# Domain Adaptation: Theory, Algorithms, and Open Library

Mingsheng Long

School of Software, Tsinghua University National Engineering Laboratory for Big Data Software

mingsheng@tsinghua.edu.cn Workshop on Distribution Shifts, NeurIPS 2022

## **Domain Adaptation**

- Machine learning across domains of different distributions P 
  e Q
- **OOD: Out-of-Distribution** (from IID to OOD)
- How to bound generalization error on target domain for OOD case?



# How to Bridge Theory and Algorithms?



Mingshe

#### There is nothing more practical than a good theory.

-Vladimir Vapnik

3

イロト イボト イヨト イヨト

| ng Long | Domain Adaptation | December 3, 2022 | 3 / 44 |
|---------|-------------------|------------------|--------|

## Outline

## Domain Adaptation

## 2 Theory and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

## Open Library

• TLLib: Transfer Learning Library

э

< □ > < 同 > < 回 > < 回 > < 回 >

# Statistical Learning



- Classification problem with **01-loss**  $[\cdot \neq \cdot]$ .
- Training error:  $\epsilon_{\widehat{P}}(h) = \frac{1}{n} \sum_{i=1}^{n} [h(\mathbf{x}_i) \neq y_i] = \mathbb{E}_{(\mathbf{x}, y) \sim \widehat{P}}[h(\mathbf{x}) \neq y].$
- Test error:  $\epsilon_P(h) = \mathbb{E}_{(\mathbf{x}, y) \sim P}[h(\mathbf{x}) \neq y].$
- Can we control  $\epsilon_P(h)$  with observable  $\epsilon_{\widehat{P}}(h)$ ?

< □ > < 凸

# Statistical Learning Theory



- Generalization error depends on sample size *n* and model complexity.
- For hypothesis space  $\mathcal{H}$  with VC-dimension d, we have bound:

$$\epsilon_{\mathcal{P}}(h) \leq \epsilon_{\widehat{\mathcal{P}}}(h) + O\left(\sqrt{rac{d\log n + \log rac{2}{\delta}}{n}}
ight)$$

## **Domain Adaptation**



- Labeled data of size *n* sampled from a source domain *P*.
- Unlabeled data of size *m* sampled from a different target domain *Q*.
- Can we control target error  $\epsilon_Q(h)$  with observable  $\epsilon_{\widehat{P}}(h)$ ?
  - Disparity on D:  $\epsilon_D(h_1, h_2) = \mathbb{E}_{(\mathbf{x}, y) \sim D}[h_1(\mathbf{x}) \neq h_2(\mathbf{x})].$
  - Why use it? Computation of disparity does not require (target) label!

# Relating Target Risk to Source Risk

#### Theorem (Bound with Disparity)

For domain adaptation classification tasks, define the ideal joint hypothesis as  $h^* = \arg \min_{h \in \mathcal{H}} [\epsilon_P(h) + \epsilon_Q(h)]$ , the target risk  $\epsilon_Q(h)$  can be bounded by the source risk  $\epsilon_P(h)$ , the ideal joint error, and the disparity difference:

 $\epsilon_{Q}(h) \leq \epsilon_{P}(h) + \left[\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})\right] + \left|\epsilon_{P}(h,h^{*}) - \epsilon_{Q}(h,h^{*})\right| \qquad (1)$ 

## Proof.

Simply using the triangle inequalities of the 01-loss, we have

$$\epsilon_{Q}(h) \leq \epsilon_{Q}(h^{*}) + \epsilon_{Q}(h, h^{*})$$

$$= \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + \epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})$$

$$\leq \epsilon_{Q}(h^{*}) + \epsilon_{P}(h, h^{*}) + |\epsilon_{Q}(h, h^{*}) - \epsilon_{P}(h, h^{*})|$$

$$\leq \epsilon_{P}(h) + [\epsilon_{P}(h^{*}) + \epsilon_{Q}(h^{*})] + |\epsilon_{P}(h, h^{*}) - \epsilon_{Q}(h, h^{*})|$$
(2)

# $\mathcal{H}\Delta\mathcal{H}\text{-}\mathsf{Divergence}^1$

- Assumption: Small ideal joint error  $\epsilon_{ideal} = \epsilon_P(h^*) + \epsilon_Q(h^*)$ .
- We can illustrate the disparity difference  $|\epsilon_P(h, h^*) \epsilon_Q(h, h^*)|$ :



• However,  $h^*$  is unknown and h is undefined. Consider worse-case!

- $\mathcal{H} \Delta \mathcal{H}$ -Divergence:  $d_{\mathcal{H} \Delta \mathcal{H}}(P, Q) \triangleq \sup_{\substack{h, h' \in \mathcal{H}}} |\epsilon_P(h, h') \epsilon_Q(h, h')|$
- Can be estimated from finite unlabeled samples of source and target.

< □ > < @ >

<sup>&</sup>lt;sup>1</sup>Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.

<sup>9/44</sup> 

# Bound $\mathcal{H}\Delta\mathcal{H}$ -Divergence with Domain Discriminator

### Theorem (Generalization Bound with $\mathcal{H}\Delta\mathcal{H}$ -Divergence)

Denote by d the VC-dimension of hypothesis space  $\mathcal H.$  We have

$$\epsilon_{Q}(h) \leq \epsilon_{\hat{P}}(h) + \frac{d_{\mathcal{H} \Delta \mathcal{H}}(\hat{P}, \hat{Q})}{m} + \epsilon_{ideal} + O\left(\sqrt{\frac{d \log n}{n}} + \sqrt{\frac{d \log m}{m}}\right)$$
(3)

- However,  $\mathcal{H} \Delta \mathcal{H}$ -Divergence is hard to compute and optimize.
- For binary hypothesis h,  $\mathcal{H}\Delta\mathcal{H}$ -Divergence can be further bounded by

$$d_{\mathcal{H}\Delta\mathcal{H}}(P,Q) \triangleq \sup_{\substack{h,h'\in\mathcal{H}\\b\in\mathcal{H}\Delta\mathcal{H}}} |\epsilon_{P}(h,h') - \epsilon_{Q}(h,h')|$$
  
$$= \sup_{\delta\in\mathcal{H}\Delta\mathcal{H}} |\mathbb{E}_{P}[\delta(\mathbf{x})\neq 0] - \mathbb{E}_{Q}[\delta(\mathbf{x})\neq 0]|$$
  
$$\leq \sup_{D\in\mathcal{H}_{D}} |\mathbb{E}_{P}[D(\mathbf{x})=1] + \mathbb{E}_{Q}[D(\mathbf{x})=0]|$$
  
(4)

• This bound can be estimated by training a domain discriminator  $D(\mathbf{x})$ .

# Domain Adversarial Neural Network (DANN)<sup>2</sup>



Adversarial domain adaptation: learn  $\phi$  to minimize  $d_{\mathcal{H}\Delta\mathcal{H}}(\phi(P), \phi(Q))$ .

$$\min_{\phi,h} \left\{ \mathbb{E}_{(x,y)\sim P} L(h(\phi(x)), y) + \lambda \max_{D} \left( \mathbb{E}_{P} L(D(\phi(x)), 1) + \mathbb{E}_{Q} L(D(\phi(x)), 0) \right) \right\}$$
(5)

Supervised Learning on source + Upper-Bound of  $d_{H\Delta H}$  on source/target

<sup>2</sup>Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.

# Deep Adaptation Network (DAN)<sup>3</sup>



Optimal domain matching: yield upper-bound by multiple kernel learning

$$d_{k}^{2}(P,Q) \triangleq \left\| \mathbf{E}_{P} \left[ \phi \left( \mathbf{x}^{s} \right) \right] - \mathbf{E}_{Q} \left[ \phi \left( \mathbf{x}^{t} \right) \right] \right\|_{\mathcal{H}_{k}}^{2}$$
(6)

$$\min_{\theta \in \Theta} \frac{1}{n_s} \sum_{i=1}^{n_s} L(\theta(\mathbf{x}_i^s), y_i^s) + \lambda \max_{k \in \mathcal{K}} \sum_{\ell=l_1}^{l_2} d_k^2(\widehat{P}_\ell, \widehat{Q}_\ell)$$
(7)

Works better than *f*-Divergences when domains are less overlapping

<sup>&</sup>lt;sup>3</sup>Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015. Mingsheng Long Domain Adaptation December 3, 2022 12/44

## Outline

## Domain Adaptation

#### 2

#### Theory and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

#### Open Library

• TLLib: Transfer Learning Library

э

< □ > < 同 > < 回 > < 回 > < 回 >

## Theory vs. Practice



- Theory vs. Practice:
- Binary Classification vs. Multiclass Classification.
- Discrete Classifier vs. Classifier with Scoring Function.
- $d_{\mathcal{H}\Delta\mathcal{H}}$ 's bound is minimized vs.  $d_{\mathcal{H}\Delta\mathcal{H}}$  is hard to estimate & optimize.
- How to bridge the gap between theory and algorithm?

# Step I: Disparity Discrepancy (DD)<sup>4</sup>

### Definition (Disparity Discrepancy (DD))

Given a hypothesis space  $\mathcal{H}$  and a *specific hypothesis*  $h \in \mathcal{H}$ , the Disparity Discrepancy (DD) is

$$d_{h,\mathcal{H}}(P,Q) = \sup_{h' \in \mathcal{H}} \left( \mathbb{E}_Q[h' \neq h] - \mathbb{E}_P[h' \neq h] \right)$$
(8)

### Theorem (Bound with Disparity Discrepancy)

For any  $\delta > 0$  and binary classifier  $h \in \mathcal{H}$ , with probability  $1 - 3\delta$ , we have

$$\epsilon_{Q}(h) \leq \epsilon_{\widehat{P}}(h) + d_{h,\mathcal{H}}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\mathfrak{R}_{n,P}(\mathcal{H}\Delta\mathcal{H}) + 2\mathfrak{R}_{n,P}(\mathcal{H}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} + 2\mathfrak{R}_{m,Q}(\mathcal{H}\Delta\mathcal{H}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$
(9)

<sup>4</sup>Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

| <u>кл</u> | inge | heng | long |
|-----------|------|------|------|
| 1.61      | nigs | neng | LONG |
|           |      |      |      |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Step I: Disparity Discrepancy (DD)

• Disparity Discrepancy (DD) is tighter than  $\mathcal{H}\Delta\mathcal{H}$ -Divergence.



Supremum over single space



Disparity Discrepancy

DD can have connections to conditional domain discriminator  $D(\mathbf{x}, h(\mathbf{x})).$  $d_{h,\mathcal{H}}(P,Q) \triangleq \sup (\epsilon_P(h,h') - \epsilon_Q(h,h'))$  $h' \in \mathcal{H}$  $= \sup \left( \mathbb{E}_{P}\left[ |h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] - \mathbb{E}_{Q}\left[ |h(\mathbf{x}) - h'(\mathbf{x})| \neq 0 \right] \right)$ (10) $h' \in \mathcal{H}$  $\leq \sup (\mathbb{E}_P[D(\mathbf{x}, h(\mathbf{x})) = 1] + \mathbb{E}_Q[D(\mathbf{x}, h(\mathbf{x})) = 0])$ DEHD A B M A B M 

Conditional Domain Adversarial Network (CDAN)<sup>5</sup>



Conditional adversarial domain adaptation: minimize  $d_{h,\mathcal{H}}(\phi(P),\phi(Q))$ .

$$\min_{G} \mathcal{E}(G) - \lambda \mathcal{E}(D, G)$$

$$\min_{D} \mathcal{E}(D, G),$$
(11)

 $\mathcal{E}(D,G) = -\mathbb{E}_{\mathbf{x}_{i}^{s} \sim \mathcal{D}_{s}} \log \left[ D\left(\mathbf{f}_{i}^{s} \otimes \mathbf{g}_{i}^{s}\right) \right] - \mathbb{E}_{\mathbf{x}_{j}^{t} \sim \mathcal{D}_{t}} \log \left[ 1 - D\left(\mathbf{f}_{j}^{t} \otimes \mathbf{g}_{j}^{t}\right) \right]$ (12)

<sup>5</sup>Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.

## Joint Adaptation Network (JAN)<sup>6</sup>



Joint distribution matching: cross-covariance of multiple random vectors

$$d_{k}^{2}(P,Q) \triangleq \left\| \mathsf{E}_{P}\left[ \bigotimes_{\ell=1}^{m} \phi_{\ell}\left(\mathsf{x}_{\ell}^{s}\right) \right] - \mathsf{E}_{Q}\left[ \bigotimes_{\ell=1}^{m} \phi_{\ell}\left(\mathsf{x}_{\ell}^{t}\right) \right] \right\|_{\mathcal{H}_{k}}^{2}$$
(13)

$$\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} L\left(\theta\left(\mathbf{x}_i^a\right), y_i^a\right) + \lambda d_k^2 \left(\widehat{P}_{l_1:l_2}, \widehat{Q}_{l_1:l_2}\right)$$
(14)

Works better than *f*-Divergences when domains are less overlapping

<sup>&</sup>lt;sup>6</sup>Long et al. Deep Transfer Learning with Joint Adaptation Networks. ICML 20117. 🚊 🔊 🤉

| Min | σs | hen | σ   | lon | ρ |
|-----|----|-----|-----|-----|---|
|     | o- |     | o ' |     | - |

## Multiclass Classification Formulation

- Scoring function:  $f \in \mathcal{F} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$
- Labeling function induced by  $f: h_f : \mathbf{x} \mapsto \arg \max_{y \in \mathcal{Y}} f(\mathbf{x}, y)$
- Labeling function class:  $\mathcal{H} = \{h_f | f \in \mathcal{F}\}$
- Margin of a hypothesis f:

$$\rho_f(\mathbf{x}, y) = \frac{1}{2} (f(\mathbf{x}, y) - \max_{y' \neq y} f(\mathbf{x}, y'))$$



# Margin Theory

- Margin error:  $\epsilon_D^{(\rho)}(f) = \mathbb{E}_{(\mathbf{x},y)\sim D} \left[ \Phi_{\rho}(\rho_f(\mathbf{x},y)) \right]$
- This error takes the margin of the hypothesis *f* into consideration:



• Given a class of scoring functions  $\mathcal{F},\,\Pi_1\mathcal{F}$  is defined as

$$\Pi_{1}\mathcal{F} = \{\mathbf{x} \mapsto f(\mathbf{x}, y) | y \in \mathcal{Y}, f \in \mathcal{F}\}.$$
(15)

• Margin Bound for IID setup (generalization error controlled by  $\rho$ ):

$$\operatorname{err}_{P}^{(\rho)}(f) \leqslant \operatorname{err}_{\widehat{P}}^{(\rho)}(f) + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}\left(\Pi_{1}\mathcal{F}\right) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$
(16)

Step II: Margin Disparity Discrepancy (MDD)<sup>7</sup>

- Margin Disparity:  $\epsilon_D^{(\rho)}(f', f) \triangleq \mathbb{E}_{\mathbf{x} \sim D_X}[\Phi_{\rho}(\rho_{f'}(\mathbf{x}, h_f(\mathbf{x})))].$
- We further define the margin version of Disparity Discrepancy (DD):

#### Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space  $\mathcal{F}$  and a *specific hypothesis*  $f \in \mathcal{F}$ , the Margin Disparity Discrepancy (MDD) induced by  $f' \in \mathcal{F}$  and its empirical version are defined by

$$d_{f,\mathcal{F}}^{(\rho)}(P,Q) \triangleq \sup_{f'\in\mathcal{F}} \left( \epsilon_Q^{(\rho)}(f',f) - \epsilon_P^{(\rho)}(f',f) \right), \\ d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) \triangleq \sup_{f'\in\mathcal{F}} \left( \epsilon_{\widehat{Q}}^{(\rho)}(f',f) - \epsilon_{\widehat{P}}^{(\rho)}(f',f) \right).$$
(17)

MDD satisfies  $d_{f,\mathcal{F}}^{(\rho)}(P,P) = 0$  as well as nonnegativity and subadditivity.

<sup>7</sup>Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

|      | inde | heng | I one |
|------|------|------|-------|
| 1.61 | nigs | neng | LOUG  |
|      |      |      |       |

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

# Margin Theory for Domain Adaptation

## Theorem (Generalization Bound with Rademacher Complexity)

Let  $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$  be a hypothesis set with label set  $\mathcal{Y} = \{1, \cdots, k\}$  and  $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$  be the corresponding  $\mathcal{Y}$ -valued labeling function class. Fix  $\rho > 0$ . For all  $\delta > 0$ , with probability  $1 - 3\delta$  the following inequality holds for all hypothesis  $f \in \mathcal{F}$ :

$$\epsilon_{Q}(f) \leq \epsilon_{\widehat{P}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + \frac{2k^{2}}{\rho} \mathfrak{R}_{n,P}(\Pi_{1}\mathcal{F}) + \frac{k}{\rho} \mathfrak{R}_{n,P}(\Pi_{\mathcal{H}}\mathcal{F}) + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} \qquad (18) + \frac{k}{\rho} \mathfrak{R}_{m,Q}(\Pi_{\mathcal{H}}\mathcal{F}) + \sqrt{\frac{\log\frac{2}{\delta}}{2m}}.$$

An expected observation is that the generalization risk is controlled by  $\rho$ .

| Mingsheng Long | Domain Adaptation | December 3, 2022 | 22 / 44 |
|----------------|-------------------|------------------|---------|
|                | 4                 |                  | 4) Q (4 |

# Margin Theory for Domain Adaptation

### Theorem (Generalization Bound with Covering Numbers)

Let  $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$  be a hypothesis set with label set  $\mathcal{Y} = \{1, \cdots, k\}$  and  $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$  be the corresponding  $\mathcal{Y}$ -valued labeling function class. Suppose  $\Pi_1 \mathcal{F}$  is bounded in  $\mathcal{L}_2$  by L. Fix  $\rho > 0$ . For all  $\delta > 0$ , with probability  $1 - 3\delta$  the following inequality holds for all hypothesis  $f \in \mathcal{F}$ :

$$\epsilon_{Q}(f) \leq \epsilon_{\widehat{P}}^{(\rho)}(f) + d_{f,\mathcal{F}}^{(\rho)}(\widehat{P},\widehat{Q}) + \epsilon_{ideal} + 2\sqrt{\frac{\log\frac{2}{\delta}}{2n}} \\ + \sqrt{\frac{\log\frac{2}{\delta}}{2m}} + \frac{16k^{2}\sqrt{k}}{\rho} \inf_{\epsilon \geq 0} \left\{\epsilon + 3\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) \\ \left(\int_{\epsilon}^{L} \sqrt{\log\mathcal{N}_{2}(\tau,\Pi_{1}\mathcal{F})} \mathrm{d}\tau + L \int_{\epsilon/L}^{\sqrt{\log\mathcal{N}_{2}(\tau,\Pi_{1}\mathcal{H})}} \mathrm{d}\tau\right) \right\}.$$

$$(19)$$

The margin bound for OOD has same order with the margin bound for IID.

Mingsheng Long

# Hypothesis Adversarial Learning<sup>8</sup>

Minimax domain adaptation implied directly through the margin theory

$$\min_{f,\psi} \epsilon_{\psi(\widehat{P})}^{(\rho)}(f) + \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f^*,f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f^*,f)\right)$$

$$f^* = \max_{f'} \left(\epsilon_{\psi(\widehat{Q})}^{(\rho)}(f',f) - \epsilon_{\psi(\widehat{P})}^{(\rho)}(f',f)\right)$$

$$(20)$$



<sup>8</sup>Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

## Hypothesis Adversarial Learning

#### Theorem (Margin Implementation)

(Informal) Assuming that there is no restriction on the choice of f' and  $\gamma > 1$ , the global minimum of  $\mathcal{D}_{\gamma}(P, Q)$  is P = Q. The value of  $\sigma_{h_f}(f'(\cdot))$  at equilibrium is  $\gamma/(1+\gamma)$  and the corresponding margin of f' is  $\rho = \log \gamma$ .

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

## Outline

## Domain Adaptation

## 2 Theory and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

### Open Library

• TLLib: Transfer Learning Library

э

< □ > < 同 > < 回 > < 回 > < 回 >

## Theory vs. Practice

 Previous discrepancies are supremum over whole hypothesis space will include bad hypotheses that make the bound excessively large.



• A common observation is that difficulty of transfer is asymmetric — Previous bounds will remain unchanged after switching *P* and *Q*.



# Localization for Discrepancies



Localized Disparity Discrepancy

イロト イポト イヨト イヨト

э

# Step III: Localized Discrepancies

## Definition (Localized Hypothesis Space)

For any distributions P and Q on  $\mathcal{X} \times \mathcal{Y}$ , any hypothesis space  $\mathcal{H}$  and any  $r \geq 0$ , the **localized hypothesis space**  $\mathcal{H}_r$  is defined as

$$\mathcal{H}_{r} = \{ h \in \mathcal{H} | \mathbb{E}_{P} L(h(\mathbf{x}), y) \leq r \}.$$
(22)

Definition (Localized  $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy (LHH))

The **localized**  $\mathcal{H}\Delta\mathcal{H}$ -discrepancy from P to Q is defined as

$$d_{\mathcal{H}_r \Delta \mathcal{H}_r}(P,Q) = \sup_{\boldsymbol{h},\boldsymbol{h}' \in \mathcal{H}_r} \left( \mathbb{E}_Q L(\boldsymbol{h}',\boldsymbol{h}) - \mathbb{E}_P L(\boldsymbol{h}',\boldsymbol{h}) \right).$$
(23)

Definition (Localized Disparity Discrepancy (LDD))

For  $h \in \mathcal{H}$ , the **localized disparity discrepancy** from *P* to *Q* is defined as

$$d_{h,\mathcal{H}_r}(P,Q) = \sup_{\boldsymbol{h}' \in \mathcal{H}_r} \left( \mathbb{E}_Q L(\boldsymbol{h}',\boldsymbol{h}) - \mathbb{E}_P L(\boldsymbol{h}',\boldsymbol{h}) \right).$$
(24)

Mingsheng Long

## Localization Theory for Domain Adaptation<sup>9</sup>

Recall the generalization bound induced by previous discrepancies:

$$\epsilon_{Q}(h) \leq \epsilon_{\widehat{P}}(h) + d_{\mathcal{H} \Delta \mathcal{H}}(\widehat{P}, \widehat{Q}) + \epsilon_{ideal} + O(\sqrt{\frac{d \log n}{n}} + \sqrt{\frac{d \log m}{m}})$$

Theorem (Generalization Bound with Localized  $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy)

Set fixed  $r > \lambda$ . Let  $\hat{h}$  be the solution of the source error minimization. Then with probability no less than  $1 - \delta$ , we have

$$\operatorname{err}_{Q}(\hat{h}) \leq \operatorname{err}_{\widehat{P}}(\hat{h}) + d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O\left(\frac{d\log n}{n} + \frac{d\log m}{m}\right) + O\left(\sqrt{\frac{2rd\log n}{n}} + \sqrt{\frac{(d_{\mathcal{H}_{r}\Delta\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + 2r)d\log m}{m}}\right).$$
(25)

<u>To make domain adaptation f</u>easible, we require  $d_{\mathcal{H}_r \Delta \mathcal{H}_r}(\widehat{P}, \widehat{Q}) + r \ll 1$ . <sup>9</sup>*Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2021.* 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Localization Theory for Domain Adaptation<sup>10</sup>

Recall that Disparity Discrepancy is tighter than  $\mathcal{H}\Delta\mathcal{H}$ -Discrepancy:

$$\min_{\bar{h}\in\mathcal{H}}\{\operatorname{err}_{\widehat{P}}(\bar{h})+d_{\bar{h},\mathcal{H}_r}(\widehat{P},\widehat{Q})\}\leq\min_{\hat{h}\in\mathcal{H}}\operatorname{err}_{\widehat{P}}(\hat{h})+d_{\mathcal{H}_r\Delta\mathcal{H}_r}(\widehat{P},\widehat{Q})$$
(26)

### Theorem (Generalization bound with localized disparity discrepancy)

Set fixed  $r > \lambda$ . Let  $\bar{h}$  be the solution of above left objective function. Then with probability no less than  $1 - \delta$ , we have

$$\operatorname{err}_{Q}(\bar{h}) \leq \operatorname{err}_{\widehat{P}}(\bar{h}) + d_{\bar{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + \lambda + O\left(\frac{d\log n}{n} + \frac{d\log m}{m}\right) \\ + O\left(\sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\bar{h}) + r)d\log n}{n}} + \sqrt{\frac{(\operatorname{err}_{\widehat{P}}(\bar{h}) + d_{\bar{h},\mathcal{H}_{r}}(\widehat{P},\widehat{Q}) + r)d\log m}{m}}\right).$$

<sup>10</sup>Long et al. On Localized Discrepancy for Domain Adaptation. Preprint 2021.

| - I\/lir | nach     | ana | I On | i m |
|----------|----------|-----|------|-----|
| 10111    | igan     | eng | LOI  | щ   |
|          | <u> </u> |     |      | ~   |

< □ > < □ > < □ > < □ > < □ > < □ >

## Outline

## Domain Adaptation

#### 2 Theory and Algorithms

- Classic Theory
- Margin Theory
- Localization Theory

## Open Library

• TLLib: Transfer Learning Library

э

A B A A B A

- ∢ /⊐ >

# Transfer Learning Library

#### Library Public Public

Transfer Learning Library for Domain Adaptation, Task Adaptation, and Domain Generalization

- MIT license
- ☆ 2k stars 양 396 forks

#### Updates



#### 2022.9

We support installing TLlib via pip, which is experimental currently.

pip install -i https://test.pypi.org/simple/ tllib==0.4

#### 2022.8

We release v0.4 of *TLlib*. Previous versions of *TLlib* can be found here. In v0.4, we add implementations of the following methods:

- Domain Adaptation for Object Detection [Code] [API]
- Pre-trained Model Selection [Code] [API]
- Semi-supervised Learning for Classification [Code] [API]

Domain Adaptation

# Design Patterns



Code: https://github.com/thuml/Transfer-Learning-Library

| Mingsheng Long | Domain Adaptation | December 3, 2022 | 34 / 44 |
|----------------|-------------------|------------------|---------|

イロト 不得下 イヨト イヨト ニヨー

# Learning Settings



https://github.com/thuml/A-Roadmap-for-Transfer-Learning

| Mingsheng Long | Domain Adaptation |    | De    | ecember | 3, 2022 |    | 35 / 44                             |
|----------------|-------------------|----|-------|---------|---------|----|-------------------------------------|
|                | •                 | ₽► | < ₫ > | ★豊≯     | ◆夏≯     | Ξ. | $\mathcal{O}\mathcal{A}\mathcal{O}$ |

## Benchmark Datasets

- Vision: Office-31, Office-Home, DomainNet, ImageCLEF, PACS, ...
- Language: Multi-Domain Sentiment Dataset, ...
- WILDS: Diverse domains http://ai.stanford.edu/blog/wilds
  - Still not work due to large #domains, natural shifts, and harder tasks

|                |                      | nain generalizat     | Subpopulation shift   | Dom               | ain generalizatio    | n + subpopulati                                                                | ion shift               |                    |                                                                                               |                                                          |
|----------------|----------------------|----------------------|-----------------------|-------------------|----------------------|--------------------------------------------------------------------------------|-------------------------|--------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Dataset        | WildCam              | Carnelyon17          | RxRx1                 | OGB-MolPCBA       | GlobalWheat          | CivilComments                                                                  | FMoW                    | PovertyMap         | Amazon                                                                                        | Py150                                                    |
| Input (x)      | camera trap photo    | tissue slide         | cell image            | molecular graph   | wheat image          | online comment                                                                 | satellite image         | satellite image    | product review                                                                                | code                                                     |
| Prediction (y) | animal species       | tumor                | perturbed gene        | bioassays v       | wheat head bbc       | x toxicity                                                                     | land use                | asset wealth       | sentiment                                                                                     | autocomplete                                             |
| Domain (d)     | camera               | hospital             | batch                 | scaffold          | location, time       | demographic                                                                    | time, region            | country, rural-urb | oan user                                                                                      | git repository                                           |
| # domains      | 323                  | 5                    | 51                    | 120,084           | 47                   | 16                                                                             | 16 x 5                  | 23 x 2             | 2,586                                                                                         | 8,421                                                    |
| # examples     | 203,029              | 455,954              | 125,510               | 437,929           | 6,515                | 448,000                                                                        | 523,846                 | 19,669             | 539,502                                                                                       | 150,000                                                  |
| Train example  |                      |                      |                       |                   |                      | What do Black<br>and LGBT<br>people have to<br>do with bicycle<br>licensing?   |                         | M                  | Overall a solid<br>package that<br>has a good<br>quality of<br>construction<br>for the price. | import<br>numpy as np<br><br>norm=np                     |
| Test example   |                      |                      |                       |                   |                      | As a Christian,<br>I will not be<br>patronizing<br>any of those<br>businesses. |                         |                    | I *loved* my<br>French press,<br>it's so perfect<br>and came with<br>all this fun<br>stuff!   | <pre>import subprocess as sp p=sp.Popen() stdout=p</pre> |
| Adapted from   | Beery et al.<br>2020 | Bandi et al.<br>2018 | Taylor et al.<br>2019 | Hu et al.<br>2020 | David et al.<br>2021 | Borkan et al.<br>2019                                                          | Christie et al.<br>2018 | Yeh et al.<br>2020 | Ni et al.<br>2019                                                                             | Raychev et al.<br>2016                                   |

# Regression on Visual Domains

| Do | main adaptation | regression | tasks on | dSprite | (simulation-to-real) | ). |
|----|-----------------|------------|----------|---------|----------------------|----|
|----|-----------------|------------|----------|---------|----------------------|----|

| Method    | $C {\rightarrow} N$ | $C{\rightarrow}~S$ | $N{\rightarrow}\ C$ | $N{\rightarrow}\ S$ | $S{\rightarrow}\ C$ | $S{\rightarrow}\;N$ | Avg   |
|-----------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|-------|
| ResNet-18 | 0.94                | 0.90               | 0.16                | 0.65                | 0.08                | 0.26                | 0.498 |
| ТСА       | 0.94                | 0.87               | 0.19                | 0.66                | 0.10                | 0.23                | 0.498 |
| DAN       | 0.70                | 0.77               | 0.12                | 0.50                | 0.06                | 0.11                | 0.377 |
| DANN      | 0.47                | 0.46               | 0.16                | 0.65                | 0.05                | 0.10                | 0.315 |
| MCD       | 0.81                | 0.81               | 0.17                | 0.65                | 0.07                | 0.19                | 0.450 |
| RSD       | 0.32                | 0.35               | 0.16                | 0.57                | 0.08                | 0.09                | 0.262 |
| RSD+BMP   | 0.31                | 0.31               | 0.12                | 0.53                | 0.07                | 0.08                | 0.237 |
| DD        | 0.09                | 0.27               | 0.07                | 0.21                | 0.12                | 0.11                | 0.145 |

• To our knowledge, this is the first successful regression algorithm!

|                |             |         |                      | •       |
|----------------|-------------|---------|----------------------|---------|
| (a) Src Only   | (b) DANN    | (c) RSD | (d) DD               |         |
|                |             | < □ >   | ▲御 → ▲ 国 → ▲ 国 → 二 国 | ୬୯୯     |
| Mingsheng Long | Domain Adap |         | December 3, 2022     | 37 / 44 |

## Classification on Visual Domains

• Domain adaptation classification tasks on DomainNet and ImageNet.

| Methods   | $c{\rightarrow}p$ | $c{\rightarrow}r$ | $c{\rightarrow}s$ | $_{p\rightarrow c}$ | $p{\rightarrow}r$ | $_{p\rightarrow s}$ | $^{r\rightarrow c}$ | $r{\rightarrow}p$ | $r{\rightarrow}s$ | $s{\rightarrow}c$ | $s{\rightarrow}p$ | $s{\rightarrow}r$ | Avg  |
|-----------|-------------------|-------------------|-------------------|---------------------|-------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ResNet101 | 32.7              | 50.6              | 39.4              | 41.1                | 56.8              | 35.0                | 48.6                | 48.8              | 36.1              | 49.0              | 34.8              | 46.1              | 43.3 |
| DAN       | 38.8              | 55.2              | 43.9              | 45.9                | 59.0              | 40.8                | 50.8                | 49.8              | 38.9              | 56.1              | 45.9              | 55.5              | 48.4 |
| DANN      | 37.9              | 54.3              | 44.4              | 41.7                | 55.6              | 36.8                | 50.7                | 50.8              | 40.1              | 55.0              | 45.0              | 54.5              | 47.2 |
| JAN       | 40.5              | 56.7              | 45.1              | 47.2                | 59.9              | 43.0                | 54.2                | 52.6              | 41.9              | 56.6              | 46.2              | 55.5              | 50.0 |
| CDAN      | 40.4              | 56.8              | 46.1              | 45.1                | 58.4              | 40.5                | 55.6                | 53.6              | 43.0              | 57.2              | 46.4              | 55.7              | 49.9 |
| MDD       | 42.9              | 59.5              | 47.5              | 48.6                | 59.4              | 42.6                | 58.3                | 53.7              | 46.2              | 58.7              | 46.5              | 57.7              | 51.8 |

| Task        | $IN \rightarrow INR$ (ResNet50) | $IN \rightarrow INS (ig_resnext101_32x8d)$ |
|-------------|---------------------------------|--------------------------------------------|
| Source Only | 35.6                            | 54.9                                       |
| DAN         | 39.8                            | 55.7                                       |
| DANN        | 52.7                            | 56.5                                       |
| JAN         | 41.7                            | 55.7                                       |
| CDAN        | 53.9                            | 58.2                                       |
| MDD         | 56.2                            | 62.4                                       |

|          | clipart     | real | sketch | painting |
|----------|-------------|------|--------|----------|
| Image    | <b>**</b>   |      |        |          |
| Category | Watermeleon | Cow  | Tree   | Bird     |

#### (e) DomainNet

|          | ImageNet | ImageNet-R                  | ImageNet-Sketch                      |
|----------|----------|-----------------------------|--------------------------------------|
| Image    | *        |                             | -                                    |
| Category | Daisy    | Guinea Pig,<br>Cavia Cobaya | Promontory,<br>Headland,<br>Foreland |

(f) ImageNet

Mingsheng Long

3

# Classification on Language Domains

| Methods     | $g{\rightarrow}s$ | $g \rightarrow i$ | $_{g\rightarrow e}$ | $s{\rightarrow}i$ | $s{\rightarrow}e$ | $i \rightarrow e$ | avg  |
|-------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------|
| Source Only | 45.4              | 47.0              | 58.2                | 31.5              | 33.7              | 50.6              | 44.4 |
| DANN        | 38.3              | 44.3              | 57.3                | 32.5              | 39.4              | 54.5              | 44.4 |
| DAN         | 34.6              | 42.7              | 57.1                | 34.5              | 37.7              | 49.6              | 42.7 |
| JAN         | 32.6              | 43.1              | 57.6                | 34.2              | 39.4              | 50.3              | 42.9 |
| CDAN        | 39.7              | 46.2              | 57.2                | 34.6              | 35.3              | 52.1              | 44.2 |
| MDD         | 46.3              | 47.3              | 72.8                | 38.8              | 48.1              | 65.8              | 53.2 |
| LDD         | 49.4              | 49.0              | 75.9                | 43.2              | 50.7              | 68.4              | 56.1 |

#### • Domain adaptation classification tasks on Text Emotion datasets.

| Dataset           | emotions                                                                                                                                                                                                                                                                                 | examples                                                                                                                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GoEmotions        | admiration, amusement, anger, annoyance,<br>approval, caring, confusion, curiosity, desire,<br>disappointment, disapproval, disgust,<br>embarrassment, excitement, fear, gratitude,<br>grief, joy,love, nervousness, optimism, pride,<br>realization, relief, remorse, sadness, surprise | OMG, yep!!! That is the final answer. Thank you so much!<br>Let me give you a hint: THEY PLAY IN BOSTON!!!<br>I think this is my favourite one ever.<br>I think that question has a very complicated answer<br>I'm not even sure what it is, why do people hate it |
| SemEval-2018      | anger, anticipation, disgust, fear, joy, love,<br>optimism, pessimism, sadness, surprise, trust                                                                                                                                                                                          | It appears my fire alarm disapproves of my cooking style<br>Heyyyy warriors!!!!! #panicattacks                                                                                                                                                                     |
| Emotions-stimulus | sadness, joy, anger, fear, surprise, disgust                                                                                                                                                                                                                                             | There was a hint of exasperation in his voice.<br>He could see Harry ś puzzlement.                                                                                                                                                                                 |
| ISEAR             | joy, fear, anger, sadness, disgust, shame, guilt                                                                                                                                                                                                                                         | I am happpy when I get good results in the field of academics or athletics. My cat died from an illness. It had been with us for 7 years.                                                                                                                          |

| Mingsheng Long | Domain Adaptation | Dec | ember 3, 2022 | 39 / 44 |
|----------------|-------------------|-----|---------------|---------|

イロト 不得 トイヨト イヨト 二日

~ ~ ~

# Classification on Time-Series Domains

| Methods   | $1 { ightarrow} 3$ | $3 \rightarrow 5$ | $4 {\rightarrow} 5$ | $1{ ightarrow}6$ | 4→6  | 5→6  | 3→8  | $5 {\rightarrow} 8$ | Average |
|-----------|--------------------|-------------------|---------------------|------------------|------|------|------|---------------------|---------|
| FCN       | 90.3               | 82.9              | 74.9                | 83.2             | 61.9 | 58.8 | 81.4 | 91.8                | 78.2    |
| DAN       | 91.2               | 93.7              | 89.7                | 89.7             | 78.0 | 80.2 | 86.8 | 93.3                | 87.8    |
| DANN      | 92.5               | 95.9              | 93.1                | 91.8             | 78.8 | 91.6 | 95.2 | 96.6                | 91.9    |
| VRADA     | 81.3               | 82.3              | 71.6                | 74.9             | 62.7 | 60.0 | 82.2 | 87.5                | 75.3    |
| CDAN      | 93.9               | 96.8              | 95.2                | 92.9             | 83.6 | 91.6 | 95.6 | 97.6                | 93.4    |
| R-DANN    | 85.1               | 85.4              | 70.4                | 81.7             | 64.6 | 54.4 | 82.8 | 82.5                | 75.9    |
| CoDATS    | 93.2               | 95.6              | 94.2                | 90.5             | 93.7 | 90.7 | 93.4 | 97.1                | 93.5    |
| CoDATS+WS | 90.8               | 94.3              | 94.7                | 90.8             | 85.3 | 91.7 | 94.3 | 95.8                | 92.2    |
| MDD       | 95.5               | 97.9              | 96.9                | 93.2             | 84.6 | 91.7 | 96.9 | 97.9                | 94.3    |

#### Domain adaptation classication tasks on Human Activity datasets.



(g) HHAR

(h) FFN

∃ →

# Distribution Shift in Semi-Supervised Learning



# Distribution Shift in Semi-Supervised Learning



Figure: Top-1 accuracy of each category on CIFAR-100 (supervised pre-trained).

| FixMatch       | 86.3 | 84.6 | 53.1 | 41.3 | 48.6 | 25.2 | 52.3 | 93.2 | 83.7 | 46.4 | 37.1 | 59.3 |
|----------------|------|------|------|------|------|------|------|------|------|------|------|------|
| DST (FixMatch) | 89.6 | 94.9 | 70.4 | 48.1 | 53.5 | 43.2 | 68.7 | 94.8 | 89.8 | 71.0 | 58.5 | 71.1 |
| Fi×Match       | 83.1 | 82.2 | 51.4 | 39.2 | 43.9 | 30.1 | 36.8 | 94.3 | 65.7 | 48.6 | 36.8 | 55.6 |
| DST (Fi×Match) | 90.1 | 95.0 | 68.2 | 46.8 | 54.2 | 47.7 | 53.6 | 95.6 | 75.4 | 72.0 | 57.1 | 68.7 |

Chen et al. Debiased Self-Training for Semi-Supervised Learning. NeurIPS 2022 (Oral).

# Transferability in Deep Learning: A Small Book<sup>11</sup>



<sup>11</sup>https://arxiv.org/abs/2201.05867

| Mingsheng Long | Domain Adaptation | December 3, 2022 | 43 / 44 |
|----------------|-------------------|------------------|---------|
|                |                   |                  |         |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# Machine Learning Group @ THSS



Minashena Lona (龙明盛) Tsinghua University mingsheng@tsinghua.edu.cn



Jianmin Wang (王建民) Tsinghua University jimwang@tsinghua.edu.cn



Michael I. Jordan (迈克尔・欧文・乔丹) UC Berkeley jordan@cs.berkeley.edu



Yuchen Zhang Zhangije Cao (张育宸)



Han Zhu (朱晗)

(曹张杰)



Yue Cao (曹越)

(游凯超)





(王希梅)





Yang Shu (树扬) (陈新阳)



长按关注,获取最新资讯



December 3, 2022