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A. Properties of DD
Proposition A.1. Let P denote the space of probability dis-
tributions over the domain X . For any h ∈ H in the setting
of binary classification, the induced Disparity Discrepancy
dh,H(·, ·) is a pseudometric on P . More precisely it is a
metric on some quotient space of P .

Proof. Firstly, dh,H(P,Q) is non-negative since h ∈ H and
dh,H(P, P ) = 0 holds for any P ∈ P by definition.

Secondly, dh,H(P,Q) is symmetric. Otherwise suppose
dh,H(P,Q) > dh,H(Q,P ). Therefore, we can choose g ∈
H such that EQ1[g 6= h] − EP1[g 6= h] > dh,H(Q,P ).
By our assumption, 1− g ∈ H. Thus

dh,H(Q,P )

≥EP1[1− g 6= h]− EQ1[1− g 6= h]

=EQ1[g 6= h]− EP1[g 6= h]

>dh,H(Q,P ).

Contradiction.

Lastly, for any distribution P,Q,R we have

dh,H(P,Q)

= sup
h′∈H

(dispQ(h′, h)− dispP (h′, h))

≤ sup
h′∈H

(dispQ(h′, h)− dispR(h′, h))

+ sup
h′′∈H

(dispR(h′′, h)− dispP (h′′, h))

=dh,H(R,Q) + dh,H(R,P ).

Thus dh,H(P,Q) is a pseudometric on P .

Note that dh,H(P,Q) = 0 does not imply P = Q in gen-
eral. However, this equation gives a equivalence relation

*Equal contribution 1School of Software 2Research Center for
Big Data, BNRist 3Department of Mathematical Science, Tsinghua
University, China 4University of California, Berkeley, USA.

†Yuchen Zhang <zhangyuc17@mails.tsinghua.edu.cn>. Corre-
spondence to: Mingsheng Long <mingsheng@tsinghua.edu.cn>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

∼h,H on P , which could be easily checked noticing that
dh,H(P,Q) = 0 is equivalent to

EQ1[h′ 6= h] = EP1[h′ 6= h]

for any h′ ∈ H. Thus dh,H(·, ·) is a metric on the quotient
space P/∼h,H.

Next in the binary classification setting we show that there
are strong connections between theH∆H-distance and dis-
parity discrepancy. For a hypothesis set H, the symmetric
difference hypothesis set H∆H is the set of classifiers

H∆H , {h− h′|h, h′ ∈ H}. (1)

Proposition A.2. For the binary classification,

dH∆H(P,Q) = sup
h∈H

dh,H(P,Q). (2)

Proof. By definition,

sup
h∈H

dh,H(P,Q) = sup
h,h′∈H

(dispQ(h′, h)− dispP (h′, h))

= sup
g∈H∆H

(EQ1[g 6= 0]− EP1[g 6= 0])

= sup
g∈H∆H

(EQg − EP g)

= dH∆H(P,Q).

Now we consider when our proposed discrepancy is inde-
pendent of the selection of h, in which case the disparity
discrepancy is actually equivalent to H∆H-distance. A
sufficient condition is stated below:

Proposition A.3. For the binary classification, if the hy-
pothesis setH is a linear space over the prime field Z2, in
other wordsH∆H = H, we have

dh,H(P,Q) = dH∆H(P,Q) = dH(P,Q) (3)

for any h ∈ H.
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Proof. Suppose there exist h, h′ ∈ H such that

dh,H(P,Q) > dh′,H(P,Q),

Then by the definition of dh,H(P,Q), for any ε > 0 there
exists g ∈ H such that

dh,H(P,Q)− (EQ1[g 6= h]− EP1[g 6= h]) < ε.

Let ε = 1
2 (dh,H(P,Q)− dh′,H(P,Q)), then consider g′ =

g − h+ h′

EQ1[g′ 6= h′]− EP1[g′ 6= h′]

=EQ1[g 6= h]− EP1[g 6= h]

>dh′,H(P,Q).

Contradiction.

However, in the case of neural networks, especially with
activations such as the rectified linear unit (ReLU), the con-
dition mentioned above is generally not satisfied andH∆H-
distance is often strictly larger than ours. To verify this, we
provide the following example:

Example A.4. Let X = R2 and P,Q be two dirac masses
on the points (−1, 1) and (1,−1) respectively. Let a, b be
two parameters with values in R. Let r(t) , max{0, t} be
the ReLU function. For any input data x = (x1, x2) ∈ R2,
the pseudo label predicted by a hypothesis h ∈ H is defined
as follows:

h(x) =

{
1 if r(x1 − a) ≥ r(x2 − b)
0 if r(x1 − a) < r(x2 − b)

.

One can check that there are three kinds of hypotheses with
values

h1(P,Q) = (0, 0), h2(P,Q) = (0, 1), h3(P,Q) = (1, 1).

Then dh1,H(P,Q)=1 and dh3,H(P,Q)=0, in which case
dh3,H(P,Q) does not coincide with dH∆H(P,Q).

B. Generalization Bounds with DD
Lemma B.1 (Rademacher Generalization Bound, Theorem
3.1 of Mohri et al. (2012)). Suppose that G is a class of
function maps X → [0, 1]. For any δ > 0, with probability
at least 1− δ, the following holds for all g ∈ G:

|ED g − ED̂ g| ≤ 2Rn,D(G) +

√
log 2

δ

2n
. (4)

Theorem B.2. For any classifier h

errQ(h) ≤ errP (h) + dh,H(P,Q) + λ, (5)

where λ = λ(H, P,Q) is independent of h.

Proof. Let h∗ be the ideal joint classifier which minimizes
the combined error,

h∗ , arg min
h∈H

{errP (h) + errQ(h)}.

Set λ = errP (h∗) + errQ(h∗). Then

errQ(h) = errP (h) + errQ(h)− errP (h)

≤errP (h) + (EQ1[h∗ 6= h]− EP1[h∗ 6= h])

+ (errP (h∗) + errQ(h∗))

≤errP (h) + sup
h′∈H

(dispQ(h′, h)− dispP (h′, h)) + λ

=errP (h) + dh,H(P,Q) + λ.

Theorem B.3. Suppose H is a hypothesis space maps X
to {0, 1}. D̂ is empirical distribution corresponding to
datasets contains n data points sampled from D. For any
δ > 0, with probability at least 1− δ, the following holds
for all h, h′ ∈ H:

|dispD(h′, h)−dispD̂(h′, h)|

≤ 2Rn,D(H∆H) +

√
log 2

δ

2n
.

(6)

Proof.

sup
h,h′∈H

|ED̂1[h′ 6= h]− ED1[h′ 6= h]|

= sup
g∈H∆H

|ED̂1[g 6= 1]− ED1[g 6= 1]|

= sup
g∈H∆H

|ED̂g − EDg|.

With Lemma B.1, we could know that

sup
g∈H∆H

|ED g − ED̂ g| ≤ 2Rn,D(H∆H) +

√
log 2

δ

2n
.

Theorem B.4. For any δ > 0 and binary classifier h ∈ H,
with probability 1− 3δ, we have

errQ(h) ≤ errP̂ (h) + dh,H(P̂ , Q̂) + λ

+ 2Rn,P (H∆H) + 2Rn,P (H) + 2

√
log 2

δ

2n

+ 2Rm,Q(H∆H) +

√
log 2

δ

2m
.

(7)

where λ = minh′∈H(errP (h′) + errQ(h′)) is independent
with h.
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Proof. Consider the difference of expected and empirical
terms on the right-hand side.

sup
h∈H

(errP (h) + dh,H(P,Q)− errP̂ (h)− dh,H(P̂ , Q̂))

= sup
h∈H

(errP (h)− errP̂ (h) + dh,H(P,Q)− dh,H(P̂ , Q̂))

≤ sup
h∈H

(errP(h)−errP̂(h)) + sup
h∈H

(dh,H(P,Q)−dh,H(P̂ ,Q̂)).

First by Lemma B.1, ∀ δ > 0, with probability 1− δ,

sup
h∈H

(errP (h)− errP̂ (h)) ≤ 2Rn,P (H) +

√
log 2

δ

2n
.

Then we bound the difference between dh,H(P,Q) and
dh,H(P̂ , Q̂):

dh,H(P,Q)− dh,H(P̂ , Q̂)

= sup
h′∈H

(dispQ(h′, h)− dispP (h′, h))

− sup
h′′∈H

(dispQ̂(h′′, h)− dispP̂ (h′′, h))

≤ sup
h′∈H

(
dispQ(h′, h)− dispP (h′, h)

− dispQ̂(h′, h) + dispP̂ (h′, h)
)

≤ sup
h′∈H

(dispQ(h′, h)− dispQ̂(h′, h))

+ sup
h′′∈H

(dispP̂ (h′′, h)− dispP (h′′, h)).

Take supremum over h ∈ H, we have:

sup
h∈H

(dh,H(P,Q)− dh,H(P̂ , Q̂))

≤ sup
h,h′∈H

|dispQ(h′, h)− dispQ̂(h′, h)|+

sup
h,h′′∈H

|dispP̂ (h′′, h)− dispP (h′′, h)|.

From Theorem B.2, we directly get:

sup
h∈H

(dh,H(P,Q)− dh,H(P̂ , Q̂))

≤2Rn,P (H∆H) + 2

√
log 2

δ

2n
+ 2Rm,Q(H∆H) +

√
log 2

δ

2m
.

Combine the two parts of inequality, we get the final result.

We introduce theory of VC-dimension here to further mea-
sure the generalization ability.

Definition B.5 (VC-Dimension). The VC-dimension of a
hypothesis set H is the size of the largest set that can be
fully shattered byH. Let

Π(n,H) , max
x1,...,xn

∣∣{h(x1), . . . , h(xn)
∣∣h ∈ H}∣∣. (8)

Then

VC(H) , max{m
∣∣Π(m,H) = 2m}. (9)

Lemma B.6 (Corollary 3.1 & 3.3 of Mohri et al. (2012)).
Suppose G takes value in {0, 1} and d is the VC-dimension
of G. Then the Rademacher complexity of G has the follow-
ing holds for all h ∈ H,

Rn,D(G) ≤ 1

2

√
2d log en

d

n
. (10)

Theorem B.7. For any δ > 0 and h ∈ H, with probability
1− 3δ, we have

errQ(h) ≤ errP̂ (h) + dh,H(P̂ , Q̂) + λ

+ C1

√
d log en

d

n
+ C2

√
log 2

δ

2n

+ C3

√
d log em

d

m
+ C4

√
log 2

δ

2m
+ λ,

(11)

where C1, C2 are constants independent ofH, P,Q.

Proof. Since we can represent every g ∈ H∆H as a linear
threshold network of depth 2 with 2 hidden units, the VC-
dimension ofH∆H is at most twice the VC-dimension of
H (Anthony & Bartlett, 2009). Let g , 1 + h − h′, then
g ∈ H∆H and h 6= h′ is equivalent to g 6= 1. Thus by
Lemma B.6 we have

Rn,P (H∆H) ≤ 1

2

√
2d log en

4d

n
.

To summarize, with probability 1− 3δ,

errQ(h) ≤ errP (h) + dh,H(P,Q) + λ

≤ errP̂ (h) + dh,H(P̂ , Q̂)

+ 4

√
d log en

d

n
+ 2

√
log 2

δ

2n
+

+ 2

√
d log em

d

m
+

√
log 2

δ

2m
+ λ.
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C. Generalization Bounds with MDD
Lemma C.1. For any distribution D and any f , we have

disp(ρ)
D (f ′, f) ≤ err(ρ)D (f ′) + err(ρ)D (f). (12)

Proof. We prove that for any (xi, yi),

Φρ ◦ ρf ′(xi, hf (xi)) ≤ Φρ ◦ ρf ′(xi, yi) + Φρ ◦ ρf (xi, yi),

If hf (xi) 6= yi or hf ′(xi) 6= yi, the right side of above
equation will reach 1, which is a trivial upper bound for the
left part. Otherwise hf (xi) = hf ′(xi) = yi, and

Φρ ◦ ρf ′(xi, hf (xi))

≤Φρ ◦ ρf ′(xi, hf (xi)) + Φρ ◦ ρf (xi, yi)

=Φρ ◦ ρf ′(xi, yi) + Φρ ◦ ρf (xi, yi).

Take expectation on distributionP and we get the result.

Theorem C.2 (Proposition 3.3). For any scoring function
f ,

errQ(hf ) ≤ err(ρ)P (f) + d
(ρ)
f,F (P,Q) + λ, (13)

where λ = λ(ρ,F , P,Q) is a constant independent of f .

Proof. Let f∗ be the ideal joint hypothesis which minimizes
the combined margin loss,

f∗ , arg min
f∈H

{err(ρ)P (f) + err(ρ)Q (f)}.

Set λ = err(ρ)P (f∗) + err(ρ)Q (f∗). Then by Lemma C.1,

errQ(f) ≤ EQ1[hf 6= hf∗ ] + EQ1[hf∗ 6= y]

≤ err(ρ)P (f)− err(ρ)P (f)

+ disp(ρ)
Q (f∗, f) + err(ρ)Q (f∗)

≤ err(ρ)P (f) + err(ρ)P (f∗)− disp(ρ)
P (f∗, f)

+ disp(ρ)
Q (f∗, f) + err(ρ)Q (f∗)

≤ err(ρ)P (f) + d
(ρ)
f,F (P,Q) + λ

Definition C.3. Given a class of scoring functions F and a
class of the induced classifiersH, we define ΠHF as

ΠHF = {x 7→ f(x, h(x))|h ∈ H, f ∈ F}. (14)

There is a geometric interpretation of the set ΠHF (Galbis
& Maestre, 2012). Assuming X is a manifold, assigning a
vector space Rk to each point in X yields a vector bundle
B. Now regarding the values ofH as one-hot vectors in Rk,
F andH are both sets of sections of B containing (probably
piecewise continuous) vector fields. ΠHF can be seen as
the space of inner products of vector fields fromH and F ,

ΠHF = 〈H,F〉 = {〈h, f〉
∣∣h ∈ H, f ∈ F}. (15)

Lemma C.4 (A modified version of Theorem 8.1, Mohri
et al. (2012)). Suppose F ⊆ RX×Y is the hypothesis set of
scoring functions with Y = {1, 2, . . . , k}. Let

Π1F , {x 7→ f(x, y)
∣∣y ∈ Y, f ∈ F}. (16)

Fix ρ > 0. Then for any δ > 0, with probability at least
1− δ, the following holds for all f ∈ F:

|err(ρ)
D (f)− err(ρ)

D̂
(f)| ≤ 2k2

ρ
Rn,D(Π1F) +

√
log 2

δ

2n
.

(17)

Note that a simple corollary of this lemma is the margin
bound for multi-class classification:

errD(hf ) ≤ err(ρ)D (f)

≤ err(ρ)
D̂

(f) +
2k2

ρ
Rn,D(Π1F) +

√
log 2

δ

2n
.

(18)

Lemma C.5 (Talagrand’s lemma, Talagrand (2014); Mohri
et al. (2012)). Let Φ : R → R be an `-Lipschitz. Then
for any hypothesis set F of real-valued functions, and any
sample D̂ of size n, the following inequality holds:

R̂D̂(Φ ◦ F) ≤ ` R̂D̂(F) (19)

Lemma C.6 (Lemma 8.1 of Mohri et al. (2012)). Let
F1, . . . ,Fk be k hypothesis sets in RX , k > 1. G =
{max{f1, . . . , fk} : fi ∈ F , i ∈ {1, . . . , k}}, Then for
any sample D̂ of size n, we have

R̂D̂(G) ≤
k∑
i=1

R̂D̂(Fi) (20)

Theorem C.7 (Lemma 3.6). Let F ∈ RX×Y is a hypoth-
esis set. Let H be the set of classifiers (mapping X to Y)
corresponding to F . For any δ > 0, with probability 1− 2δ,
the following holds simultaneously for any scoring function
f ,

|d(ρ)
f,F (P̂ , Q̂)− d(ρ)

f,F (P,Q)|

≤k
ρ
Rn,P (ΠHF) +

k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2n
+

√
log 2

δ

2m
.

(21)

Proof. For ∀f, f ′ ∈ F , define the τf -transform of f ′ to be

τff
′(x, y) =


f ′(x, 1) if y = hf (x)

f ′(x, hf (x)) if y = 1

f ′(x, y) else

where hf is the induced classifier mapping fromX to Y . Let
G = {τff ′|f, f ′ ∈ F}, G̃ = {(x, y) 7→ ρg(x, y)|g ∈ G}.
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Consider the family of functions Φρ ◦ G̃ which takes values
in [0, 1]. By Lemma C.4, with probability at least 1− δ, for
∀g ∈ G.

|err(ρ)P (g)− err(ρ)
P̂

(g)|

=|EΦρ ◦ ρg(x, y)− 1

n

n∑
i=1

Φρ ◦ ρg(xi, yi)|

≤2Rn,D(Φρ ◦ G̃) +

√
log 2

δ

2n

Regard all the data as from the same class 1. Define:

R0
n,D(G) = E(xi,1),xi∼DnR̂D̂(G)

Then the above equations becomes

|disp(ρ)
P (g, 1)− disp(ρ)

P̂
(g, 1)|

=|EΦρ ◦ ρg(x, 1)− 1

n

n∑
i=1

Φρ ◦ ρg(xi, 1)|

≤2R0
n,D(Φρ ◦ G̃) +

√
log 2

δ

2n

For any f, f ′ ∈ F , let g = τff
′. Then g ∈ G and

disp(ρ)
P (g, 1) = disp(ρ)

P (f ′, f), disp(ρ)

P̂
(g, 1) = disp(ρ)

P̂
(f ′, f)

Thus,

sup
f,f ′∈F

|disp(ρ)
P (f ′, f)− disp(ρ)

P̂
(f ′, f)|

≤ sup
g∈G
|disp(ρ)

P (g, 1)− disp(ρ)

P̂
(g, 1)|

≤2R0
n,D(Φρ ◦ G̃) +

√
log 2

δ

2n

By Lemma C.5, R0
n,D(Φρ ◦ G̃) ≤ 1

ρR
0
n,D(G̃)

R0
n,D(G̃) =

1

n
ES,σ(sup

g∈G

n∑
i=1

σiρg(xi, 1))

=
1

n
ES,σ(sup

g∈G

n∑
i=1

σi(g(xi, 1)−max
y 6=1

g(xi, y))

=
1

n
ES,σ( sup

f,f ′∈F

n∑
i=1

σi(f
′(xi, hf (xi))− max

y 6=hf (xi)
f ′(xi, y))

≤ 1

n
ES,σ sup

f∈F,h∈H

n∑
i=1

σif(xi, h(xi))

+
1

n
ES,σ sup

f∈F,h∈H

n∑
i=1

σi(− max
y 6=h(xi)

f ′(xi, y))

= Rn,D(ΠHF) +
1

n
ES,σ sup

f∈F,h∈H

n∑
i=1

σi max
y 6=h(xi)

f(xi, y)

Define the permutation

ξ(i) =

{
i+ 1 i = 1, . . . , k − 1

1 i = k

By our assumption of H, we have the result that ∀h ∈ H,
ξjh ∈ H, j = 1, 2, . . . , k − 1.

1

n
ES,σ sup

f∈F,h∈H

n∑
i=1

σi max
y 6=h(xi)

f(xi, y)

=
1

n
ES,σ sup

f∈F,h∈H

n∑
i=1

σi max
j∈{1,...,k−1}

f(xi, ξ
jh(xi))

Let ΠHF (k−1) = {max{f1, . . . , fk−1}|fi ∈ ΠHF , i =
1, . . . , k − 1}. Then applying Lemma C.6:

1

n
ES,σ sup

f,h

n∑
i=1

σi max
j∈{1,...,k−1}

f(xi, ξ
jh(xi))

=
1

n
ES,σ sup

f∈ΠHF(k−1)

n∑
i=1

σif(xi)

≤k − 1

n
ES,σ sup

f∈ΠHF

n∑
i=1

σif(xi)

Therefore, we have

R0
n,D(G̃) ≤Rn,D(ΠHF) +

k − 1

n
ES,σ sup

f∈ΠHF

n∑
i=1

σif(xi)

≤kRn,D(ΠHF),

sup
f,f ′∈F

|disp(ρ)
P (f ′, f)− disp(ρ)

P̂
(f ′, f)|

≤ 2k

ρ
Rn,P (ΠHF) +

√
log 2

δ

2n
.

Similarly

sup
f,f ′∈F

|disp(ρ)
Q (f ′, f)− disp(ρ)

Q̂
(f ′, f)|

≤ 2k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

Therefore, we conclude

sup
f∈F
|d(ρ)
f,F (P̂ , Q̂)− d(ρ)

f,F (P,Q)|

≤ sup
f,f ′∈F

|disp(ρ)
Q (f ′, f)− disp(ρ)

Q̂
(f ′, f)|

+ sup
f,f ′∈F

|disp(ρ)
P (f ′, f)− disp(ρ)

P̂
(f ′, f)|

≤2k

ρ
Rn,P (ΠHF) +

2k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2n
+

√
log 2

δ

2m
.



Supplemental Material: Bridging Theory and Algorithm for Domain Adaptation

Theorem C.8 (Theorem 3.7). For any δ > 0, with proba-
bility 1− 3δ, we have the following uniform generalization
bound for all scoring functions f

errQ(f) ≤err(ρ)
P̂

(f) + d
(ρ)
f,F (P̂ , Q̂) + λ

+
2k2

ρ
Rn,P (Π1F) +

2k

ρ
Rn,P (ΠHF) + 2

√
log 2

δ

2n

+
2k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

(22)

Proof. This is the result of combining Theorem C.2, Equa-
tion (18) and Theorem C.7.

Example C.9 (Linear Classifiers). Let

S ⊆ X = {x ∈ Rs|‖x‖2 ≤ r}

be a sample of size m and suppose

F =
{
f : X × {±1} → R

∣∣ f(x, y) =

sgn(y) w · x, ‖w‖2 ≤ Λ
}
,

H =
{
h | h(x) = sgn(w · x), ‖w‖2 ≤ Λ}.

Then the empirical Rademacher complexity of ΠHF can be
bounded as follows:

R̂S(ΠHF) ≤ 2Λr

√
d log em

d

m
,

where d is the VC-dimension ofH. If we further suppose

min
x∈S
|w · x| = 1 ∧ ‖w‖2,

then

R̂S(ΠHF) ≤ 2Λ2r2

√
log em

m
.

To prove this we need two lemmas.

Lemma C.10 (Propostion 6 of Maurer (2016)). Let ξi be
the Rademacher random variables. For any vector v ∈ Rs,
the following holds:

‖v‖2 ≤
√

2 E
ξi∼{±1},i∈{1,2,...,s}

|〈ξ,v〉|.

Lemma C.11 (Theorem 4.2 of Mohri et al. (2012)). Let
S ⊆ {x : ‖x‖ ≤ r}. Then, the V C-dimension d of the set
of canonical hyperplanes{

x 7→ sgn(w · x) : min
x∈S
|w · x| = 1 ∧ ‖w‖2 ≤ Λ

}
verifies

d ≤ r2Λ2.

Now we present the proof of Example C.9.

Proof. By the definition of empirical Rademacher complex-
ity and Cauchy-Schwartz inequality

mR̂S(ΠHF) = Eσ sup
f,h

m∑
i=1

σif(xi, h(xi))

= Eσ sup
w,h

m∑
i=1

σih(xi)〈w,xi〉

= Eσ sup
w,h
〈w,

m∑
i=1

σih(xi)xi〉

≤ Eσ sup
h

Λ‖
m∑
i=1

σih(xi)xi‖2

Applying Lemma C.10, we get

Eσ sup
h

Λ‖
m∑
i=1

h(xi)σixi‖2

≤
√

2ΛEσ sup
h
Eξ∼{±1}s |〈ξ,

m∑
i=1

h(xi)σixi〉|

≤
√

2ΛEσEξ sup
h
|〈ξ,

m∑
i=1

h(xi)σixi〉|

=
√

2ΛEσ,ξ sup
h
〈ξ,

m∑
i=1

h(xi)σixi〉

=
√

2ΛEσ,ξ sup
h

m∑
i=1

s∑
j=1

ξjσih(xi)xij .

Let
A = {(h(x1), . . . , h(xm)) | h ∈ H} .

By Jensen’s inequality, for any t > 0

exp(tEσ,ξ sup
h

m∑
i=1

s∑
j=1

ξjσih(xi)xij)

≤Eσ,ξ exp(t sup
h

m∑
i=1

s∑
j=1

ξjσih(xi)xij)

≤Eσ,ξ
∑
a∈A

exp(t

m∑
i=1

s∑
j=1

ξjσiaixij)

=
∑
a∈A

Eσ,ξ

m∏
i=1

s∏
j=1

exp(tξjσiaixij)

=
∑
a∈A

m∏
i=1

s∏
j=1

Eσi,ξj exp(tξjσiaixij)

≤
∑
a∈A

m∏
i=1

s∏
j=1

exp(
t2(aixij)

2

2
)

=
∑
a∈A

exp(
t2
∑m
i=1 ‖xi‖22

2
) ≤ |A| exp(

t2r2m

2
).
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Thus

sup
h
Eσ,ξ

m∑
i=1

s∑
j=1

ξjσih(xi)xij ≤
log |A|
t

+
tr2m

2
.

Take

t =

√
2 log |A|
r2m

,

We get

sup
h
Eσ,ξ

m∑
i=1

s∑
j=1

ξjσih(xi)xij ≤
√

2r2m log |A|.

Note that

log |A| = log(Π(m,H)) ≤ d log
em

d
,

We conclude

R̂S(ΠHF) ≤ 2Λr

√
d log em

d

m
.

Now if the extra condition is satisfied, by Lemma C.11

R̂S(ΠHF) ≤ 2Λ2r2

√
log em

m
.

Definition C.12 (Covering Number). Let (M,d) be a met-
ric space. A subset T̂ ⊆M is called an ε cover of T ⊆M if
for every t ∈ T , there exists an t′ ∈ T̂ such that ρ(t, t′) ≤ ε.
The covering number of T is the cardinality of the smallest
ε cover of T , that is

N (ε, T, d) , min
{
|T̂ |
∣∣∣ T̂ is an ε cover of T

}
. (23)

Let (Fx1,...,xn ,L2(D̂)) stand for the data-dependent L2

metric space given by metric

d(f, f ′) , ‖f − f ′‖2 =

√√√√ 1

n

n∑
i=1

(f(xi)− f ′(xi))2 (24)

where x1,. . . ,xn are a sample from space X and Fx1,...,xn

stands for the restriction of (real-valued) function class F
to that sample. Denote the L2 covering number by

N2(ε,F) , N (ε,F ,L2(D̂)). (25)

The covering number can be interpreted as a measure of the
richness of the class F at the scale ε. For a fixed value of ε,
this covering number, and in particular how rapidly it grows
with n, indicate how much the set Fx1,...,xn “fills up” Rn,
when we examine it at the scale ε.

First we show that the L2 covering number of ΠHF can be
bounded by that of Π1F and Π1H.

Lemma C.13. Suppose the value of f ∈ Π1F is bounded
by L <∞, i.e.

‖f‖2 ≤ L. (26)

Then we have

N2(ε,ΠHF) ≤ N k
2 (

ε

2k
,Π1F) · N k

2 (
ε

2kL
,Π1H) (27)

Proof. For any g ∈ ΠHF , g = 〈h, f〉, choose ĥi, f̂i
from the N k

2 ( ε
2kL ,Π1H) and N2( ε

2k ,Π1F) cover of Π1H
and Π1F according to the components hi, fi of h, f (i =

1, . . . k). Let ĝ =
∑k
i=1 ĥif̂i. Then the choices of ĝ is

at most N k
2 ( ε

2k ,Π1F) · N k
2 ( ε

2kL ,Π1H). By Minkowski
inequality and Hölder inequality we have

‖g − ĝ‖2 = ‖
k∑
i=1

(hifi − ĥif̂i)‖2

= ‖
k∑
i=1

(hi(fi − f̂i) + f̂i(hi − ĥi)‖2

≤
k∑
i=1

(‖hi‖2 ‖fi − f̂i‖2 + ‖f̂i‖2 ‖hi − ĥi‖2)

≤
k∑
i=1

(‖fi − f̂i‖2 + L‖hi − ĥi‖2) ≤ ε.

Lemma C.14 (Dudley’s Entropy Bound, Talagrand (2014)).
For any function class F containing functions f : X → R,
we have

Rn,D(F) ≤ inf
ε≥0

{
4ε+

12√
n

∫ supf∈F ‖f‖2

ε

√
logN2(τ,F)dτ

}
(28)

Theorem C.15 (Theorem 3.8). With the same conditions in
Theorem C.8, further suppose Π1F is bounded in L2 by L.
For δ > 0, with probability 1− 3δ, we have the following
uniform generalization bound for all scoring functions f ,

errQ(f) ≤ err(ρ)
P̂

(f) + d
(ρ)
f,F (P̂ , Q̂) + λ+ 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)
(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
(29)

Proof. Directly combine Theorem C.7, Lemma C.13 and
Lemma C.14 and put together similar terms noticing that

√
a+ b ≤

√
a+
√
b,
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and the change of variable∫ b

a

f(x)dx =

∫ b/t

a/t

tf(tx)dx.

Definition C.16 (Fat-Shattering Dimension). We say that
F shatters x1, . . . , xn at scale γ, if there exists witness
s1, . . . , sn such that, for every ε ∈ {±1}n, there exists
fε ∈ F such that ∀t ∈ {1, . . . , n}

εt · (fε(xt)− st) ≥ γ/2. (30)

Then define the fat-shattering dimension

Fatγ(F) , max{n
∣∣∃ x1, . . . , xn ∈ X s.t.

F γ-shatters x1, . . . , xn}.
(31)

Lemma C.17. For any F ⊆ [−1, 1]X and any γ ∈ (0, 1)

N2(γ,F) ≤
(

2

γ

)K Fatcγ(F)

(32)

where in the above c and K are universal constants.
Corollary C.18. For any F ⊆ {−1, 1}X ,

Fatcγ(F) = Fat0(F) = VC(F). (33)

For detailed proofs of these two propositions, refer to
Mendelson & Vershynin (2003); Rakhlin & Sridharan
(2014).
Theorem C.19. Let Fatγ(Π1F) be the fat-shattering di-
mension of Π1F with scale γ and VC(Π1H) be the VC-
dimension of Π1H. Then there exist constantsC1, C2, C3 >
0, 0 < c < 1 independent of n,m and F ,H such that for
δ > 0, with probability 1− 3δ,

errQ(f) ≤ err(ρ)
P̂

(f) + d
(ρ)
f,F (P̂ , Q̂) + λ

+
k2
√
k

ρ
C1L

( 1√
n

+
1√
m

)√
VC(Π1H)

+
k2
√
k

ρ
inf
ε≥0

{
C2ε+C3

( 1√
n

+
1√
m

)(∫ L

ε

√
Fatcτ (Π1F)log

2

τ
dτ
)}

+ 2

√
log 2

δ

2n
+

√
log 2

δ

2m
.

(34)

This results from a direct computation after putting Lemma
C.17 and Corollary C.18 into Theorem C.15.

D. Analysis of Algorithm
In this section, we show that γ controls the margin ρ and
that the minimization of this loss will lead to consistency
between source and target domain using similar methods
with Goodfellow et al. (2014).

Proposition D.1. Consider the optimization problem we
have defined

max
f ′

γEP̂ log(σhf ◦ f
′) + EQ̂ log(1− σhf ◦ f ′). (35)

Assume that there is no restriction for the choice of f ′ and
γ > 0. Fixing a single-output classifier hf , we have the
following two results:

1. The optimal value of σhf ◦ f
′ on data x is

γp(x)

γp(x) + q(x)
(36)

where p(x) and q(x) are the density functions.

2. Problem (35) is equivalent to a γ-balanced Jensen-
Shannon Divergence:

γKL
(
P
∥∥∥γP +Q

γ + 1

)
+ KL

(
Q
∥∥∥γP +Q

γ + 1

)
(37)

and has the global minimum at P = Q.

Proof.

γEP log(σhf ◦ f
′) + EQ log(1− σhf ◦ f ′)

=

∫
x∈X

γp(x) log(σhf ◦ f
′) + q(x) log(1− σhf ◦ f ′) dx

=

∫
x∈X

J(x, σhf ◦ f
′) dx.

For there is no restriction on f ′, we could find the f ′ that
reaches the maximum on each x ∈ X . Simple calculus
gives the result that for ∀x ∈ X , J(x, σhf ◦ f

′) is the largest
when

σhf ◦ f
′ =

γp(x)

γp(x) + q(x)
.

So the first conclusion is proved. At this time,

J(x, σhf ◦ f
′)

=γp(x) log(σhf ◦ f
′) + q(x) log(1− σhf ◦ f ′)

=γp(x) log(
γp(x)

γp(x) + q(x)
) + q(x) log(

q(x)

γp(x) + q(x)
)

=γp(x) log(
p(x)

γp(x)+q(x)
γ+1

) + q(x) log(
q(x)

γp(x)+q(x)
γ+1

)

+ γ log γ p(x)− (γp(x) + q(x)) log(γ + 1).

Notice that γp(x)+q(x)
γ+1 is density of mixed distribution

γP +Q

γ + 1
.
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Integrate J(x, σhf ◦ f
′) on the X ,∫

x∈X
J(x, σhf ◦ f

′) dx

=

∫
x∈X

[γp(x) log(
p(x)

γp(x)+q(x)
γ+1

) + q(x) log(
q(x)

γp(x)+q(x)
γ+1

) dx

+ γ log γ p(x)− (γp(x) + q(x)) log(γ + 1)]

=γKL(P‖γP +Q

γ + 1
) + KL(Q‖γP +Q

γ + 1
)

+ γ log γ − (γ + 1) log(γ + 1)]

=γKL(P‖γP +Q

γ + 1
) + KL(Q‖γP +Q

γ + 1
) + C(γ),

where C(γ) is a constant only depending on γ. This deriva-
tion shows that the second conclusion holds.

This proposition implies that different choices of γ does not
lead to mismatch between P and Q.

Next we show that γ decides the margin ρ at equilibrium by
analyzing the training process, which ensures the optimality
of the margin disparity discrepancy that we achieved after
training.

During the training session, the discrepancy between source
and target features decreases and converges to a value close
to zero, indicating ψ(P ) ≈ ψ(Q). If γ = 1, the value of
σhf ◦ f

′ converges to a number around 1
2 on both the source

and target domains, in which case the output of f ′ for the
class predicted by f is probably the largest among all classes.
However, the margin of f ′ might still be close to zero as
there might exist a prediction for another class approaching
1
2 from below. As a result, the value of the margin disparity
discrepancy measured by f ′ does not reach minimization
for any ρ. For γ > 1, after some calculation, we conclude
that the value of σhf ◦ f

′ will reach γ
γ+1 and the margin

of f ′ will be around log γ at equilibrium as shown in the
proposition below.

Proposition D.2. For any j ∈ {1, 2, . . . , k} if σj ◦ f > µ >
1
2 , then f is a classifier with margin log µ

1−µ .

Proof. For any r 6= j, r ∈ 1, . . . , k

µ <
σj∑k
i=1 σi

≤ σj
σj + σr

=
1

1 + ef(x,r)−f(x,j)
.

Thus
f(x, j)− f(x, r) > log(

µ

1− µ
).

E. Additional Experiments
We also test our algorithm by minimizing the original MDD
loss. Since gradient saturation using the margin losses is
fatal in the early training stage, we implement by switching
to the margin losses after 2000 steps. The results on Office-
31 with the margin ρ = log 4 (equivalent to γ = 4) are
reported in Table 1.

Table 1. Accuracy (%) on Office-31 with original MDD loss.

Task Accuracy

A→W 94.1
A→ D 91.8
D→W 100
W→ D 98.2
D→ A 73.7
W→ A 71.7
Average 88.3
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