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Abstract
This paper addresses the problem of unsupervised
domain adaption from theoretical and algorithmic
perspectives. Existing domain adaptation theories
naturally imply minimax optimization algorithms,
which connect well with the domain adaptation
methods based on adversarial learning. However,
several disconnections still exist and form the gap
between theory and algorithm. We extend previ-
ous theories (Mansour et al., 2009c; Ben-David
et al., 2010) to multiclass classification in domain
adaptation, where classifiers based on the scoring
functions and margin loss are standard choices in
algorithm design. We introduce Margin Disparity
Discrepancy, a novel measurement with rigorous
generalization bounds, tailored to the distribution
comparison with the asymmetric margin loss, and
to the minimax optimization for easier training.
Our theory can be seamlessly transformed into an
adversarial learning algorithm for domain adapta-
tion, successfully bridging the gap between theory
and algorithm. A series of empirical studies show
that our algorithm achieves the state of the art ac-
curacies on challenging domain adaptation tasks.

1. Introduction
It is commonly assumed in learning theories that training
and test data are drawn from identical distribution. If the
source domain where we train a supervised learner, is sub-
stantially dissimilar to the target domain where the learner
is applied, there are no possibilities for good generalization.
However, we may expect to train a model by leveraging
labeled data from similar yet distinct domains, which is the
key machine learning setting that domain adaptation deals
with (Quionero-Candela et al., 2009; Pan & Yang, 2010).
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Remarkable theoretical advances have been achieved in do-
main adaptation. Mansour et al. (2009c); Ben-David et al.
(2010) provided rigorous learning bounds for unsupervised
domain adaptation, a most challenging scenario in this field.
These earliest theories have later been extended in many
ways, from loss functions to Bayesian settings and regres-
sion problems (Mohri & Medina, 2012; Germain et al., 2013;
Cortes et al., 2015). In addition, theories based on weighted
combination of hypotheses have also been developed for
multiple source domain adaptation (Crammer et al., 2008;
Mansour et al., 2009b;a; Hoffman et al., 2018a).

On par with the theoretical findings, there are rich advances
in domain adaptation algorithms. Previous work explored
various techniques for statistics matching (Pan et al., 2011;
Tzeng et al., 2014; Long et al., 2015; 2017) and discrep-
ancy minimization (Ganin & Lempitsky, 2015; Ganin et al.,
2016). Among them, adversarial learning methods come
with relatively strong theoretical insights. Inspired by Good-
fellow et al. (2014), these methods are built upon the two-
player game between the domain discriminator and feature
extractor. Current works explored adversarial learning in
diverse ways, yielding state of the art results on many tasks
(Tzeng et al., 2017; Saito et al., 2018; Long et al., 2018).

While many domain adaptation algorithms can be roughly
interpreted as minimizing the distribution discrepancy in
theories, several disconnections still form non-negligible
gaps between the theories and algorithms. Firstly, domain
adaptation algorithms using scoring functions lack theoreti-
cal guarantees since previous works simply studied the 0-1
loss for classification in this setting. Meanwhile, there is a
gap between the widely-used divergences in theories and
algorithms (Ganin & Lempitsky, 2015; Gretton et al., 2012;
Long et al., 2015; Courty et al., 2017).

This work aims to bridge the gaps between the theories and
algorithms for domain adaptation. We present a novel theo-
retical analysis of classification task in domain adaptation
towards explicit guidance for algorithm design. We extend
existing theories to classifiers based on the scoring functions
and margin loss, which is closer to the choices for real tasks.
We define a new divergence, Margin Disparity Discrepancy,
and provide margin-aware generalization bounds based on
Rademacher complexity, revealing that there is a trade-off
between generalization error and the choice of margin. Our
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theory can be seamlessly transformed into an adversarial
learning algorithm for domain adaptation, which achieves
state of the art accuracies on several challenging real tasks.

2. Preliminaries
In this section we introduce basic notations and assumptions
for classification problems in domain adaptation.

2.1. Learning Setup

In supervised learning setting, the learner receives a sample
of n labeled points {(xi, yi)}ni=1 from X × Y , where X is
an input space and Y is an output space, which is {0, 1} in
binary classification and {1, . . . , k} in multiclass classifica-
tion. The sample is denoted by D̂ if independently drawn
according to the distribution D.

In unsupervised domain adaptation, there are two different
distributions, the source P and the target Q. The learner
is trained on a labeled sample P̂ = {(xsi , ysi )}ni=1 drawn
from the source distribution and an unlabeled sample Q̂ =
{xti}mi=1 drawn from the target distribution.

Following the notations of Mohri et al. (2012), we consider
multiclass classification with hypothesis space F of scoring
functions f : X → R|Y| = Rk, where the outputs on each
dimension indicate the confidence of prediction. With a little
abuse of notations, we consider f : X ×Y → R instead and
f(x, y) indicates the component of f(x) corresponding to
the label y. The predicted label associated to point x is the
one resulting in the largest score. Thus it induces a labeling
function spaceH containing hf from X to Y:

hf : x 7→ arg max
y∈Y

f(x, y). (1)

The (expected) error rate and empirical error rate of a
classifier h ∈ H with respect to distribution D are given by

errD(h) , E(x,y)∼D1[h(x) 6= y],

errD̂(h) , E(x,y)∼D̂1[h(x) 6= y]

=
1

n

n∑
i=1

1[h(xi) 6= yi],

(2)

where 1 is the indicator function.

Before further discussion, we assume the constant classifier
1 ∈ H andH is closed under permutations of Y . For binary
classification, this is equivalent to the assumption that for
any h ∈ H, we have 1− h ∈ H.

2.2. Margin Loss

In practice, the margin between data points and the classi-
fication surface plays a significant role in achieving strong

generalization performance. Thus a margin theory for classi-
fication was developed by Koltchinskii et al. (2002), where
the 0-1 loss is replaced by the margin loss.

Define the margin of a hypothesis f at a labeled example
(x, y) as

ρf (x, y) ,
1

2
(f(x, y)−max

y′ 6=y
f(x, y′)). (3)

The corresponding margin loss and empirical margin loss
of a hypothesis f is

err
(ρ)
D (f) , Ex∼DΦρ ◦ ρf (x, y),

err
(ρ)

D̂
(f) , Ex∼D̂Φρ ◦ ρf (x, y) =

1

n

n∑
i=1

Φρ(ρf (xi, yi)),

(4)
where ◦ denotes function composition, and Φρ is

Φρ(x) ,


0 ρ ≤ x
1− x/ρ 0 ≤ x ≤ ρ
1 x ≤ 0

. (5)

An important property is that err
(ρ)
D (f) ≥ errD(hf ) for any

ρ > 0 and f ∈ F . Koltchinskii et al. (2002) showed that the
margin loss leads to an informative generalization bound for
classification. Based on this seminal work, we shall develop
margin bounds for classification in domain adaptation.

3. Theoretical Guarantees
In this section, we give theoretical guarantees for domain
adaptation. All proofs can be found in Appendices A–C.

To reduce the error rate on target domain with labeled train-
ing data only on source domain, the distributions P and Q
should not be dissimilar substantially. Thus a measurement
of their discrepancy is crucial in domain adaptation theory.

In the seminal work (Ben-David et al., 2010), the H∆H-
divergence was proposed to measure such discrepancy,

dH∆H = sup
h,h′∈H

|EQ1[h′ 6= h]− EP1[h′ 6= h]| . (6)

Mansour et al. (2009c) extended the H∆H-divergence to
general loss functions, leading to the discrepancy distance:

discL = sup
h,h′∈H

|EQL(h′, h)− EPL(h′, h)|, (7)

where L should be a bounded function satisfying symmetry
and triangle inequality. Note that many widely-used losses,
e.g. margin loss, do not satisfy these requirements.

With these discrepancy measures, generalization bounds
based on VC-dimension and Rademacher complexity were
rigorously derived for domain adaptation. While these the-
ories have made influential impact in advancing algorithm
designs, there are two crucial directions for improvement:
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1. Generalization bound for classification with scoring
functions has not been formally studied in the domain
adaptation setting. As scoring functions with margin
loss provide informative generalization bound in the
standard classification, there is a strong motivation to
develop a margin theory for domain adaptation.

2. The hypothesis-induced discrepancies require taking
supremum over hypothesis spaceH∆H, while achiev-
ing lower generalization bound requires minimizing
these discrepancies adversarially. Computing the supre-
mum requires an ergodicity overH∆H and the optimal
hypotheses in this problem might differ significantly
from the optimal classifier, which highly increases the
difficulty of optimization. Thus there is a critical need
for theoretically justified algorithms which minimize
not only the empirical error on the source domain, but
also the discrepancy measure.

These directions are the pain points in practical algorithm de-
signs. While designing a domain adaptation algorithm using
scoring functions, we may suspect whether the algorithm
is theoretically guaranteed since there is a gap between the
loss functions used in the theories and algorithms. Another
gap lies between the hypothesis-induced discrepancies in
theories and the widely-used divergences in domain adap-
tation algorithms, including Jensen Shannon Divergence
(Ganin & Lempitsky, 2015), Maximum Mean Discrepancy
(Long et al., 2015), and Wasserstein Distance (Courty et al.,
2017). In this work, we aim to bridge these gaps between the
theories and algorithms for domain adaptation, by defining
a novel, theoretically-justified margin disparity discrepancy.

3.1. Margin Disparity Discrepancy

First, we give an improved discrepancy for measuring the
distribution difference by restricting the hypothesis space.

Given two hypotheses h, h′ ∈ H, we define the (expected)
0-1 disparity between them as

dispD(h′, h) , ED1[h′ 6= h], (8)

and the empirical 0-1 disparity as

dispD̂(h′, h) ,ED̂1[h′ 6= h] =
1

n

n∑
i=1

1[h′(xi) 6= h(xi)].

(9)
Definition 3.1 (Disparity Discrepancy, DD). Given a hy-
pothesis space H and a specific classifier h∈H, the Dis-
parity Discrepancy (DD) induced by h′ ∈ H is defined by

dh,H(P,Q) , sup
h′∈H

(dispQ(h′, h)− dispP (h′, h))

= sup
h′∈H

(EQ1[h′ 6= h]− EP1[h′ 6= h]).

(10)

Similarly, the empirical disparity discrepancy is

dh,H(P̂ , Q̂) , sup
h′∈H

(dispQ̂(h′, h)− dispP̂ (h′, h)). (11)

Note that the disparity discrepancy is not only dependent on
the hypothesis space H, but also on a specific classifier h.
We shall prove that this discrepancy can well measure the
difference of distributions (actually a pseudo-metric in the
binary case) and leads to a VC-dimension generalization
bound for binary classification. An alternative analysis of
this standard case is provided in Appendix B. Compared
with the H∆H-divergence, the supremum in the disparity
discrepancy is taken only over the hypothesis spaceH and
thus can be optimized more easily. This will significantly
ease the minimax optimization widely used in many domain
adaptation algorithms.

In the case of multiclass classification, the margin of scoring
functions becomes an important factor for informative gener-
alization bound, as envisioned by Koltchinskii et al. (2002).
Existing domain adaptation theories (Ben-David et al., 2007;
2010; Blitzer et al., 2008; Mansour et al., 2009c) do not give
a formal analysis of generalization bound with scoring func-
tions and margin loss. To bridge the gap between theories
that typically analyze labeling functions and loss functions
with symmetry and subadditivity, and algorithms that widely
adopt scoring functions and margin losses, we propose a
margin based disparity discrepancy.

The margin disparity, i.e., disparity by changing the 0-1 loss
to the margin loss, and its empirical version from hypothesis
f to f ′ are defined as

disp
(ρ)
D (f ′, f) , EDΦρ ◦ ρf ′(·, hf ),

disp
(ρ)

D̂
(f ′, f) , ED̂Φρ ◦ ρf ′(·, hf )

=
1

n

n∑
i=1

Φρ ◦ ρf ′(xi, hf (xi)).

(12)

Note that f and f ′ are scoring functions while hf and hf ′
are their labeling functions. Note also that the margin dis-
parity is not a symmetric function on f and f ′, and the
generalization theory w.r.t. this loss could be quite differ-
ent from that for the discrepancy distance (Mansour et al.,
2009c), which requires symmetry and subadditivity.

Definition 3.2 (Margin Disparity Discrepancy, MDD).
With the definition of margin disparity, we define Margin
Disparity Discrepancy (MDD) and its empirical version by

d
(ρ)
f,F (P,Q) , sup

f ′∈F

(
disp

(ρ)
Q (f ′, f)− disp

(ρ)
P (f ′, f)

)
,

d
(ρ)
f,F (P̂ , Q̂) , sup

f ′∈F

(
disp

(ρ)

Q̂
(f ′, f)− disp

(ρ)

P̂
(f ′, f)

)
.

(13)
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The margin disparity discrepancy (MDD) is well-defined
since d(ρ)

f,F (P, P ) = 0 and it satisfies the nonnegativity and
subadditivity. Despite of its asymmetry, MDD has the ability
to measure the distribution difference in domain adaptation
regarding the following proposition.

Proposition 3.3. For every scoring function f ,

errQ(hf ) ≤ err
(ρ)
P (f) + d

(ρ)
f,F (P,Q) + λ, (14)

where λ = λ(ρ,F , P,Q) is the ideal combined margin loss:

λ = min
f∗∈H

{err
(ρ)
P (f∗) + err

(ρ)
Q (f∗)}. (15)

This upper bound has a similar form with the learning bound
proposed by Ben-David et al. (2010). λ is determined by the
learning problem quantifying the inverse of “adaptability”
and can be reduced to a rather small value if the hypothesis
space is rich enough. err

(ρ)
P (f) depicts the performance of

f on source domain and MDD bounds the performance gap
caused by domain shift. This margin bound gives a new
perspective for analyzing domain adaptation with respect to
scoring functions and margin loss.

3.2. Domain Adaptation: Generalization Bounds

In this subsection, we provide several generalization bounds
for multiclass domain adaptation based on margin loss and
margin disparity discrepancy (MDD). First, we present a
Rademacher complexity bound for the difference between
MDD and its empirical version. Then, we combine the
Rademacher complexity bound of MDD and Proposition 3.3
to derive the final generalization bound.

To begin with, we introduce a new function class ΠHF that
serves as a “scoring” version of the symmetric difference
hypothesis space H∆H in Ben-David et al. (2010). For
more intuition, we also provide a geometric interpretation
of this notion in the Appendix (Definition C.3).

Definition 3.4. Given a class of scoring functions F and a
class of the induced classifiersH, we define ΠHF as

ΠHF = {x 7→ f(x, h(x))|h ∈ H, f ∈ F}. (16)

Now we introduce the Rademacher complexity, commonly
used in the generalization theory as a measurement of rich-
ness for a particular hypothesis space (Mohri et al., 2012).

Definition 3.5 (Rademacher Complexity). Let F be a
family of functions mapping from Z = X × Y to [a, b]

and D̂ = {z1, . . . , zn} a fixed sample of size n drawn from
the distribution D over Z . Then, the empirical Rademacher
complexity of F with respect to the sample D̂ is defined as

R̂D̂(F) , Eσ sup
f∈F

1

n

n∑
i=1

σif(zi). (17)

where σi’s are independent uniform random variables tak-
ing values in {−1,+1}. The Rademacher complexity is

Rn,D(F) , ED̂∼DnR̂D̂(F). (18)

With the Rademacher complexity, we proceed to show that
MDD can be well estimated through finite samples.

Lemma 3.6. For any δ > 0, with probability 1 − 2δ, the
following holds simultaneously for any scoring function f ,

|d(ρ)
f,F (P̂ , Q̂)− d(ρ)

f,F (P,Q)| ≤

k

ρ
Rn,P (ΠHF) +

k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2n
+

√
log 2

δ

2m
.

(19)

This lemma justifies that the expected MDD with respect
to f can be uniformly approximated by the empirical one
computed on samples. The error term is controlled by the
complexity of hypothesis set, the margin ρ, the class number
k and sample sizes n,m.

Combining Proposition 3.3 and Lemma 3.6, we obtain a
Rademacher complexity based generalization bound of the
expected target error through the empirical MDD.

Theorem 3.7 (Generalization Bound). Given the same
settings with Definition 3.5, for any δ > 0, with probability
1− 3δ, we have the following uniform generalization bound
for all scoring functions f ,

errQ(f) ≤err
(ρ)

P̂
(f) + d

(ρ)
f,F (P̂ , Q̂) + λ

+
2k2

ρ
Rn,P (Π1F) +

k

ρ
Rn,P (ΠHF) + 2

√
log 2

δ

2n

+
k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
,

(20)
where Π1(F) is defined as

Π1F , {x 7→ f(x, y)
∣∣y ∈ Y, f ∈ F}, (21)

and λ = λ(ρ,F , P,Q) is a constant independent of f .

Note that the notation Π1F follows from Mohri et al. (2012),
where 1 stands for constant functions mapping all points to
the same class and Π1F can be seen as the union of pro-
jections of F onto each dimension (See Appendix Lemma
C.4). Such projections are needed because the Rademacher
complexity is only defined for real-valued function classes.

Compared with the bounds based on 0-1 loss and H∆H-
divergence (Ben-David et al., 2010; Mansour et al., 2009c),
this generalization bound is more informative. Through
choosing a better margin ρ, we could achieve better gener-
alization ability on the target domain. Moreover, we point
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out that there is a trade-off between generalization and op-
timization in the choice of ρ. For relatively small ρ and
rich hypothesis space, the first two terms do not differ too
much according to ρ so the right-hand side becomes smaller
with the increase of ρ. However, for too large ρ, these terms
cannot be optimized to reach an acceptable small value.

Although we have shown the margin bound, the value of the
Rademacher complexity in Theorem 3.7 is still not explicit
enough. Therefore, we include an example of linear classi-
fiers in the Appendix (Example C.9). Also we need to check
the variation of Rn,D(ΠHF) with the growth of n. To this
end, we describe the notion of covering number from Zhou
(2002); Anthony & Bartlett (2009); Talagrand (2014).

Intuitively a covering number N2(τ,G) is the minimal num-
ber of L2 balls of radius τ > 0 needed to cover a class G of
bounded functions g : X → R and can be interpreted as a
measure of the richness of the class G at scale τ . A rigorous
definition is given in the Appendix together with a proof of
the following covering number bound for MDD.

Theorem 3.8 (Generalization Bound with Covering
Number). With the same conditions in Theorem 3.7, further
suppose Π1F is bounded in L2 by L. For δ > 0, with prob-
ability 1−3δ, we have the following uniform generalization
bound for all scoring functions f ,

errQ(f) ≤ err
(ρ)

P̂
(f) + d

(ρ)
f,F (P̂ , Q̂) + λ+ 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ε≥0

{
ε+ 3

( 1√
n

+
1√
m

)
(∫ L

ε

√
logN2(τ,Π1F)dτ+L

∫ 1

ε/L

√
logN2(τ,Π1H)dτ

)}
.

(22)

Compared with 3.7, the Rademacher complexity terms are
replaced by more intuitive and concrete notions of covering
numbers. Theoretically, covering numbers also serve as a
bridge between Rademacher complexity of ΠHF and VC-
dimension style bound when k = 2. To show this we need
the notion of fat-shattering dimension (Mendelson & Ver-
shynin, 2003; Rakhlin & Sridharan, 2014). For concision,
we leave the definition and results to the Appendix (Theo-
rem C.19), where we show that our results coincide with
Ben-David et al. (2010) in the order of sample complexity.

In summary, our theory is a bold attempt towards filling the
two gaps mentioned at the beginning of this section. Firstly,
we provide a thorough analysis for multiclass classification
in domain adaptation. Secondly, our bound is based on scor-
ing functions and margin loss. Thirdly, as the measure of
distribution shift, MDD is defined by simply taking supre-
mum over a single hypothesis space F , making the minimax
optimization problem easier to solve.

4. Algorithm
According to the above theory, we propose an adversarial
representation learning method for domain adaptation.

4.1. Minimax Optimization Problem

Recall that the expected error errQ(f) on target domain is
bounded by the sum of four terms: empirical margin error on
the source domain err

(ρ)

P̂
(f), empirical MDD d

(ρ)
f,F (P̂ , Q̂),

the ideal error λ and complexity terms. We need to solve the
following minimization problem for the optimal classifier f
in hypothesis space F :

min
f∈F

err
(ρ)

P̂
(f) + d

(ρ)
f,F (P̂ , Q̂). (23)

Minimizing margin disparity discrepancy is a minimax game
since MDD is defined as the supremum over hypothesis
spaceF . Because the max-player is still too strong, we intro-
duce a feature extractor ψ to make the min-player stronger.
Applying ψ to the source and target empirical distributions,
the overall optimization problem can be written as

min
f,ψ

err
(ρ)

ψ(P̂ )
(f) + (disp

(ρ)

ψ(Q̂)
(f∗, f)− disp

(ρ)

ψ(P̂ )
(f∗, f)),

f∗ = max
f ′

(disp
(ρ)

ψ(Q̂)
(f ′, f)− disp

(ρ)

ψ(P̂ )
(f ′, f)).

(24)
To enable representation-based domain adaptation, we need
to learn new representation ψ such that MDD is minimized.

𝜓

Source
Risk
𝓔(𝑷%)

𝑓

MDD
𝓓𝜸 𝑷%,𝑸%

GRL

𝒚-

𝒚-′

One-hot

𝑓′

Min

Max

Figure 1. The adversarial network for algorithm implementation.

Now we design an adversarial learning algorithm to solve
this problem by introducing an auxiliary classifier f ′ sharing
the same hypothesis space with f . This is natively imple-
mented in an adversarial network as Figure 1. Also since
the margin loss is hard to optimize via stochastic gradient
descent (SGD) in practice, we use a combination of loss
functions L and L′ in substitution to the margin loss, which
well preserve the key property of the margin. The practical
optimization problem in the adversarial learning is stated as

min
f,ψ
E(P̂ ) + ηDγ(P̂ , Q̂),

max
f ′
Dγ(P̂ , Q̂),

(25)
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where η is the trade-off coefficient between source error
E(P̂ ) and MDD Dγ(P̂ , Q̂), γ , exp ρ is designed to attain
the margin ρ (detailed in the next subsection). Concretely,

E(P̂ ) = E(xs,ys)∼P̂ L(f(ψ(xs)), ys),

Dγ(P̂ , Q̂) = Ext∼Q̂L
′(f ′(ψ(xt)), f(ψ(xt)))

− γExs∼P̂L(f ′(ψ(xs)), f(ψ(xs))).

(26)

Since the discrepancy loss term is not differentiable on the
parameters of f , for simplicity we directly train the feature
extractor ψ to minimize the discrepancy loss term through a
gradient reversal layer (GRL) (Ganin & Lempitsky, 2015).

4.2. Combined Cross-Entropy Loss

As we mentioned above, multiclass margin loss or hinge
loss causes the problem of gradient vanishing in stochastic
gradient descent, and thus cannot be optimized efficiently,
especially for representation learning that significantly relies
on gradient propagation. To overcome this common issue,
we choose different loss functions on source and target and
reweigh them to approximate MDD.

Denote by σ the softmax function, i.e., for z ∈ Rk

σj(z) =
ezj∑k
i=1 e

zi
, for j = 1, . . . , k. (27)

On the source domain, err
(ρ)

P̂
(f) and disp

(ρ)

P̂
(f ′, f) are re-

placed by the standard cross-entropy loss

L(f(ψ(xs)), ys) , − log[σys(f(ψ(xs)))],

L(f ′(ψ(xs)), f(ψ(xs))) , − log[σhf (ψ(xs))(f
′(ψ(xs)))].

(28)

On the target domain, we use a modified cross-entropy loss

L′(f ′(ψ(xt)),f(ψ(xt))) , log[1−σhf (ψ(xt))(f
′(ψ(xt)))].

(29)

Note that this modification was introduced in Goodfellow
et al. (2014) to mitigate the burden of exploding or vanishing
gradients when performing adversarial learning. Combining
the above two terms with a coefficient γ, the objective of
the auxiliary classifier f ′ can be formulated as

max
f ′

γ Exs∼P̂ log[σhf (ψ(xs))(f
′(ψ(xs)))]

+Ext∼Q̂ log[1− σhf (ψ(xt))(f
′(ψ(xt)))].

(30)

We shall see that training the feature extractor ψ to minimize
loss function (30) will lead to ψ(P̂ ) ≈ ψ(Q̂).
Proposition 4.1. (Informal) Assuming that there is no re-
striction on the choice of f ′ and γ > 1, the global minimum
of the loss function (30) is P = Q. The value of σhf

(f ′(·))
at equilibrium is γ/(1 + γ) and the corresponding margin
of f ′ is log γ.

We refer to γ = exp ρ as the margin factor, with explanation
given in the Appendix (Theorems D.1 & D.2). In general
larger γ yields better generalization. However, as we have
explained in Section 3, we cannot let it go to infinity. In fact,
from an empirical view ρ can only be chosen far beyond the
theoretical optimal value since performing SGD for a large
γ might lead to exploding gradients. In summary, the choice
of γ is crucial in our method and we prefer relatively larger
γ in practice when exploding gradients are not encountered.

5. Experiments
We evaluate the proposed learning method on three datasets
against state of the art deep domain adaptation methods.
The code is available at github.com/thuml/MDD.

5.1. Setup

Office-31 (Saenko et al., 2010) is a standard domain adapta-
tion dataset of three diverse domains, Amazon from Amazon
website, Webcam by web camera and DSLR by digital SLR
camera with 4,652 images in 31 unbalanced classes.

Office-Home (Venkateswara et al., 2017) is a more com-
plex dataset containing 15,500 images from four visually
very different domains: Artistic images, Clip Art, Product
images, and Real-world images.

VisDA-2017 (Peng et al., 2017) is simulation-to-real dataset
with two extremely distinct domains: Synthetic renderings
of 3D models and Real collected from photo-realistic or real-
image datasets. With 280K images in 12 classes, the scale
of VisDA-2017 brings challenges to domain adaptation.

We compare our designed algorithm based on Margin Dis-
parity Discrepancy (MDD) with state of the art domain adap-
tation methods: Deep Adaptation Network (DAN) (Long
et al., 2015), Domain Adversarial Neural Network (DANN)
(Ganin et al., 2016), Joint Adaptation Network (JAN) (Long
et al., 2017), Adversarial Discriminative Domain Adapta-
tion (ADDA) (Tzeng et al., 2017), Generate to Adapt (GTA)
(Sankaranarayanan et al., 2018), Maximum Classifier Dis-
crepancy (MCD) (Saito et al., 2018), and Conditional Do-
main Adversarial Network (CDAN) (Long et al., 2018).

We follow the commonly used experimental protocol for
unsupervised domain adaptation from Ganin & Lempitsky
(2015); Long et al. (2018). We report the average accuracies
of five independent experiments. The importance-weighted
cross-validation (IWCV) is employed in all experiments for
the selection of hyper-parameters. The asymptotic value of
coefficient η is fixed to 0.1 and γ is chosen from {2, 3, 4}
and kept the same for all tasks on the same dataset.

We implement our algorithm in PyTorch. ResNet-50 (He
et al., 2016) is adopted as the feature extractor with param-
eters fine-tuned from the model pre-trained on ImageNet

github.com/thuml/MDD
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Table 1. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet-50 (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN (Long et al., 2015) 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA (Tzeng et al., 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN (Long et al., 2017) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA (Sankaranarayanan et al., 2018) 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD (Saito et al., 2018) 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN (Long et al., 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
MDD (Proposed) 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

Table 2. Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN (Long et al., 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN (Long et al., 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD (Proposed) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

Table 3. Accuracy (%) on VisDA-2017 (ResNet-50).

Method Synthetic→ Real

JAN (Long et al., 2017) 61.6
MCD (Saito et al., 2018) 69.2
GTA (Sankaranarayanan et al., 2018) 69.5
CDAN (Long et al., 2018) 70.0
MDD (Proposed) 74.6

(Russakovsky et al., 2014). The main classifier and auxil-
iary classifier are both 2-layer neural networks with width
1024. For optimization, we use the mini-batch SGD with the
Nesterov momentum 0.9. The learning rate of the classifiers
are set 10 times to that of the feature extractor, the value of
which is adjusted according to Ganin et al. (2016).

5.2. Results

The results on Office-31 are reported in Table 1. MDD
achieves state of the art accuracies on five out of six trans-
fer tasks. Notice that in previous works, feature alignment
methods (JAN, CDAN) generally perform better for large-
to-small tasks (A→W, A→D) while pixel-level adaptation
methods (GTA) tend to obtain higher accuracy for small-to-
large ones (W→A, D→A). Nevertheless our algorithm out-
performs both types of methods on almost all task, showing
its efficacy and universality. Tables 2 and 3 present the ac-
curacies of our algorithm on Office-Home and VisDA-2017,
where we make remarkable performance boost. Some of the
methods listed in the tables use additional techniques such as
the entropy minimization to enhance their performance. Our
method possesses both simplicity and performance strength.

Table 4. Accuracy (%) on Office-31 by different margins.

Margin γ A→W D→ A Avg on Office-31

1 92.5 72.4 87.6
2 93.7 73.0 88.1
3 94.0 73.7 88.5
4 94.5 74.6 88.9
5 93.8 74.3 88.7
6 93.5 74.2 88.6

5.3. Analyses

In our adversarial learning algorithm, we reasonably use
the combined cross-entropy loss instead of the margin loss
and margin disparity discrepancy in our theory. We need to
show that despite the technical modification, our algorithm
can well reduce empirical MDD computed according to f ′:

disp
(ρ)

Q̂
(f ′, f)− disp

(ρ)

P̂
(f ′, f). (31)

We choose γ = 1, 2, 4 for comparison. The expected margin
should reach log 2 and log 4 in the last two cases while there
is no guarantee for margin with γ = 1. Correspondingly,
we examine DD (based on 0-1 loss), log 2-MDD and log 4-
MDD for task D→A and show results in Figures 2–3.

First, we justify that without the minimization part of the
adversarial training, the auxiliary classifier f ′ in Eq. (30) is
close to the f ′ that maximizes MDD over F . We solve this
optimization problem by directly training with the auxiliary
classifier and show our results in 3(a), where MDD reaches 1
shortly after training begins, implying that the loss function
we use can well substitute MDD.
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(c) Equilibrium on Target

Figure 2. Test accuracy and empirical values of σhf ◦ f
′ on transfer task D→ A, where dashed lines indicate γ/(1 + γ).
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Figure 3. Empirical values of the margin disparity discrepancy (MDD) computed by auxiliary classifier f ′.

Next, we consider the equilibrium of the minimax opti-
mization. The average values of σhf

◦ f ′ are presented in
Figures 2(b) and 2(c). We could see that at the final training
stage, σhf

◦ f ′ is close to the predicted value γ/(1 + γ) on
the target (Section 4.1), which gives rise to large margin.

Last, by visualizing the values of DD, log 2-MDD and log 4-
MDD and test accuracy computed over the whole dataset
every 100 steps, we could see that relatively larger γ leads to
smaller MDD and higher test accuracy. Despite difficulties
in gradient saturation, results using the original MDD loss
are also comparable as shown in Appendix (See Table E.1).

6. Related Work
Domain Adaptation Theory. One of the pioneering the-
oretical works in this field was conducted by Ben-David
et al. (2007). They proposed theH∆H-divergence as a sub-
stitution of traditional distribution discrepancies (e.g. total
variation, KL-divergence), which overcame the difficulties
in estimation from finite samples. Mansour et al. (2009c)
considered a general class of loss functions satisfying sym-
metry and subadditivity and developed a generalization the-
ory with respect to the newly proposed discrepancy distance.
The concurrent work in this setting was made by Kuroki
et al. (2019), who introduced a tractable and finer counter-
part forH∆H-divergence called S-disc computed with the
ideal source classifier and similar class of loss functions
with (Mansour et al., 2009c). In fact this measurement is
encompassed in our DD as a special case. Mohri & Med-
ina (2012); Zhang et al. (2012) proposed Y-disc for domain
adaptation with partially labeled target data. Cortes & Mohri
(2014); Cortes et al. (2015) further proposed a theory for
regression tasks in the setting of domain adaptation via the
generalized discrepancy. Another line of theoretical works
on domain adaptation puts emphasis on the assumptions of
the different distributions. Zhang et al. (2013); Gong et al.

(2016) tackled this problem from a causal view and put for-
ward the generalized target shift (GeTarS) scenario instead
of the traditional assumption of covariate shift. Germain
et al. (2013) proposed a PAC-Bayesian theory for domain
adaptation using the domain disagreement pseudometric.
Domain Adaptation Algorithm. Domain adaptation
methods based on deep networks have achieved great suc-
cess in recent years (Long et al., 2015; Ganin & Lempitsky,
2015). These works aim to learn domain-invariant represen-
tations by minimizing a certain discrepancy between distri-
butions of source and target features extracted by a shared
representation learner. With insights from both the theory
of Ben-David et al. (2010) and the practice of adversar-
ial learning (Goodfellow et al., 2014), Ganin & Lempitsky
(2015) put forward the domain adversarial neural network
(DANN). A domain discriminator is trained to distinguish
source features from target features and a feature extractor
to confuse the discriminator. Since then, a series of works
have appeared and achieved significantly better performance.
Tzeng et al. (2017) proposed an architecture that employed
asymmetric encodings for target and source data. Long et al.
(2018) presented a principled framework that conducted the
adversarial adaptation models using conditional information.
Hoffman et al. (2018b); Sankaranarayanan et al. (2018) uni-
fied pixel-level and feature-level adversarial learning for
domain adaptation. Saito et al. (2018) considered the classi-
fiers instead of features and designed an original adversarial
learning method by maximizing the classifier discrepancy.

7. Conclusion
In this paper, we derived novel generalization bounds based
on newly proposed margin disparity discrepancy, and pre-
sented both theoretical and algorithmic analyses of domain
adaptation. Our analyses are more general for analyzing real-
world domain adaptation problems, and the well-designed
theory-induced algorithm achieves the state of the art results.



Bridging Theory and Algorithm for Domain Adaptation

Acknowledgements
This work was supported by the National Natural Science
Foundation of China (61772299, 71690231, and 61672313).

References
Anthony, M. and Bartlett, P. L. Neural network learn-

ing: Theoretical foundations. cambridge university press,
2009.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F.
Analysis of representations for domain adaptation. In
Advances in Neural Information Processing Systems
(NeurIPS), 2007.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine Learning, 79(1-2):151–175,
2010.

Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and
Wortman, J. Learning bounds for domain adaptation.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 129–136. 2008.

Cortes, C. and Mohri, M. Domain adaptation and sam-
ple bias correction theory and algorithm for regression.
Theoretical Computer Science, 519:103–126, 2014.

Cortes, C., Mohri, M., and Muñoz Medina, A. Adaptation
algorithm and theory based on generalized discrepancy.
In ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 169–178,
2015.

Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
A. Joint distribution optimal transportation for domain
adaptation. In Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 3730–3739. 2017.

Crammer, K., Kearns, M., and Wortman, J. Learning from
multiple sources. Journal of Machine Learning Research
(JMLR), 9:1757–1774, 2008.

Ganin, Y. and Lempitsky, V. Unsupervised domain adapta-
tion by backpropagation. In International Conference on
Machine Learning (ICML), 2015.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. Journal
of Machine Learning Research (JMLR), 17:2096–2030,
2016.

Germain, P., Habrard, A., Laviolette, F., and Morvant, E. A
pac-bayesian approach for domain adaptation with spe-
cialization to linear classifiers. In International Confer-
ence on Machine Learning (ICML), pp. 738–746, 2013.

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and
Schölkopf, B. Domain adaptation with conditional trans-
ferable components. In International conference on ma-
chine learning (ICML), pp. 2839–2848, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurIPS), 2014.

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and
Smola, A. A kernel two-sample test. Journal of Machine
Learning Research (JMLR), 13:723–773, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Hoffman, J., Mohri, M., and Zhang, N. Algorithms and
theory for multiple-source adaptation. In Advances in
Neural Information Processing Systems (NeurIPS), pp.
8256–8266. 2018a.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko,
K., Efros, A., and Darrell, T. CyCADA: Cycle-consistent
adversarial domain adaptation. In International Con-
ference on Machine Learning (ICML), pp. 1989–1998,
2018b.

Koltchinskii, V., Panchenko, D., et al. Empirical margin
distributions and bounding the generalization error of
combined classifiers. The Annals of Statistics, 30(1):
1–50, 2002.

Kuroki, S., Charonenphakdee, N., Bao, H., Honda, J., Sato,
I., and Sugiyama, M. Unsupervised domain adaptation
based on source-guided discrepancy. In AAAI Conference
on Artificial Intelligence (AAAI), 2019.

Long, M., Cao, Y., Wang, J., and Jordan, M. I. Learning
transferable features with deep adaptation networks. In
International Conference on Machine Learning (ICML),
2015.

Long, M., Wang, J., and Jordan, M. I. Deep transfer learning
with joint adaptation networks. In International Confer-
ence on Machine Learning (ICML), 2017.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Conditional
adversarial domain adaptation. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 1647–
1657. 2018.

Mansour, Y., Mohri, M., and Rostamizadeh, A. Multiple
source adaptation and the rényi divergence. In Conference
on Uncertainty in Artificial Intelligence, pp. 367–374.
AUAI Press, 2009a.



Bridging Theory and Algorithm for Domain Adaptation

Mansour, Y., Mohri, M., and Rostamizadeh, A. Domain
adaptation with multiple sources. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 1041–
1048. 2009b.

Mansour, Y., Mohri, M., and Rostamizadeh, A. Domain
adaptation: Learning bounds and algorithms. In Confer-
ence on Learning Theory (COLT), 2009c.

Mendelson, S. and Vershynin, R. Entropy and the combi-
natorial dimension. Inventiones mathematicae, 152(1):
37–55, 2003.

Mohri, M. and Medina, A. M. New analysis and algorithm
for learning with drifting distributions. In International
Conference on Algorithmic Learning Theory, pp. 124–
138, 2012.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. 2012.

Pan, S. J. and Yang, Q. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering
(TKDE), 22(10):1345–1359, 2010.

Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. Do-
main adaptation via transfer component analysis. IEEE
Transactions on Neural Networks (TNN), 22(2):199–210,
2011.

Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D.,
and Saenko, K. Visda: The visual domain adaptation
challenge. CoRR, abs/1710.06924, 2017.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and
Lawrence, N. D. Dataset shift in machine learning. The
MIT Press, 2009.

Rakhlin, A. and Sridharan, K. Statistical learning and se-
quential prediction. Book Draft, 2014.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. 2014.

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting
visual category models to new domains. In European
Conference on Computer Vision (ECCV), 2010.

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Max-
imum classifier discrepancy for unsupervised domain
adaptation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3723–3732, 2018.

Sankaranarayanan, S., Balaji, Y., Castillo, C. D., and Chel-
lappa, R. Generate to adapt: Aligning domains using
generative adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Talagrand, M. Upper and lower bounds for stochastic pro-
cesses: modern methods and classical problems, vol-
ume 60. Springer Science & Business Media, 2014.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell,
T. Deep domain confusion: Maximizing for domain
invariance. CoRR, abs/1412.3474, 2014.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Ad-
versarial discriminative domain adaptation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Pan-
chanathan, S. Deep hashing network for unsupervised
domain adaptation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Zhang, C., Zhang, L., and Ye, J. Generalization bounds for
domain adaptation. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 3320–3328. 2012.

Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. Do-
main adaptation under target and conditional shift. In
International Conference on Machine Learning (ICML),
pp. 819–827, 2013.

Zhou, D.-X. The covering number in learning theory. Jour-
nal of Complexity, 18(3):739–767, 2002.


