2D Representation Learning

- ✓ Inception block is shared in all selected periods for parameter efficiency.
- \checkmark It can be replaced by any vision backbones, bridging time series and CV.

Reshape to 1D space to aggregation

TimesBlock learns representations in 2D space.

(1) $1D \rightarrow 2D$ (2) 2D representation learning (3) $2D \rightarrow 1D$

- _

Experiment: Overview

	Tasks	Benchmarks		
F	Forecasting	Long-term : ETT (4 subsets), Electricity, Traffic, Weather, Exchange, ILI		
		Short-term: M4 (6 subsets)		
I	mputation	ETT (4 subsets), Electricity, Weather		
C	lassification	UEA (10 subsets)		
Anor	naly Detection	SMD, MSL, SMAP, SWaT, PSM		

 \checkmark Five mainstream time series analysis tasks.

✓ 36 datasets, 81 settings, 20+ baselines

Experiment: Overview

TimesNet achieves state-of-the-art in all five tasks!

Experiment: Model Generality

Better vision backbones, Better performance X Bridge Time Series and vision backbones X

Experiment: Long-term Forecasting

Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2023)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.400 0.406	0.429 0.425	0.435 0.437	0.403 0.407	0.448 0.452	0.481 0.456	0.588 0.517	0.691 0.607	0.961 0.734	0.929 0.725	0.799 0.671
ETTm2	0.291 0.333	0.293 <u>0.342</u>	0.409 0.436	0.350 0.401	0.305 0.349	0.306 0.347	0.327 0.371	1.498 0.869	1.410 0.810	1.535 0.900	1.479 0.915
ETTh1	0.458 0.450	0.542 0.510	0.491 0.479	<u>0.456 0.452</u>	0.440 0.460	0.570 0.537	0.496 0.487	0.827 0.703	1.040 0.795	1.072 0.837	1.029 0.805
ETTh2	0.414 0.427	0.439 0.452	0.602 0.543	0.559 0.515	0.437 0.449	0.526 0.516	0.450 0.459	0.826 0.703	4.431 1.729	2.686 1.494	6.736 2.191
Electricity	0.192 0.295	0.208 0.323	0.229 0.329	0.212 0.300	0.214 0.327	<u>0.193</u> 0.296	0.227 0.338	0.379 0.445	0.311 0.397	0.272 0.370	0.338 0.422
Traffic	<u>0.620</u> 0.336	0.621 0.396	0.622 0.392	0.625 0.383	0.610 0.376	0.624 <u>0.340</u>	0.628 0.379	0.878 0.469	0.764 0.416	0.705 0.395	0.741 0.422
Weather	0.259 0.287	0.271 0.334	0.261 0.312	0.265 0.317	0.309 0.360	0.288 0.314	0.338 0.382	0.946 0.717	0.634 0.548	0.696 0.602	0.803 0.656
Exchange	0.416 0.443	0.410 <u>0.427</u>	<u>0.385</u> 0.447	0.354 0.414	0.519 0.500	0.461 0.454	0.613 0.539	1.913 1.159	1.550 0.998	1.402 0.968	1.280 0.932
ILI	<u>2.139 0.931</u>	2.497 1.004	7.382 2.003	2.616 1.090	2.847 1.144	2.077 0.914	3.006 1.161	7.635 2.050	5.137 1.544	4.839 1.485	4.724 1.445

TimesNet surpasses advanced Transformer-based and MLP-based models.

Experiment: Long-term Forecasting

FEDformer

Experiment: Short-term Forecasting

- More complex temporal patterns: M4 dataset is composed of yearly, monthly,
 - weekly, daily, hourly and quarterly collected univariate marketing data.
- \checkmark TimesNet surpasses N-HiTs and N-BEATS.
- \checkmark Simple Linear methods degenerate a lot.

Models	TimesNet	N-HiTS	N-BEATS	ETSformer	LightTS	DLinear	FEDformer	Stationary	Autoformer	Pyraformer	Informer	LogTrans	Reformer
	(Ours)	(2022)	(2019)	(2022)	(2022)	(2023)	(2022)	(2022a)	(2021)	(2021a)	(2021)	(2019)	(2020)
SMAPE	11.829	11.927	<u>11.851</u>	14.718	13.525	13.639	12.840	12.780	12.909	16.987	14.086	16.018	18.200
MASE	1.585	1.613	<u>1.599</u>	2.408	2.111	2.095	1.701	1.756	1.771	3.265	2.718	3.010	4.223
OWA	0.851	0.861	<u>0.855</u>	1.172	1.051	1.051	0.918	0.930	0.939	1.480	1.230	1.378	1.775

Experiment: Short-term Forecasting

83

Experiment: Imputation

- ✓ Averaged from 4 different mask ratios: 12.5%, 25%, 37.5%, 50%
- \checkmark Requires the model to handle irregular inputs.
- \checkmark Non-stationary Transformer performs well but MLP-based models fail in this task.

Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2023)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Mask Ratio	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.027 0.107	0.120 0.253	0.104 0.218	0.093 0.206	0.062 0.177	<u>0.036 0.126</u>	0.051 0.150	0.717 0.570	0.071 0.188	0.050 0.154	0.055 0.166
ETTm2	0.022 0.088	0.208 0.327	0.046 0.151	0.096 0.208	0.101 0.215	<u>0.026</u> 0.099	0.029 0.105	0.465 0.508	0.156 0.292	0.119 0.246	0.157 0.280
ETTh1	0.078 0.187	0.202 0.329	0.284 0.373	0.201 0.306	0.117 0.246	<u>0.094 0.201</u>	0.103 0.214	0.842 0.682	0.161 0.279	0.219 0.332	0.122 0.245
ETTh2	0.049 0.146	0.367 0.436	0.119 0.250	0.142 0.259	0.163 0.279	<u>0.053</u> 0.152	0.055 0.156	1.079 0.792	0.337 0.452	0.186 0.318	0.234 0.352
Electricity	0.092 0.210	0.214 0.339	0.131 0.262	0.132 0.260	0.130 0.259	<u>0.100 0.218</u>	0.101 0.225	0.297 0.382	0.222 0.328	0.175 0.303	0.200 0.313
Weather	0.030 0.054	0.076 0.171	0.055 0.117	0.052 0.110	0.099 0.203	0.032 0.059	0.031 0.057	0.152 0.235	0.045 0.104	0.039 0.076	0.038 0.087

Experiment: Imputation

FEDformer

Experiment: Classification

 \checkmark TimesNet still achieves the best performance.

✓ Transformer-based models generally outperform MLP-based models

Experiment: Anomaly Detection

- \checkmark Adopt the reconstruction error as the anomaly criterion.
- \checkmark Better 2D backbones bring better performances. ✓ Transformer-based models performs well. 1.0-D.5 D.0 D.5 .0 50 200 250 300 350 0 100 150 Time (a) 1D time series

(b) Temporc

Representation Analysis

Representation Analysis

Performance Ranking

Model Ranking	Long-term Forecasting	Short-term Forecasting	Imputation	Anomaly Detection	Classification
🍈 1st	TimesNet	TimesNet	TimesNet	TimesNet	TimesNet
🖄 2nd	DLinear	Non-stationary Transformer	Non-stationary Transformer	Non-stationary Transformer	FEDformer
🍏 3rd	Non-stationary Transformer	FEDformer	Autoformer	Informer	Autoformer

Efficiency Comparison

Models		Parameter	GPU Memory	Running Time	Ranking		
Series Leng	gth	(MB)	(MiB)	(s / iter)	Five tasks	Avg Ranking	
TimesNet (ours)	384 768 1536 3072	0.067 0.067 0.067 0.067	1245 1585 2491 2353	0.024 0.040 0.045 0.073	(1, 1, 1, 1, 1)	1.0	
Non-stationary Transformer	384 768 1536 3072	1.884 1.910 1.961 /	2321 4927 /	0.046 0.118 / /	(3, 2, 2, 2, 8)	3.4	
Autoformer	384 768 1536 3072	1.848 1.848 1.848 1.848	2101 3209 5395 10043	0.070 0.071 0.129 0.255	(7, 4, 3, 5, 3)	4.4	
FEDformer	384 768 1536 3072	2.901 2.901 2.901 2.901	5977 7111 9173 /	0.807 1.055 1.482 /	(4, 3, 6, 9, 2)	4.8	

Open Source

wuhaixu2016 Update MICN_ETTh2.st	h	5e2e887 2 weeks ago 🕚 82 commits	A Library for Advanced Deep Time Series Models.		
ata_provider	clean	3 months ago	deep-learning time-series		
exp	Improve annotations	2 months ago	🗘 Readme		
layers	fix the model of PatchTST	3 months ago	ब∰ MIT license		
models	Improve annotations	2 months ago	公 918 stars ① 14 watching		
pic pic	update dataset discription	4 months ago	양 205 forks		
scripts	Update MICN_ETTh2.sh	2 weeks ago	Report repository		
🖿 utils	Improve annotations	2 months ago			
🗋 .gitignore	Improve annotations	2 months ago	Releases		
	init	4 months ago	No releases published		
README.md	Update README.md	last month			
requirements.txt	clean	3 months ago	Packages		
🗋 run.py	Fix some errors	3 months ago	No packages published		

Code is available at https://github.com/thuml/Time-Series-Library

大数据系统软件国家工程研究中心

