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Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
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Quadratic complexity for long-term forecasting

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Abstract

Extending the forecasting time is a critical demand for real applications, such as
extreme weather early warning and long-term energy consumption planning. This
paper studies the long-term forecasting problem of time series. Prior Transformer-
based models adopt various self-attention mechanisms to discover the long-range
dependencies. However, intricate temporal patterns of the long-term future prohibit
the model from finding reliable dependencies. Also, Transformers have to adopt the
sparse versions of point-wise self-attentions for long series efficiency, resulting in
the information utilization bottleneck. Towards these challenges, we propose Auto-

former as a novel decomposition architecture with an Auto-Correlation mechanism.
We go beyond the pre-processing convention of series decomposition and renovate
it as a basic inner block of deep models. This design empowers Autoformer with
progressive decomposition capacities for complex time series. Further, inspired by
the stochastic process theory, we design the Auto-Correlation mechanism based on
the series periodicity, which conducts the dependencies discovery and representa-
tion aggregation at the sub-series level. Auto-Correlation outperforms self-attention
in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-
of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering
five practical applications: energy, traffic, economics, weather and disease.

1 Introduction

Time series forecasting has been widely used in energy consumption, traffic and economics planning,
weather and disease propagation forecasting. In these real-world applications, one pressing demand is
to extend the forecast time into the far future. Thus, in this paper, we study the long-term forecasting

problem of time series, characterizing itself by the large length of predicted series, which can be
severalfold of the length of the input series. Recent deep forecasting models [40, 16, 19, 34, 26, 18]
have achieved great progress, especially the Transformer-based models. Benefiting from the self-
attention mechanism, Transformers obtain great advantage in modeling long-term dependencies for
sequential data, which enables more powerful big models [7, 10].

However, the forecasting task is extremely challenging under the long-term setting. First, it is
unreliable to discover the temporal dependencies directly from the long-term time series because
the dependencies can be obscured by entangled temporal patterns. Second, canonical Transformers
with self-attention mechanisms are computationally prohibitive for long-term forecasting because
of the quadratic complexity of sequence length. Previous Transformer-based forecasting models
[40, 16, 19] mainly focus on improving self-attention to a sparse version. While performance is
significantly improved, these models still utilize the point-wise representation aggregation. Thus, in
the process of efficiency improvement, they will sacrifice the information utilization because of the
sparse point-wise connections, resulting in a bottleneck for long-term forecasting of time series.

To reason about the intricate temporal patterns, we try to take the idea of decomposition, which is a
standard method in time series analysis [1, 25]. It can be used to process the complex time series and

9
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the point-wise dependency and aggregation. In this paper, our proposed Auto-Correlation mechanism
is based on the inherent periodicity of time series and can provide series-wise connections.

2.2 Decomposition of Time Series

As a standard method in time series analysis, time series decomposition [1, 25] deconstructs a time
series into several components, each representing one of the underlying categories of patterns that are
more predictable. It is primarily useful for exploring historical changes over time. For the forecasting
tasks, decomposition is always used as the pre-processing of historical series before predicting future
series [14], such as Prophet [32] and others [2]. However, such pre-processing is limited by the
plain decomposition effect of historical series and overlooks the hierarchical interaction between the
underlying patterns of series in the long-term future. This paper takes the decomposition idea from a
new progressive dimension. Our Autoformer harnesses the decomposition as an inner block of deep
models, which progressively decomposes the hidden series throughout the whole forecasting process.

3 Autoformer

The time series forecasting problem is to predict the most probable length-O series in the future given
the past length-I series, denoting as input-I-predict-O. The long-term forecasting setting is to predict
the long-term future given the short-term history, i.e. O � I . As aforementioned, we have highlighted
the difficulties of long-term series forecasting: handling intricate temporal patterns and breaking the
bottleneck of computation efficiency and information utilization. To tackle these two challenges, we
introduce the decomposition as a builtin block to the deep forecasting model and propose Autoformer

as a decomposition architecture. Besides, we design the Auto-Correlation mechanism to discover the
period-based dependencies and aggregate similar sub-series from underlying periods.

3.1 Decomposition Architecture

We renovate Transformer [34] to a deep decomposition architecture (Figure 1), including the inner
series decomposition block, Auto-Correlation mechanism, and corresponding Encoder and Decoder.

Series decomposition block To learn with the complex temporal patterns in long-term forecasting
context, we take the idea of decomposition [1, 25], which can separate the series into trend-cyclical
and seasonal parts. These two parts reflect the long-term progression and the seasonality of the series
respectively. However, directly decomposing is unrealizable for future series because the future is just
unknown. To tackle this dilemma, we present a series decomposition block as an inner operation of
Autoformer (Figure 1), which can extract the long-term stationary trend from predicted intermediate
hidden variables progressively. Concretely, we adapt the moving average to smooth out periodic
fluctuations and highlight the long-term trends. For length-L input series X 2 RL⇥d, the process is:

Xt = AvgPool(Padding(X ))

Xs = X � Xt,
(1)

where Xs, Xt 2 RL⇥d denote the seasonal and the extracted trend-cyclical part respectively. We use
Xs, Xt = SeriesDecomp(X ) to summarize above equations, which is the inner block of Autoformer.

Model inputs The inputs of encoder part are the past I time steps Xen 2 RI⇥d. As a decomposition
architecture (Figure 1), the input of Autoformer decoder contains both the seasonal part Xdes 2

R( I
2+O)⇥d and trend-cyclical part Xdet 2 R( I

2+O)⇥d to be refined. Each initialization consists of
two parts: the component decomposed from the latter half of encoder’s input Xen with length I

2 to
provide recent information, placeholders with length O filled by scalars. It’s formulized as follows:

Xens, Xent = SeriesDecomp(Xen I
2 :I)

Xdes = Concat(Xens, X0)

Xdet = Concat(Xent, XMean),

(2)

where Xens, Xent 2 R I
2⇥d denote the seasonal and trend-cyclical parts of Xen respectively, and

X0, XMean 2 RO⇥d denote the placeholders filled with zero and mean of Xen respectively.

3
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Showcases

Figure 4: Prediction cases from ETT dataset under the input-96-predict-336 setting.

Figure 5: Prediction cases from ETT dataset under the input-96-predict-720 setting.

4.2 Performance on the Data without Obvious Periodicity23

Autoformer yields the best performance among six datasets, even in the Exchange dataset that does24

not have obvious periodicity. This section will give some showcases from the test set of Exchange25

dataset for qualitative evaluation.26

Figure 6: Prediction cases from Exchange dataset under the input-96-predict-192 setting.

We observed that the series in the Exchange dataset show rapid fluctuations. And because of the27

inherent properties of economic data, the series are without obvious periodicity. This aperiodicity28

causes extreme difficulties for prediction. As shown in Figure 6, compared to other models, Aut-29

oformer can still predict the exact long-term variations. It is verified the robustness of our model30

performance among various data types.31

4.3 Main Results Fluctuation32

To get more robust experimental results, we repeat each experiment three times. The results are33

shown without fluctuation ranges in the main text due to the limited pages. Table 3 shows the main34

results with fluctuations.35

5 Univariate Forecasting Results36

To extensively evaluate our methods, we also conduct the additional univariate forecasting experi-37

ments in ETT dataset with more baselines: DeepAR [8], ARIMA [1] and Prophet [9].38
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Figure 4: Visualization of learned seasonal X
M

de and trend-cyclical T
M

de of the last decoder layer. We
gradually add the decomposition blocks in decoder from left to right. This case is from ETT dataset
under input-96-predict-720 setting. For clearness, we add the linear growth to raw data additionally.

Dependencies learning The marked time delay sizes in Figure 5(a) indicate the most likely periods.
Our learned periodicity can guide the model to aggregate the sub-series from the same or neighbor
phase of periods by Roll(X , ⌧i), i 2 {1, · · · , 6}. For the last time step (declining stage), Auto-
Correlation fully utilizes all similar sub-series without omissions or errors compared to self-attentions.
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Figure 5: Visualization of learned dependencies. For clearness, we select the top-6 time delay sizes
⌧1, · · · , ⌧6 of Auto-Correlation and mark them in raw series (red lines). For self-attentions, top-6
similar points with respect to the last time step (red stars) are also marked by orange points.

Efficiency analysis We compare the running memory and time among Auto-Correlation-based and
self-attention-based models (Figure 6). The proposed Autoformer shows O(L log L) complexity in
both memory and time and achieves better long-term sequences efficiency.
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Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in
Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or
self-attentions 10

3 times to get the execution time per step. The output length increases exponentially.

5 Conclusions
This paper studies the long-term forecasting problem of time series, which is a pressing demand for
real-world applications. However, the intricate temporal patterns prevent the model from learning
reliable dependencies. We propose the Autoformer as a decomposition architecture by embedding
the series decomposition block as an inner operator, which can progressively aggregate the long-
term trend part from intermediate prediction. Besides, we design an efficient Auto-Correlation
mechanism to conduct dependencies discovery and information aggregation at the series level, which
contrasts clearly from the previous self-attention family. Autoformer can naturally achieve O(L log L)

complexity and yield consistent state-of-the-art performance in extensive real-world datasets.

9

Auto-Correlation can discover the relevant information more 

sufficiently and precisely.

Transformers [Vaswani et al. NeurIPS 2017], Informer [Zhou et al. AAAI 2021], Reformer [Kitaev et al. ICLR 2020] 33



Learned Lags

Learned lags can reflect the

human-interpretable prediction.
34



Efficiency Analysis
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Figure 4: Visualization of learned seasonal X
M

de and trend-cyclical T
M

de of the last decoder layer. We
gradually add the decomposition blocks in decoder from left to right. This case is from ETT dataset
under input-96-predict-720 setting. For clearness, we add the linear growth to raw data additionally.

Dependencies learning The marked time delay sizes in Figure 5(a) indicate the most likely periods.
Our learned periodicity can guide the model to aggregate the sub-series from the same or neighbor
phase of periods by Roll(X , ⌧i), i 2 {1, · · · , 6}. For the last time step (declining stage), Auto-
Correlation fully utilizes all similar sub-series without omissions or errors compared to self-attentions.
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Efficiency analysis We compare the running memory and time among Auto-Correlation-based and
self-attention-based models (Figure 6). The proposed Autoformer shows O(L log L) complexity in
both memory and time and achieves better long-term sequences efficiency.
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Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in
Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or
self-attentions 10

3 times to get the execution time per step. The output length increases exponentially.

5 Conclusions
This paper studies the long-term forecasting problem of time series, which is a pressing demand for
real-world applications. However, the intricate temporal patterns prevent the model from learning
reliable dependencies. We propose the Autoformer as a decomposition architecture by embedding
the series decomposition block as an inner operator, which can progressively aggregate the long-
term trend part from intermediate prediction. Besides, we design an efficient Auto-Correlation
mechanism to conduct dependencies discovery and information aggregation at the series level, which
contrasts clearly from the previous self-attention family. Autoformer can naturally achieve O(L log L)

complexity and yield consistent state-of-the-art performance in extensive real-world datasets.

9

Auto-Correlation presents remarkable Ο 𝐿 log 𝐿 complexity 

in both memory and computation.

Auto-Correlation Auto-Correlation
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Summary

Autoformer achieves the remarkable state-of-the-art on 
extensive benchmarks.

Intricate

Temporal 

Patterns

Deal with

Long Series

Decomposition architecture

to ravel out the entangled 

temporal patterns

Series-wise Auto-Correlation

with Ο 𝐿 log 𝐿 complexity

Autoformer

Classic method 

of time series analysis

Stochastic process theory

Motivation
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Open Source

https://github.com/thuml/Autoformer

Well-organized code and pre-processed dataset 37

https://github.com/thuml/Autoformer


Corrformer

38https://www.nature.com/articles/s42256-023-00667-9



Weather Forecasting for Worldwide Stations
Real-time collaborative forecasts of tens of thousands automatic weather stations
(Future prediction in 0-24 hours near the ground)

39



Corrformer: Model Architecture
• Inheriting Decomposition from Autoformer

• Utilizing Multi-Correlation to capture spacial-temporal correlations

40



Corrformer: Multi-Correlation Mechanism

• Multi-scale structure

• Series-wise auto-

correlation for 

temporal modeling

• Pivot-based cross-

correlation for spatial 

modeling

• Log-linear Complexity

• 𝑂(𝑁!𝐿!) → 𝑂(𝑁𝐿log𝐿)

41



Regional Wind Forecasting
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Interpretable Worldwide Forecasting

43



Provides online forecast service of temperature and 
wind speed for the 2022 Beijing Winter Olympics, 
assists athletes preparation and schedule planning, 
works as a solid support for the competition.

Achieves 10-minute real-time temperature and wind 
speed forecast based on meteorological observation, 
and achieves 23% lower forecast error than the 
mainstream numerical prediction methods.

Outdoors: Wind speedIndoors: Temperature

Real-time forecasting system 
based on Autoformer

Service in 2022 Winter Olympics
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Future Time SeriesPast Observations

[Forecasting]

Weather forecasting, Energy/Traffic planning

General Time Series Analysis
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Future Time SeriesPast Observations

[Forecasting]

Weather forecasting, Energy/Traffic planning

Time

? [Imputation]

Data mining

?
?

General Time Series Analysis
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[Anomaly Detection]

Industrial Maintenance

Time

General Time Series Analysis
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[Anomaly Detection]

Industrial Maintenance

Time

[Classification]

Action recognition, Heartbeat diagnosis

Time

General Time Series Analysis
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Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021. 

[Data Universal]

Learn from various modalities

[Task Universal]

Adapt to a wide range of 

downstream tasks

In Pursing Foundation Models

49



Universal backbone with 

task-specific heads for different tasks.

Classification, Object detection, Segmentation Classification, Generation

Foundation Models in CV and NLP

50



TimesNetPublished as a conference paper at ICLR 2023

TIMESNET: TEMPORAL 2D-VARIATION MODELING
FOR GENERAL TIME SERIES ANALYSIS

Haixu Wu⇤, Tengge Hu⇤, Yong Liu⇤, Hang Zhou, Jianmin Wang, Mingsheng LongB
School of Software, BNRist, Tsinghua University, Beijing 100084, China
{whx20,liuyong21,htg21,h-zhou18}@mails.tsinghua.edu.cn
{jimwang,mingsheng}@tsinghua.edu.cn

ABSTRACT

Time series analysis is of immense importance in extensive applications, such as
weather forecasting, anomaly detection, and action recognition. This paper focuses
on temporal variation modeling, which is the common key problem of extensive
analysis tasks. Previous methods attempt to accomplish this directly from the 1D
time series, which is extremely challenging due to the intricate temporal patterns.
Based on the observation of multi-periodicity in time series, we ravel out the com-
plex temporal variations into the multiple intraperiod- and interperiod-variations.
To tackle the limitations of 1D time series in representation capability, we extend
the analysis of temporal variations into the 2D space by transforming the 1D time
series into a set of 2D tensors based on multiple periods. This transformation can
embed the intraperiod- and interperiod-variations into the columns and rows of
the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D
kernels. Technically, we propose the TimesNet with TimesBlock as a task-general
backbone for time series analysis. TimesBlock can discover the multi-periodicity
adaptively and extract the complex temporal variations from transformed 2D ten-
sors by a parameter-efficient inception block. Our proposed TimesNet achieves
consistent state-of-the-art in five mainstream time series analysis tasks, including
short- and long-term forecasting, imputation, classification, and anomaly detection.
Code is available at this repository: https://github.com/thuml/TimesNet.

1 INTRODUCTION

Time series analysis is widely used in extensive real-world applications, such as the forecasting of
meteorological factors for weather prediction (Wu et al., 2021), imputation of missing data for data
mining (Friedman, 1962), anomaly detection of monitoring data for industrial maintenance (Xu et al.,
2021) and classification of trajectories for action recognition (Franceschi et al., 2019). Because of its
immense practical value, time series analysis has received great interest (Lim & Zohren, 2021).

Different from other types of sequential data, such as language or video, time series is recorded
continuously and each time point only saves some scalars. Since one single time point usually cannot
provide sufficient semantic information for analysis, many works focus on the temporal variation,
which is more informative and can reflect the inherent properties of time series, such as the continuity,
periodicity, trend and etc. However, the variations of real-world time series always involve intricate
temporal patterns, where multiple variations (e.g. rising, falling, fluctuation and etc.) mix and overlap
with each other, making the temporal variation modeling extremely challenging.

Especially in the deep learning communities, benefiting from the powerful non-linear modeling
capacity of deep models, many works have been proposed to capture the complex temporal variations
in real-world time series. One category of methods adopts recurrent neural networks (RNN) to
model the successive time points based on the Markov assumption (Hochreiter & Schmidhuber,
1997; Lai et al., 2018; Shen et al., 2020). However, these methods usually fail in capturing the long-
term dependencies and their efficiency suffers from the sequential computation paradigm. Another
category of methods utilizes the convolutional neural network along the temporal dimension (TCN)
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Differences among Image, Language, Time Series

TimesNet is for time series analysis
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Analysis is the process of breaking a complex 

topic into smaller parts for a better understanding.
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topic into smaller parts for a better understanding.

Each time point only saves some scalars.

Differences among Image, Language, Time Series
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Rising Fluctuation

Falling

More information of time series is in temporal variations,
such as continuity, periodicity, trend and etc.

Temporal Variations of Time Series
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Real-world time series usually present multi-periodicity.

Multiple periods overlap and interact with each other.

Time

Va
lu
e

Period 1
Period 2

Period 3

ü Traffic: daily and weekly

ü Weather: daily and yearly

Multi-periodicity View of Time Series
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ü Intraperiod: adjacent area, short-term variations

ü Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.

Intraperiod- and Interperiod-Variations
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TimesNet: Overall Design

① Multi-periodicity
A modular architecture to disentangle intricate temporal patterns
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① Multi-periodicity
A modular architecture to disentangle intricate temporal patterns

1D Time Series has limitations 

in representation capability.

TimesNet: Overall Design
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① Multi-periodicity  ② Temporal 2D-variation
Unify intraperiod- and interperiod-variations in 2D space by reshape

TimesNet: Overall Design
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ü Reshape the 1D time series 

into 2D according to periods.

ü Two dimensions represent 

interperiod- and intraperiod-

variations respectively.
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into 2D according to periods.
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With temporal 2D-variations, we can
ü Unify intraperiod- interperiod-variations

ü Learn representations by 2D kernels

Capture Temporal 2D-variations
by 2D Kernels

…

Interperiod-variation

In
tr
ap

er
io
d-

va
ria

tio
n

Temporal 2D-Variation: A Case Study
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① Multi-periodicity  ② Temporal 2D-variation
Unify intraperiod- and interperiod-variations in 2D

TimesNet: Overall Design
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TimesNet consists of residual-connected TimesBlocks.

TimesNet
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.

Al�1, {f1, · · · , fk}, {p1, · · · , pk} = Period
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(5)

where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
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2D }

{bXl,1
2D , · · · , bXl,k
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{bXl,1
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
f1

, · · · , bAl�1
fk

= SoftMax
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Al�1

f1
, · · · ,Al�1

fk
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Xl
1D =

kX
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fi

⇥ bXl,i
1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.

Al�1, {f1, · · · , fk}, {p1, · · · , pk} = Period
�
Xl�1

1D
�
,

Xl,i
2D = Reshapefi⇥pi

�
Padding(Xl�1

1D )
�
, i 2 {1, · · · , k}

bXl,i
2D = Inception

⇣
Xl,i

2D

⌘
, i 2 {1, · · · , k}

bXl,i
1D = Trunc

⇣
Reshape1⇥(fi⇥pi)

⇣
bXl,i

2D

⌘⌘
, i 2 {1, · · · , k}

(5)

where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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TimesBlock learns representations in 2D space.
① 1D → 2D ② 2D representation learning ③ 2D → 1D
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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amplitudes of the estimated periods as follows:

bAl�1
f1

, · · · , bAl�1
fk

= SoftMax
⇣
Al�1

f1
, · · · ,Al�1

fk

⌘

Xl
1D =

kX

i=1

bAl�1
fi

⇥ bXl,i
1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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• We propose the TimesNet with TimesBlock to discover multiple periods and capture temporal
2D-variations from the transformed 2D tensors by a parameter-efficient inception block.

• As a task-general foundation model, TimesNet achieves the consistent state-of-the-art in five
mainstream time series analysis tasks. Detailed and insightful visualizations are included.

2 RELATED WORK

As a key problem of time series analysis, temporal variation modeling has been well explored.

Many classical methods assume that the temporal variations follow the pre-defined patterns, such as
ARIMA (Anderson & Kendall, 1976), Holt-Winter (Hyndman & Athanasopoulos, 2018) and Prophet
(Taylor & Letham, 2018). However, the variations of real-world time series are usually too complex
to be covered by pre-defined patterns, limiting the practical applicability of these classical methods.

In recent years, many deep models have been proposed for temporal modeling, such as MLP, TCN,
RNN-based models (Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Franceschi et al., 2019).
Technically, MLP-based methods (Oreshkin et al., 2019; Challu et al., 2022; Zeng et al., 2023; Zhang
et al., 2022) adopt the MLP along the temporal dimension and encode the temporal dependencies
into the fixed parameter of MLP layers. The TCN-based (2019) methods capture the temporal
variations by convolutional kernels that slide along the temporal dimension. The RNN-based methods
(Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Gu et al., 2022) utilize the recurrent structure and
capture temporal variations implicitly by state transitions among time steps. Note that none of these
methods consider the temporal 2D-variations derived by periodicity, which is proposed in this paper.

Besides, Transformers have shown great performance in time series forecasting (Zhou et al., 2021;
Liu et al., 2021a; Wu et al., 2021; Zhou et al., 2022). With attention mechanism, they can discover the
temporal dependencies among time points. Especially, Wu et al. present the Autoformer with Auto-
Correlation mechanism to capture the series-wise temporal dependencies based on the learned periods.
In addition, to tackle the intricate temporal patterns, Autoformer also presents a deep decomposition
architecture to obtain the seasonal and trend parts of input series. Afterward, FEDformer (Zhou
et al., 2022) employs the mixture-of-expert design to enhance the seasonal-trend decomposition and
presents a sparse attention within the frequency domain. Unlike previous methods, we ravel out the
intricate temporal patterns by exploring the multi-periodicity of time series and capture the temporal
2D-variations in 2D space by well-acknowledged computer vision backbones for the first time.

It is also notable that, different from previous methods, we no longer limit to a specific analysis task
and attempt to propose a task-general foundation model for time series analysis.

3 TIMESNET

As aforementioned, based on the multi-periodicity of time series, we propose the TimesNet with a
modular architecture to capture the temporal patterns derived from different periods. For each period,
to capture the corresponding intraperiod- and interperiod-variations, we design a TimesBlock within
the TimesNet, which can transform the 1D time series into 2D space and simultaneously model the
two types of variations by a parameter-efficient inception block.

3.1 TRANSFORM 1D-VARIATIONS INTO 2D-VARIATIONS

As shown in Figure 1, each time point involves two types of temporal variations with its adjacent area
and with the same phase among different periods simultaneously, namely intraperiod- and interperiod-
variations. However, this original 1D structure of time series can only present the variations among
adjacent time points. To tackle this limitation, we explore the two-dimension structure for temporal
variations, which can explicitly present variations within and between periods, thereby with more
advantages in representation capability and benefiting the subsequent representation learning.

Concretely, for the length-T time series with C recorded variates, the original 1D organization is
X1D 2 RT⇥C . To represent the interperiod-variation, we need to discover periods first. Technically,
we analyze the time series in the frequency domain by Fast Fourier Transform (FFT) as follows:
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• We propose the TimesNet with TimesBlock to discover multiple periods and capture temporal
2D-variations from the transformed 2D tensors by a parameter-efficient inception block.

• As a task-general foundation model, TimesNet achieves the consistent state-of-the-art in five
mainstream time series analysis tasks. Detailed and insightful visualizations are included.

2 RELATED WORK

As a key problem of time series analysis, temporal variation modeling has been well explored.

Many classical methods assume that the temporal variations follow the pre-defined patterns, such as
ARIMA (Anderson & Kendall, 1976), Holt-Winter (Hyndman & Athanasopoulos, 2018) and Prophet
(Taylor & Letham, 2018). However, the variations of real-world time series are usually too complex
to be covered by pre-defined patterns, limiting the practical applicability of these classical methods.

In recent years, many deep models have been proposed for temporal modeling, such as MLP, TCN,
RNN-based models (Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Franceschi et al., 2019).
Technically, MLP-based methods (Oreshkin et al., 2019; Challu et al., 2022; Zeng et al., 2023; Zhang
et al., 2022) adopt the MLP along the temporal dimension and encode the temporal dependencies
into the fixed parameter of MLP layers. The TCN-based (2019) methods capture the temporal
variations by convolutional kernels that slide along the temporal dimension. The RNN-based methods
(Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Gu et al., 2022) utilize the recurrent structure and
capture temporal variations implicitly by state transitions among time steps. Note that none of these
methods consider the temporal 2D-variations derived by periodicity, which is proposed in this paper.

Besides, Transformers have shown great performance in time series forecasting (Zhou et al., 2021;
Liu et al., 2021a; Wu et al., 2021; Zhou et al., 2022). With attention mechanism, they can discover the
temporal dependencies among time points. Especially, Wu et al. present the Autoformer with Auto-
Correlation mechanism to capture the series-wise temporal dependencies based on the learned periods.
In addition, to tackle the intricate temporal patterns, Autoformer also presents a deep decomposition
architecture to obtain the seasonal and trend parts of input series. Afterward, FEDformer (Zhou
et al., 2022) employs the mixture-of-expert design to enhance the seasonal-trend decomposition and
presents a sparse attention within the frequency domain. Unlike previous methods, we ravel out the
intricate temporal patterns by exploring the multi-periodicity of time series and capture the temporal
2D-variations in 2D space by well-acknowledged computer vision backbones for the first time.

It is also notable that, different from previous methods, we no longer limit to a specific analysis task
and attempt to propose a task-general foundation model for time series analysis.

3 TIMESNET

As aforementioned, based on the multi-periodicity of time series, we propose the TimesNet with a
modular architecture to capture the temporal patterns derived from different periods. For each period,
to capture the corresponding intraperiod- and interperiod-variations, we design a TimesBlock within
the TimesNet, which can transform the 1D time series into 2D space and simultaneously model the
two types of variations by a parameter-efficient inception block.

3.1 TRANSFORM 1D-VARIATIONS INTO 2D-VARIATIONS

As shown in Figure 1, each time point involves two types of temporal variations with its adjacent area
and with the same phase among different periods simultaneously, namely intraperiod- and interperiod-
variations. However, this original 1D structure of time series can only present the variations among
adjacent time points. To tackle this limitation, we explore the two-dimension structure for temporal
variations, which can explicitly present variations within and between periods, thereby with more
advantages in representation capability and benefiting the subsequent representation learning.

Concretely, for the length-T time series with C recorded variates, the original 1D organization is
X1D 2 RT⇥C . To represent the interperiod-variation, we need to discover periods first. Technically,
we analyze the time series in the frequency domain by Fast Fourier Transform (FFT) as follows:
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
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fk

= SoftMax
⇣
Al�1

f1
, · · · ,Al�1

fk

⌘

Xl
1D =

kX

i=1

bAl�1
fi

⇥ bXl,i
1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
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(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i
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1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
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makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
f1

, · · · , bAl�1
fk

= SoftMax
⇣
Al�1

f1
, · · · ,Al�1

fk

⌘

Xl
1D =

kX

i=1

bAl�1
fi

⇥ bXl,i
1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
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bAl�1
f1

, · · · , bAl�1
fk

= SoftMax
⇣
Al�1

f1
, · · · ,Al�1

fk

⌘

Xl

1D =
kX

i=1

bAl�1
fi

⇥ bXl,i

1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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Al�1
, {f1, · · · , fk}, {p1, · · · , pk} = Period

�
Xl�1

1D
�
,

Xl,i

2D = Reshape
fi⇥pi

�
Padding(Xl�1

1D )
�
, i 2 {1, · · · , k}

bXl,i

2D = Inception
⇣
Xl,i

2D

⌘
, i 2 {1, · · · , k}

bXl,i

1D = Trunc
⇣
Reshape1⇥(fi⇥pi)

⇣
bXl,i

2D

⌘⌘
, i 2 {1, · · · , k}

(5)

where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. TimesNet is stacked by TimesBlocks in a residual way.
TimesBlocks can capture various temporal 2D-variations from k different reshaped tensors by a
parameter-efficient inception block in 2D space and fuse them based on normalized amplitude values.

into 2D space and obtain a set of 2D tensors, from which we can obtain informative representations
by parameter-efficient inception block conveniently. The process is formalized as follows:
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where Xl,i

2D 2 Rpi⇥fi⇥dmodel is the i-th transformed 2D tensor. After the transformation, we process
the 2D tensor by a parameter-efficient inception block (Szegedy et al., 2015) as Inception(·), which
involves multi-scale 2D kernels and is one of the most well-acknowledged vision backbones. Then
we transform the learned 2D representations bXl,i

2D back to 1D space bXl,i

1D 2 RT⇥dmodel for aggregation,
where we employ Trunc(·) to truncate the padded series with length (pi ⇥ fi) into original length T .

Note that benefiting from the transformation of 1D time series, the 2D kernels in the inception
block can aggregate the multi-scale intraperiod-variation (columns) and interperiod-variation (rows)
simultaneously, covering both adjacent time points and adjacent periods. Besides, we adopt a shared
inception block for different reshaped 2D tensors {Xl,1

2D , · · · ,Xl,k

2D } to improve parameter efficiency,
which can make the model size invariant to the selection of hyper-parameter k.

Adaptive aggregation Finally, we need to fuse k different 1D-representations {bXl,1
1D , · · · , bXl,k

1D }
for the next layer. Inspired by Auto-Correlation (Wu et al., 2021), the amplitudes A can reflect the
relative importance of selected frequencies and periods, thereby corresponding to the importance of
each transformed 2D tensor. Thus, we aggregate the 1D-representations based on the amplitudes:
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Since the variations within and between periods are already involved in multiple highly-structured
2D tensors, TimesBlock can fully capture multi-scale temporal 2D-variations simultaneously. Thus,
TimesNet can achieve a more effective representation learning than directly from 1D time series.

Generality in 2D vision backbones Benefiting from the transformation of 1D time series into
temporal 2D-variations, we can choose various computer vision backbones to replace the inception
block for representation learning, such as the widely-used ResNet (He et al., 2016) and ResNeXt
(Xie et al., 2017), advanced ConvNeXt (Liu et al., 2022b) and attention-based models (Liu et al.,
2021b). Thus, our temporal 2D-variation design also bridges the 1D time series to the booming 2D
vision backbones, making the time series analysis take advantage of the development of computer
vision community. In general, more powerful 2D backbones for representation learning will bring
better performance. Considering both performance and efficiency (Figure 4 right), we conduct the
main experiments based on the parameter-efficient inception block as shown in Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
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(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. TimesNet is stacked by TimesBlocks in a residual way.
TimesBlocks can capture various temporal 2D-variations from k different reshaped tensors by a
parameter-efficient inception block in 2D space and fuse them based on normalized amplitude values.

into 2D space and obtain a set of 2D tensors, from which we can obtain informative representations
by parameter-efficient inception block conveniently. The process is formalized as follows:

Al�1
, {f1, · · · , fk}, {p1, · · · , pk} = Period

�
Xl�1

1D
�
,

Xl,i

2D = Reshape
pi,fi

�
Padding(Xl�1

1D )
�
, i 2 {1, · · · , k}

bXl,i

2D = Inception
⇣
Xl,i

2D

⌘
, i 2 {1, · · · , k}

bXl,i

1D = Trunc
⇣
Reshape1,(pi⇥fi)

⇣
bXl,i

2D

⌘⌘
, i 2 {1, · · · , k},

(5)

where Xl,i

2D 2 Rpi⇥fi⇥dmodel is the i-th transformed 2D tensor. After the transformation, we process
the 2D tensor by a parameter-efficient inception block (Szegedy et al., 2015) as Inception(·), which
involves multi-scale 2D kernels and is one of the most well-acknowledged vision backbones. Then
we transform the learned 2D representations bXl,i

2D back to 1D space bXl,i

1D 2 RT⇥dmodel for aggregation,
where we employ Trunc(·) to truncate the padded series with length (pi ⇥ fi) into original length T .

Note that benefiting from the transformation of 1D time series, the 2D kernels in the inception
block can aggregate the multi-scale intraperiod-variation (columns) and interperiod-variation (rows)
simultaneously, covering both adjacent time points and adjacent periods. Besides, we adopt a shared
inception block for different reshaped 2D tensors {Xl,1

2D , · · · ,Xl,k

2D } to improve parameter efficiency,
which can make the model size invariant to the selection of hyper-parameter k.

Adaptive aggregation Finally, we need to fuse k different 1D-representations {bXl,1
1D , · · · , bXl,k

1D }
for the next layer. Inspired by Auto-Correlation (Wu et al., 2021), the amplitudes A can reflect the
relative importance of selected frequencies and periods, thereby corresponding to the importance of
each transformed 2D tensor. Thus, we aggregate the 1D-representations based on the amplitudes:
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(6)

Since the variations within and between periods are already involved in multiple highly-structured
2D tensors, TimesBlock can fully capture multi-scale temporal 2D-variations simultaneously. Thus,
TimesNet can achieve a more effective representation learning than directly from 1D time series.

Generality in 2D vision backbones Benefiting from the transformation of 1D time series into
temporal 2D-variations, we can choose various computer vision backbones to replace the inception
block for representation learning, such as the widely-used ResNet (He et al., 2016) and ResNeXt
(Xie et al., 2017), advanced ConvNeXt (Liu et al., 2022b) and attention-based models (Liu et al.,
2021b). Thus, our temporal 2D-variation design also bridges the 1D time series to the booming 2D
vision backbones, making the time series analysis take advantage of the development of computer
vision community. In general, more powerful 2D backbones for representation learning will bring
better performance. Considering both performance and efficiency (Figure 4 right), we conduct the
main experiments based on the parameter-efficient inception block as shown in Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i

2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the
2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i

1D 2 RT⇥dmodel for aggregation by Trunc(·) to
truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. TimesNet is stacked by TimesBlocks in a residual way.
TimesBlocks can capture various temporal 2D-variations from k different reshaped tensors by a
parameter-efficient inception block in 2D space and fuse them based on normalized amplitude values.

into 2D space and obtain a set of 2D tensors, from which we can obtain informative representations
by parameter-efficient inception block conveniently. The process is formalized as follows:
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where Xl,i

2D 2 Rpi⇥fi⇥dmodel is the i-th transformed 2D tensor. After the transformation, we process
the 2D tensor by a parameter-efficient inception block (Szegedy et al., 2015) as Inception(·), which
involves multi-scale 2D kernels and is one of the most well-acknowledged vision backbones. Then
we transform the learned 2D representations bXl,i

2D back to 1D space bXl,i

1D 2 RT⇥dmodel for aggregation,
where we employ Trunc(·) to truncate the padded series with length (pi ⇥ fi) into original length T .

Note that benefiting from the transformation of 1D time series, the 2D kernels in the inception
block can aggregate the multi-scale intraperiod-variation (columns) and interperiod-variation (rows)
simultaneously, covering both adjacent time points and adjacent periods. Besides, we adopt a shared
inception block for different reshaped 2D tensors {Xl,1

2D , · · · ,Xl,k

2D } to improve parameter efficiency,
which can make the model size invariant to the selection of hyper-parameter k.

Adaptive aggregation Finally, we need to fuse k different 1D-representations {bXl,1
1D , · · · , bXl,k

1D }
for the next layer. Inspired by Auto-Correlation (Wu et al., 2021), the amplitudes A can reflect the
relative importance of selected frequencies and periods, thereby corresponding to the importance of
each transformed 2D tensor. Thus, we aggregate the 1D-representations based on the amplitudes:
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Since the variations within and between periods are already involved in multiple highly-structured
2D tensors, TimesBlock can fully capture multi-scale temporal 2D-variations simultaneously. Thus,
TimesNet can achieve a more effective representation learning than directly from 1D time series.

Generality in 2D vision backbones Benefiting from the transformation of 1D time series into
temporal 2D-variations, we can choose various computer vision backbones to replace the inception
block for representation learning, such as the widely-used ResNet (He et al., 2016) and ResNeXt
(Xie et al., 2017), advanced ConvNeXt (Liu et al., 2022b) and attention-based models (Liu et al.,
2021b). Thus, our temporal 2D-variation design also bridges the 1D time series to the booming 2D
vision backbones, making the time series analysis take advantage of the development of computer
vision community. In general, more powerful 2D backbones for representation learning will bring
better performance. Considering both performance and efficiency (Figure 4 right), we conduct the
main experiments based on the parameter-efficient inception block as shown in Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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ü 36 datasets, 81 settings, 20+ baselines
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4 EXPERIMENTS

To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
including short- and long-term forecasting, imputation, classification and anomaly detection.

Implementation Table 1 is a summary of benchmarks. More details about the dataset, experiment
implementation and model configuration can be found in Appendix A.

Table 1: Summary of experiment benchmarks.
Tasks Benchmarks Metrics Series Length

Forecasting
Long-term: ETT (4 subsets), Electricity, MSE, MAE 96⇠720
Traffic, Weather, Exchange, ILI (ILI: 24⇠60)

Short-term: M4 (6 subsets) SMAPE, MASE, OWA 6⇠48

Imputation ETT (4 subsets), Electricity, Weather MSE, MAE 96

Classification UEA (10 subsets) Accuracy 29⇠1751

Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100

Baselines Since we attempt to propose a foundation model for time series analysis, we extensively
compare the well-acknowledged and advanced models in all five tasks, including the RNN-based mod-
els: LSTM (1997), LSTNet (2018) and LSSL (2022); CNN-based Model: TCN (2019); MLP-based
models: LightTS (2022) and DLinear (2023); Transformer-based models: Reformer (2020), Informer
(2021), Pyraformer (2021a), Autoformer (2021), FEDformer (2022), Non-stationary Transformer
(2022a) and ETSformer (2022). Besides, we also compare the state-of-the-art models for each
specific task, such as N-HiTS (2022) and N-BEATS (2019) for short-term forecasting, Anomaly
Transformer (2021) for anomaly detection, Rocket (2020) and Flowformer (2022) for classification
and etc. Overall, more than 15 baselines are included for a comprehensive comparison.
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Figure 4: Model performance comparison (left) and generality in different vision backbones (right).

4.1 MAIN RESULTS

As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.

4.2 SHORT- AND LONG-TERM FORECASTING

Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
applications. For the short-term dataset, we adopt the M4 (Spyros Makridakis, 2018), which contains
the yearly, quarterly and monthly collected univariate marketing data. Note that each dataset in the
long-term setting only contains one continuous time series, where we obtain samples by sliding
window, while M4 involves 100,000 different time series collected in different frequencies.
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To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
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and etc. Overall, more than 15 baselines are included for a comprehensive comparison.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
84.5

85.0

85.5

86.0

86.5

87.0

30 40 50 60 70 80 90 100
84.5

85�0

85�5

86.0

86.5

87.0

F1
-S

co
re

Training Time (iter/ms)

ConvNext
2.196MB, 39.2ms 

Inception (sharing)
0.067MB, 43.2ms 

ResNet
0.024MB, 30.5ms 

Inception (independent)
0.331MB, 60.2ms 

ResNext
0.103MB, 103.9ms 

SwinBlock
0.052MB, 103.6ms 

0.25MB 1�00MB 4.00MB0.63MB

Params Count

Long-term Forecasting
 (MSE)

Short-term Forecasting
(SMAPE)

Anomaly Detection
 (F1-Score)

Imputation
 (MSE)

Classification
(Accuracy)

0.50

1.10

1.7011.00

17.40

14.20

86.00

83.00

79.00

0.05

0.11

75.00

69.00

63.00

0.17

TimesNet (Ours)

Stationary (2022)

FEDformer (2022)

LightTS (2022)

DLinear (2022)

Autoformer (2021)

Informer (2021)

Reformer (2020)

Anomaly Detection

ETSformer (2022)

Figure 4: Model performance comparison (left) and generality in different vision backbones (right).

4.1 MAIN RESULTS

As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.

4.2 SHORT- AND LONG-TERM FORECASTING

Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
applications. For the short-term dataset, we adopt the M4 (Spyros Makridakis, 2018), which contains
the yearly, quarterly and monthly collected univariate marketing data. Note that each dataset in the
long-term setting only contains one continuous time series, where we obtain samples by sliding
window, while M4 involves 100,000 different time series collected in different frequencies.
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4 EXPERIMENTS

To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
including short- and long-term forecasting, imputation, classification and anomaly detection.

Implementation Table 1 is a summary of benchmarks. More details about the dataset, experiment
implementation and model configuration can be found in Appendix A.

Table 1: Summary of experiment benchmarks.
Tasks Benchmarks Metrics Series Length

Forecasting
Long-term: ETT (4 subsets), Electricity, MSE, MAE 96⇠720
Traffic, Weather, Exchange, ILI (ILI: 24⇠60)

Short-term: M4 (6 subsets) SMAPE, MASE, OWA 6⇠48

Imputation ETT (4 subsets), Electricity, Weather MSE, MAE 96

Classification UEA (10 subsets) Accuracy 29⇠1751

Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100

Baselines Since we attempt to propose a foundation model for time series analysis, we extensively
compare the well-acknowledged and advanced models in all five tasks, including the RNN-based mod-
els: LSTM (1997), LSTNet (2018) and LSSL (2022); CNN-based Model: TCN (2019); MLP-based
models: LightTS (2022) and DLinear (2023); Transformer-based models: Reformer (2020), Informer
(2021), Pyraformer (2021a), Autoformer (2021), FEDformer (2022), Non-stationary Transformer
(2022a) and ETSformer (2022). Besides, we also compare the state-of-the-art models for each
specific task, such as N-HiTS (2022) and N-BEATS (2019) for short-term forecasting, Anomaly
Transformer (2021) for anomaly detection, Rocket (2020) and Flowformer (2022) for classification
and etc. Overall, more than 15 baselines are included for a comprehensive comparison.
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Figure 4: Model performance comparison (left) and generality in different vision backbones (right).

4.1 MAIN RESULTS

As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.

4.2 SHORT- AND LONG-TERM FORECASTING

Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
applications. For the short-term dataset, we adopt the M4 (Spyros Makridakis, 2018), which contains
the yearly, quarterly and monthly collected univariate marketing data. Note that each dataset in the
long-term setting only contains one continuous time series, where we obtain samples by sliding
window, while M4 involves 100,000 different time series collected in different frequencies.
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Table 2: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table 13 in Appendix for the full results.

Models TimesNet ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer
(Ours) (2022) (2022) (2023) (2022) (2022a) (2021) (2021a) (2021) (2019) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.400 0.406 0.429 0.425 0.435 0.437 0.403 0.407 0.448 0.452 0.481 0.456 0.588 0.517 0.691 0.607 0.961 0.734 0.929 0.725 0.799 0.671

ETTm2 0.291 0.333 0.293 0.342 0.409 0.436 0.350 0.401 0.305 0.349 0.306 0.347 0.327 0.371 1.498 0.869 1.410 0.810 1.535 0.900 1.479 0.915

ETTh1 0.458 0.450 0.542 0.510 0.491 0.479 0.456 0.452 0.440 0.460 0.570 0.537 0.496 0.487 0.827 0.703 1.040 0.795 1.072 0.837 1.029 0.805

ETTh2 0.414 0.427 0.439 0.452 0.602 0.543 0.559 0.515 0.437 0.449 0.526 0.516 0.450 0.459 0.826 0.703 4.431 1.729 2.686 1.494 6.736 2.191

Electricity 0.192 0.295 0.208 0.323 0.229 0.329 0.212 0.300 0.214 0.327 0.193 0.296 0.227 0.338 0.379 0.445 0.311 0.397 0.272 0.370 0.338 0.422

Traffic 0.620 0.336 0.621 0.396 0.622 0.392 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.878 0.469 0.764 0.416 0.705 0.395 0.741 0.422

Weather 0.259 0.287 0.271 0.334 0.261 0.312 0.265 0.317 0.309 0.360 0.288 0.314 0.338 0.382 0.946 0.717 0.634 0.548 0.696 0.602 0.803 0.656

Exchange 0.416 0.443 0.410 0.427 0.385 0.447 0.354 0.414 0.519 0.500 0.461 0.454 0.613 0.539 1.913 1.159 1.550 0.998 1.402 0.968 1.280 0.932

ILI 2.139 0.931 2.497 1.004 7.382 2.003 2.616 1.090 2.847 1.144 2.077 0.914 3.006 1.161 7.635 2.050 5.137 1.544 4.839 1.485 4.724 1.445

Table 3: Short-term forecasting task on M4. The prediction lengths are in [6, 48] and results are
weighted averaged from several datasets under different sample intervals. See Table 14 for full results.

Models TimesNet N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer
(Ours) (2022) (2019) (2022) (2022) (2023) (2022) (2022a) (2021) (2021a) (2021) (2019) (2020)

SMAPE 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 16.018 18.200
MASE 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 3.010 4.223
OWA 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.378 1.775

Results TimesNet shows great performance in both long-term and short-term settings (Table 2–3).
Concretely, TimesNet achieves state-of-the-art in more than 80% of cases in long-term forecasting
(Table 13). For the M4 dataset, since the time series are collected from different sources, the temporal
variations can be quite diverse, making forecasting much more challenging. Our model still performs
best in this task, surpassing extensive advanced MLP-based and Transformer-based models.

4.3 IMPUTATION

Setups Real-world systems always work continuously and are monitored by automatic observation
equipment. However, due to malfunctions, the collected time series can be partially missing, making
the downstream analysis difficult. Thus, imputation is widely-used in practical applications. In this
paper, we select the datasets from the electricity and weather scenarios as our benchmarks, including
ETT (Zhou et al., 2021), Electricity (UCI) and Weather (Wetterstation), where the data-missing
problem happens commonly. To compare the model capacity under different proportions of missing
data, we randomly mask the time points in the ratio of {12.5%, 25%, 37.5%, 50%}.

Results Due to the missing time points, the imputation task requires the model to discover underly-
ing temporal patterns from the irregular and partially observed time series. As shown in Table 4, our
proposed TimesNet still achieves the consistent state-of-the-art in this difficult task, verifying the
model capacity in capturing temporal variation from extremely complicated time series.

4.4 CLASSIFICATION

Setups Time series classification can be used in recognition and medical diagnosis (Moody et al.,
2011). We adopt the sequence-level classification to verify the model capacity in high-level represen-
tation learning. Concretely, we select 10 multivariate datasets from UEA Time Series Classification
Archive (Bagnall et al., 2018), covering the gesture, action and audio recognition, medical diagnosis
by heartbeat monitoring and other practical tasks. Then, we pre-process the datasets following the
descriptions in (Zerveas et al., 2021), where different subsets have different sequence lengths.

7

TimesNet surpasses advanced Transformer-based and MLP-based models.
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Figure 12: Visualization of ETTm2 predictions by different models under the input-96-predict-336
setting. The black lines stand for the ground truth and the orange lines stand for predicted values.
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Figure 13: Visualization of M4 predictions by different models. The black lines stand for the ground
truth and the orange lines stand for predicted values.

As shown in Table 11, our proposed TimesNet achieves the best performance in all five tasks. Among
the top three models, TimesNet also achieves the greatest efficiency. Compared to MLP-based models,
our proposed TimesNet shows a significant advantage in performance. And benefiting from the
utilization of 2D kernels and parameter-efficient design, the parameter size is invariant when the input
series changes. Compared to Transformer-based models, TimesNet is with great efficiency in GPU
memory, which is essential in long sequence modeling.
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Table 2: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table 13 in Appendix for the full results.

Models TimesNet ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer
(Ours) (2022) (2022) (2023) (2022) (2022a) (2021) (2021a) (2021) (2019) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.400 0.406 0.429 0.425 0.435 0.437 0.403 0.407 0.448 0.452 0.481 0.456 0.588 0.517 0.691 0.607 0.961 0.734 0.929 0.725 0.799 0.671

ETTm2 0.291 0.333 0.293 0.342 0.409 0.436 0.350 0.401 0.305 0.349 0.306 0.347 0.327 0.371 1.498 0.869 1.410 0.810 1.535 0.900 1.479 0.915

ETTh1 0.458 0.450 0.542 0.510 0.491 0.479 0.456 0.452 0.440 0.460 0.570 0.537 0.496 0.487 0.827 0.703 1.040 0.795 1.072 0.837 1.029 0.805

ETTh2 0.414 0.427 0.439 0.452 0.602 0.543 0.559 0.515 0.437 0.449 0.526 0.516 0.450 0.459 0.826 0.703 4.431 1.729 2.686 1.494 6.736 2.191

Electricity 0.192 0.295 0.208 0.323 0.229 0.329 0.212 0.300 0.214 0.327 0.193 0.296 0.227 0.338 0.379 0.445 0.311 0.397 0.272 0.370 0.338 0.422

Traffic 0.620 0.336 0.621 0.396 0.622 0.392 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.878 0.469 0.764 0.416 0.705 0.395 0.741 0.422

Weather 0.259 0.287 0.271 0.334 0.261 0.312 0.265 0.317 0.309 0.360 0.288 0.314 0.338 0.382 0.946 0.717 0.634 0.548 0.696 0.602 0.803 0.656

Exchange 0.416 0.443 0.410 0.427 0.385 0.447 0.354 0.414 0.519 0.500 0.461 0.454 0.613 0.539 1.913 1.159 1.550 0.998 1.402 0.968 1.280 0.932

ILI 2.139 0.931 2.497 1.004 7.382 2.003 2.616 1.090 2.847 1.144 2.077 0.914 3.006 1.161 7.635 2.050 5.137 1.544 4.839 1.485 4.724 1.445

Table 3: Short-term forecasting task on M4. The prediction lengths are in [6, 48] and results are
weighted averaged from several datasets under different sample intervals. See Table 14 for full results.

Models TimesNet N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer
(Ours) (2022) (2019) (2022) (2022) (2023) (2022) (2022a) (2021) (2021a) (2021) (2019) (2020)

SMAPE 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 16.018 18.200
MASE 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 3.010 4.223
OWA 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.378 1.775

Results TimesNet shows great performance in both long-term and short-term settings (Table 2–3).
Concretely, TimesNet achieves state-of-the-art in more than 80% of cases in long-term forecasting
(Table 13). For the M4 dataset, since the time series are collected from different sources, the temporal
variations can be quite diverse, making forecasting much more challenging. Our model still performs
best in this task, surpassing extensive advanced MLP-based and Transformer-based models.

4.3 IMPUTATION

Setups Real-world systems always work continuously and are monitored by automatic observation
equipment. However, due to malfunctions, the collected time series can be partially missing, making
the downstream analysis difficult. Thus, imputation is widely-used in practical applications. In this
paper, we select the datasets from the electricity and weather scenarios as our benchmarks, including
ETT (Zhou et al., 2021), Electricity (UCI) and Weather (Wetterstation), where the data-missing
problem happens commonly. To compare the model capacity under different proportions of missing
data, we randomly mask the time points in the ratio of {12.5%, 25%, 37.5%, 50%}.

Results Due to the missing time points, the imputation task requires the model to discover underly-
ing temporal patterns from the irregular and partially observed time series. As shown in Table 4, our
proposed TimesNet still achieves the consistent state-of-the-art in this difficult task, verifying the
model capacity in capturing temporal variation from extremely complicated time series.

4.4 CLASSIFICATION

Setups Time series classification can be used in recognition and medical diagnosis (Moody et al.,
2011). We adopt the sequence-level classification to verify the model capacity in high-level represen-
tation learning. Concretely, we select 10 multivariate datasets from UEA Time Series Classification
Archive (Bagnall et al., 2018), covering the gesture, action and audio recognition, medical diagnosis
by heartbeat monitoring and other practical tasks. Then, we pre-process the datasets following the
descriptions in (Zerveas et al., 2021), where different subsets have different sequence lengths.

7

ü More complex temporal patterns: M4 dataset is composed of yearly, monthly, 

weekly, daily, hourly and quarterly collected univariate marketing data.

ü TimesNet surpasses N-HiTs and N-BEATS.

ü Simple Linear methods degenerate a lot.
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Figure 12: Visualization of ETTm2 predictions by different models under the input-96-predict-336
setting. The black lines stand for the ground truth and the orange lines stand for predicted values.
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Figure 13: Visualization of M4 predictions by different models. The black lines stand for the ground
truth and the orange lines stand for predicted values.

As shown in Table 11, our proposed TimesNet achieves the best performance in all five tasks. Among
the top three models, TimesNet also achieves the greatest efficiency. Compared to MLP-based models,
our proposed TimesNet shows a significant advantage in performance. And benefiting from the
utilization of 2D kernels and parameter-efficient design, the parameter size is invariant when the input
series changes. Compared to Transformer-based models, TimesNet is with great efficiency in GPU
memory, which is essential in long sequence modeling.
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ü Averaged from 4 different mask ratios: 12.5%, 25%, 37.5%, 50%

ü Requires the model to handle irregular inputs.

ü Non-stationary Transformer performs well but MLP-based models fail in this task.
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Table 4: Imputation task. We randomly mask {12.5%, 25%, 37.5%, 50%} time points in length-96
time series. The results are averaged from 4 different mask ratios. See Table 16 for full results.

Models TimesNet ETSformer LightTS DLinear FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer
(Ours) (2022) (2022) (2023) (2022) (2022a) (2021) (2021a) (2021) (2019) (2020)

Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.027 0.107 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.717 0.570 0.071 0.188 0.050 0.154 0.055 0.166

ETTm2 0.022 0.088 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.465 0.508 0.156 0.292 0.119 0.246 0.157 0.280

ETTh1 0.078 0.187 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.842 0.682 0.161 0.279 0.219 0.332 0.122 0.245

ETTh2 0.049 0.146 0.367 0.436 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 1.079 0.792 0.337 0.452 0.186 0.318 0.234 0.352

Electricity 0.092 0.210 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.297 0.382 0.222 0.328 0.175 0.303 0.200 0.313

Weather 0.030 0.054 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.152 0.235 0.045 0.104 0.039 0.076 0.038 0.087
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Figure 5: Model comparison in classification. “⇤.” in the Transform-
ers indicates the name of ⇤former. The results are averaged from 10
subsets of UEA. See Table 17 in Appendix for full results.

Results As shown in Figure 5,
TimesNet achieves the best perfor-
mance with an average accuracy
of 73.6%, surpassing the previous
state-of-the-art classical method
Rocket (72.5%) and deep model
Flowformer (73.0%). It is also no-
table that the MLP-based model
DLinear fails in this classification
task (67.5%), which performs well
in some time series forecasting
datasets. This is because DLinear
only adopts a one-layer MLP model
on the temporal dimension, which
might be suitable for some autore-
gressive tasks with fixed temporal
dependencies but will degenerate a lot in learning high-level representations. In contrast, TimesNet
unifies the temporal 2D-variation in 2D space, which is convenient to learn informative representation
by 2D kernels, thereby benefiting the classification task that requires hierarchical representations.

4.5 ANOMALY DETECTION

Setups Detecting anomalies from monitoring data is vital to industrial maintenance. Since the
anomalies are usually hidden in the large-scale data, making the data labeling hard, we focus on
unsupervised time series anomaly detection, which is to detect the abnormal time points. We compare
models on five widely-used anomaly detection benchmarks: SMD (Su et al., 2019), MSL (Hundman
et al., 2018), SMAP (Hundman et al., 2018), SWaT (Mathur & Tippenhauer, 2016), PSM (Abdulaal
et al., 2021), covering service monitoring, space & earth exploration, and water treatment applications.
Following the pre-processing methods in Anomaly Transformer (2021), we split the dataset into
consecutive non-overlapping segments by sliding window. In previous works, the reconstruction is a
classical task for unsupervised point-wise representation learning, where the reconstruction error is a
natural anomaly criterion. For a fair comparison, we only change the base models for reconstruction
and use the classical reconstruction error as the shared anomaly criterion for all experiments.

Results Table 5 demonstrates that TimesNet still achieves the best performance in anomaly detec-
tion, outperforming the advanced Transformer-based models FEDformer (2022) and Autoformer
(2021). The canonical Transformer performs worse in this task (averaged F1-score 76.88%). This
may come from that anomaly detection requires the model to find out the rare abnormal temporal
patterns (Lai et al., 2021), while the vanilla attention mechanism calculates the similarity between
each pair of time points, which can be distracted by the dominant normal time points. Besides, by
taking the periodicity into consideration, TimesNet, FEDformer and Autoformer all achieve great
performance. Thus, these results also demonstrate the importance of periodicity analysis, which can
highlight variations that violate the periodicity implicitly, further benefiting the anomaly detection.
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ü TimesNet still achieves the best performance.

ü Transformer-based models generally outperform MLP-based models
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Table 5: Anomaly detection task. We calculate the F1-score (as %) for each dataset. *. means the
*former. A higher value of F1-score indicates a better performance. See Table 15 for full results.

Models TimesNet TimesNet ETS. FED. LightTS DLinear Stationary Auto. Pyra. Anomaly* In. Re. LogTrans Trans.
(ResNeXt) (Inception) (2022) (2022) (2022) (2023) (2022a) (2021) (2021a) (2021) (2021) (2020) (2019) (2017)

SMD 85.81 85.12 83.13 85.08 82.53 77.10 84.72 85.11 83.04 85.49 81.65 75.32 76.21 79.56
MSL 85.15 84.18 85.03 78.57 78.95 84.88 77.50 79.05 84.86 83.31 84.06 84.40 79.57 78.68

SMAP 71.52 70.85 69.50 70.76 69.21 69.26 71.09 71.12 71.09 71.18 69.92 70.40 69.97 69.70
SWaT 91.74 92.10 84.91 93.19 93.33 87.52 79.88 92.74 91.78 83.10 81.43 82.80 80.52 80.37
PSM 97.47 95.21 91.76 97.23 97.15 93.55 97.29 93.29 82.08 79.40 77.10 73.61 76.74 76.07

Avg F1 86.34 85.49 82.87 84.97 84.23 82.46 82.08 84.26 82.57 80.50 78.83 77.31 76.60 76.88

⇤ We replace the joint criterion in Anomaly Transformer (2021) with reconstruction error for fair comparison.

4.6 MODEL ANALYSIS

Representation analysis We attempt to explain model performance from the representation learn-
ing aspect. From Figure 6, we can find that the better performance in forecasting and anomaly
detection corresponds to the higher CKA similarity (2019), which is opposite to the imputation and
classification tasks. Note that the lower CKA similarity means that the representations are distin-
guishing among different layers, namely hierarchical representations. Thus, these results also indicate
the property of representations that each task requires. As shown in Figure 6, TimesNet can learn
appropriate representations for different tasks, such as low-level representations for forecasting and
reconstruction in anomaly detection, and hierarchical representations for imputation and classification.
In contrast, FEDformer (2022) performs well in forecasting and anomaly detection tasks but fails in
learning hierarchical representations, resulting in poor performance in imputation and classification.
These results also verify the task-generality of our proposed TimesNet as a foundation model.
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(a) Forecasting (Weather input-96-predict-336) (b) Imputation (Electricity Mask 37.5%) (c) Classification (PEMS-SF) (d) Anomaly Detection (SMD) 

Figure 6: Representation analysis in four tasks. For each model, we calculate the centered kernel
alignment (CKA) similarity (2019) between representations from the first and the last layers. A
higher CKA similarity indicates more similar representations. TimesNet is marked by red stars.
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Figure 7: A case of temporal 2D-variations.

Temporal 2D-variations We provide a case study
of temporal 2D-variations in Figure 7. We can find
that TimesNet can capture the multi-periodicities pre-
cisely. Besides, the transformed 2D tensor is highly
structured and informative, where the columns and
rows can reflect the localities between time points
and periods respectively, supporting our motivation
in adopting 2D kernels for representation learning.
See Appendix D for more visualizations.

5 CONCLUSION AND FUTURE WORK

This paper presents the TimesNet as a task-general foundation model for time series analysis. Mo-
tivated by the multi-periodicity, TimesNet can ravel out intricate temporal variations by a modular
architecture and capture intraperiod- and interperiod-variations in 2D space by a parameter-efficient
inception block. Experimentally, TimesNet shows great generality and performance in five main-
stream analysis tasks. In the future, we will further explore large-scale pre-training methods in time
series, which utilize TimesNet as the backbone and can generally benefit extensive downstream tasks.

9

ü Adopt the reconstruction error as the anomaly criterion.

ü Better 2D backbones bring better performances.

ü Transformer-based models performs well.

Experiment: Anomaly Detection
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Relation between top-bottom layer 

CKA similarity and performance

ü Why TimesNet achieves SOTA?

Benefiting from temporal 2D-

variations, it can learn proper 

representations for different tasks.
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(a) Forecasting (Weather input-96-predict-336) (b) Imputation (Electricity Mask 37.5%) (c) Classification (PEMS-SF) (d) Anomaly Detection (SMD) 
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Representation Analysis
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Relation between top-bottom layer 

CKA similarity and performance

ü What is the design principle?

- Classification & imputation need 

hierarchical representations.

- Anomaly detection & Forecasting 

expect low-level representations.
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(a) Forecasting (Weather input-96-predict-336) (b) Imputation (Electricity Mask 37.5%) (c) Classification (PEMS-SF) (d) Anomaly Detection (SMD) 
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üAfter comparing with more than 20+ baselines, we get:

Until 2023.06 (Keep updating)

@LQSURceedLQJV^ZX2023WLPeVQeW,
  WLWOe=^TLPeVNeW: TePSRUaO 2D-VaULaWLRQ MRdeOLQJ fRU GeQeUaO TLPe SeULeV AQaO\VLV`,
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LRQJ`,
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Table 11: Model efficiency comparison and their rankings in five tasks. The efficiency measurements
are recorded on the imputation task of ETTh1 dataset. The rankings are organized in the order of
long- and short-term forecasting, imputation, classification and anomaly detection. “/” indicates the
out-of-memory situation. A smaller ranking means better performance.

Models Parameter GPU Memory Running Time Ranking

Series Length (MB) (MiB) (s / iter) Five tasks Avg Ranking
384 0.067 1245 0.024

(1, 1, 1, 1, 1) 1.0TimesNet 768 0.067 1585 0.040
(ours) 1536 0.067 2491 0.045

3072 0.067 2353 0.073

384 1.884 2321 0.046

(3, 2, 2, 2, 8) 3.4Non-stationary 768 1.910 4927 0.118
Transformer 1536 1.961 / /

3072 / / /

Autoformer

384 1.848 2101 0.070

(7, 4, 3, 5, 3) 4.4768 1.848 3209 0.071
1536 1.848 5395 0.129
3072 1.848 10043 0.255

FEDformer

384 2.901 5977 0.807

(4, 3, 6, 9, 2) 4.8768 2.901 7111 1.055
1536 2.901 9173 1.482
3072 2.901 / /

LightTS

384 0.163 1055 0.009

(6, 5, 4, 10, 4) 5.8768 0.614 1077 0.013
1536 2.403 1127 0.015
3072 9.534 1311 0.030

DLinear

384 0.296 1057 0.006

(2, 6, 5, 12, 7) 6.4768 1.181 1093 0.006
1536 4.722 1159 0.007
3072 18.881 1433 0.026

ETSformer

384 1.123 1831 0.042

(5, 9, 9, 6, 5) 6.8768 1.123 2565 0.047
1536 1.123 4081 0.072
3072 1.123 7065 0.143

Informer

384 1.903 1577 0.044

(10, 8, 8, 3, 9) 7.6768 1.903 2125 0.047
1536 1.903 3153 0.088
3072 1.903 5194 0.165

Reformer

384 1.157 1681 0.030

(11, 11, 7, 4, 11) 8.8768 1.157 2301 0.046
1536 1.157 5793 0.102
3072 1.157 / /

Pyraformer

384 1.308 2047 0.046

(9, 10, 12, 8, 6) 9.0768 1.996 6077 0.119
1536 3.372 / /
3072 / / /

LSSL

384 0.121 1135 0.010

(8, 12, 10, 7, 13) 10.0768 0.220 1139 0.011
1536 0.417 1147 0.013
3072 0.812 1197 0.032

TCN

384 0.372 1195 0.020

(12, 7, 11, 11, 12) 10.6768 0.372 1333 0.020
1536 0.372 1533 0.025
3072 0.372 1983 0.061

LSTM

384 0.268 1201 0.064

(13, 13, 13, 13, 10) 12.4768 0.268 1323 0.122
1536 0.268 1539 0.229
3072 0.268 2017 0.452
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Open Source

Code is available at https://github.com/thuml/Time-Series-Library 92

https://github.com/thuml/Time-Series-Library
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