
Domain Adaptation:
Theory, Algorithms, and Open Library

Mingsheng Long

School of Software, Tsinghua University
National Engineering Laboratory for Big Data Software

mingsheng@tsinghua.edu.cn
Workshop on Distribution Shifts, NeurIPS 2022

Mingsheng Long Domain Adaptation December 3, 2022 1 / 44

Domain Adaptation
Machine learning across domains of different distributions P ̸= Q

OOD: Out-of-Distribution (from IID to OOD)

How to bound generalization error on target domain for OOD case?

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-

Model ModelRepresentation

P(x,y)≠Q(x,y)

Simulation Real

Source Domain Target Domain

f :x→ y f :x→ y

𝝐# 𝝐$

✘

Mingsheng Long Domain Adaptation December 3, 2022 2 / 44

How to Bridge Theory and Algorithms?

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f) |x⇠S(x)} and T (f) =
{Gf (x; ✓f) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

ℎ

"
#

Theory Algorithms

There is nothing more practical than a good theory.
—Vladimir Vapnik

Mingsheng Long Domain Adaptation December 3, 2022 3 / 44

Outline

1 Domain Adaptation

2 Theory and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
TLLib: Transfer Learning Library

Mingsheng Long Domain Adaptation December 3, 2022 4 / 44

Statistical Learning

Learner
Training

Data
(xi , yi){ }i=1

n
ℎ

𝑥

𝑦

I.I.D.

Representor

~𝑃

𝑃%

𝑦 = ℎ(𝑥)

Classification problem with 01-loss [· ≠ ·].
Training error: ϵ

P̂
(h) = 1

n

∑n
i=1 [h (xi) ̸= yi] = E

(x,y)∼P̂
[h (x) ̸= y].

Test error: ϵP (h) = E(x,y)∼P [h (x) ̸= y].

Can we control ϵP (h) with observable ϵ
P̂
(h)?

Mingsheng Long Domain Adaptation December 3, 2022 5 / 44

Statistical Learning Theory

Model complexity

E
rr

or

Training Error

Test ErrorBest Fit

Overfitting àß Underfitting

Generalization error depends on sample size n and model complexity.

For hypothesis space H with VC-dimension d , we have bound:

ϵP(h) ≤ ϵ
P̂
(h) + O

√

d log n + log 2
δ

n

Mingsheng Long Domain Adaptation December 3, 2022 6 / 44

Domain Adaptation

Learner
Training
Data
(xi , yi){ }i=1

n

I.I.D.

Representor

~𝑃

𝑃# Testing
Data 𝑄#

I.I.D.~𝑄

(′xi , ′yi){ }i=1
′n

𝑦 = ℎ(𝑥)

Source
Domain

Target
Domain

𝑷 ≠ 𝑸

Training Error
𝜖/# ℎ

Test Error
𝜖0 ℎ

ℎ

𝑥

𝑦
m

Labeled data of size n sampled from a source domain P.

Unlabeled data of size m sampled from a different target domain Q.

Can we control target error ϵQ (h) with observable ϵ
P̂
(h)?

Disparity on D: ϵD (h1, h2) = E(x,y)∼D [h1 (x) ̸= h2 (x)].
Why use it? Computation of disparity does not require (target) label!

Mingsheng Long Domain Adaptation December 3, 2022 7 / 44

Relating Target Risk to Source Risk

Theorem (Bound with Disparity)

For domain adaptation classification tasks, define the ideal joint hypothesis
as h∗ = argminh∈H [ϵP (h) + ϵQ (h)], the target risk ϵQ(h) can be bounded
by the source risk ϵP(h), the ideal joint error, and the disparity difference:

ϵQ (h) ⩽ ϵP (h) + [ϵP (h∗) + ϵQ (h∗)] + |ϵP (h, h∗)− ϵQ (h, h∗)| (1)

Proof.

Simply using the triangle inequalities of the 01-loss, we have

ϵQ (h) ⩽ ϵQ (h∗) + ϵQ (h, h∗)

= ϵQ (h∗) + ϵP (h, h∗) + ϵQ (h, h∗)− ϵP (h, h∗)

⩽ ϵQ (h∗) + ϵP (h, h∗) + |ϵQ (h, h∗)− ϵP (h, h∗)|
⩽ ϵP (h) + [ϵP (h∗) + ϵQ (h∗)] + |ϵP (h, h∗)− ϵQ (h, h∗)|

(2)

Mingsheng Long Domain Adaptation December 3, 2022 8 / 44

H∆H-Divergence1

Assumption: Small ideal joint error ϵideal = ϵP (h∗) + ϵQ (h∗).

We can illustrate the disparity difference |ϵP (h, h∗)− ϵQ (h, h∗)|:
low high

ℎ ℎ

ℎ∗ℎ∗
ℋ ℋ

ℎ

ℎ∗
Δ

Supremum over all pairs

However, h∗ is unknown and h is undefined. Consider worse-case!

H∆H-Divergence: dH∆H(P,Q) ≜ sup
h,h′∈H

|ϵP (h, h′)− ϵQ (h, h′)|

Can be estimated from finite unlabeled samples of source and target.

1Ben-David et al. A Theory of Learning from Different Domains. Machine Learning, 2010.

Mingsheng Long Domain Adaptation December 3, 2022 9 / 44

Bound H∆H-Divergence with Domain Discriminator

Theorem (Generalization Bound with H∆H-Divergence)

Denote by d the VC-dimension of hypothesis space H. We have

ϵQ(h) ≤ ϵP̂(h) + dH∆H(P̂, Q̂) + ϵideal + O

(√
d log n

n
+

√
d logm

m

)
(3)

However, H∆H-Divergence is hard to compute and optimize.

For binary hypothesis h, H∆H-Divergence can be further bounded by

dH∆H(P,Q) ≜ sup
h,h′∈H

|ϵP (h, h′)− ϵQ (h, h′)|

= sup
δ∈H∆H

|EP [δ(x) ̸= 0]− EQ [δ (x) ̸= 0]|

⩽ sup
D∈HD

|EP [D(x) = 1] + EQ [D (x) = 0]|

(4)

This bound can be estimated by training a domain discriminator D(x).

Mingsheng Long Domain Adaptation December 3, 2022 10 / 44

Domain Adversarial Neural Network (DANN)2

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f) |x⇠S(x)} and T (f) =
{Gf (x; ✓f) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

ℎ

𝐷

𝜙

Adversarial domain adaptation: learn ϕ to minimize dH∆H(ϕ(P), ϕ(Q)).

min
ϕ,h

{
E(x,y)∼PL(h(ϕ(x)), y) + λmax

D
(EPL(D(ϕ(x)), 1) + EQL(D(ϕ(x)), 0))

}

(5)

Supervised Learning on source + Upper-Bound of dH∆H on source/target

2Ganin et al. Domain Adversarial Training of Neural Networks. JMLR 2016.

Mingsheng Long Domain Adaptation December 3, 2022 11 / 44

Deep Adaptation Network (DAN)3

MK-

MMD

MK-

MMD

MK-

MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source

output

target

output

frozen frozenfrozen
fine-

tune

fine-

tune

learn learnlearn learn

Optimal domain matching: yield upper-bound by multiple kernel learning

d2
k (P,Q) ≜

∥∥EP [ϕ (xs)]− EQ

[
ϕ
(
xt
)]∥∥2

Hk
(6)

min
θ∈Θ

1

ns

ns∑

i=1

L (θ (xsi) , y
s
i) + λmax

k∈K

l2∑

ℓ=l1

d2
k

(
P̂ℓ, Q̂ℓ

)
(7)

Works better than f -Divergences when domains are less overlapping

3Long et al. Learning Transferable Features with Deep Adaptation Networks. ICML 2015.
Mingsheng Long Domain Adaptation December 3, 2022 12 / 44

Outline

1 Domain Adaptation

2 Theory and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
TLLib: Transfer Learning Library

Mingsheng Long Domain Adaptation December 3, 2022 13 / 44

Theory vs. Practice

Theory vs. Practice:

Binary Classification vs. Multiclass Classification.

Discrete Classifier vs. Classifier with Scoring Function.

dH∆H’s bound is minimized vs. dH∆H is hard to estimate & optimize.

How to bridge the gap between theory and algorithm?

Mingsheng Long Domain Adaptation December 3, 2022 14 / 44

Step I: Disparity Discrepancy (DD)4

Definition (Disparity Discrepancy (DD))

Given a hypothesis space H and a specific hypothesis h∈H, the Disparity
Discrepancy (DD) is

dh,H(P,Q) = sup
h′∈H

(
EQ [h

′ ̸= h]− EP [h
′ ̸= h]

)
(8)

Theorem (Bound with Disparity Discrepancy)

For any δ > 0 and binary classifier h ∈ H, with probability 1− 3δ, we have

ϵQ(h) ≤ ϵ
P̂
(h) + dh,H(P̂, Q̂) + ϵideal + 2Rn,P(H∆H)

+ 2Rn,P(H) + 2

√
log 2

δ

2n
+ 2Rm,Q(H∆H) +

√
log 2

δ

2m
.

(9)

4Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

Mingsheng Long Domain Adaptation December 3, 2022 15 / 44

Step I: Disparity Discrepancy (DD)

Disparity Discrepancy (DD) is tighter than H∆H-Divergence.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

DD can have connections to conditional domain discriminator
D(x, h(x)).

dh,H(P,Q) ≜ sup
h′∈H

(ϵP (h, h′)− ϵQ (h, h′))

= sup
h′∈H

(EP [|h(x)− h′(x)| ≠ 0]− EQ [|h(x)− h′(x)| ≠ 0])

⩽ sup
D∈HD

(EP [D(x, h(x)) = 1] + EQ [D (x, h(x)) = 0])

(10)

Mingsheng Long Domain Adaptation December 3, 2022 16 / 44

Conditional Domain Adversarial Network (CDAN)5

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

Conditional adversarial domain adaptation: minimize dh,H(ϕ(P), ϕ(Q)).

min
G

E(G)− λE(D,G)

min
D

E(D,G),
(11)

E(D,G) = −Exsi ∼Ds log [D (fsi ⊗ gsi)]− Extj∼Dt
log
[
1− D

(
ftj ⊗ gtj

)]
(12)

5Long et al. Conditional Adversarial Domain Adaptation. NIPS 2018.

Mingsheng Long Domain Adaptation December 3, 2022 17 / 44

Joint Adaptation Network (JAN)6

Xs

Xt Zt|L|

Zs|L|Zs1

Zt1

Ys

Yt

JMMD

✖

✖

tied tied

φ1

φ1

φL

φL

AlexNet
VGGnet
GoogLeNet
ResNet
……

Joint distribution matching: cross-covariance of multiple random vectors

d2
k (P,Q) ≜

∥∥EP [⊗m
ℓ=1ϕℓ (x

s
ℓ)]− EQ

[
⊗m
ℓ=1ϕℓ

(
xtℓ
)]∥∥2

Hk
(13)

min
θ∈Θ

max
k∈K

1

na

na∑

i=1

L (θ (xai) , y
a
i) + λd2

k

(
P̂l1:l2 , Q̂l1:l2

)
(14)

Works better than f -Divergences when domains are less overlapping

6Long et al. Deep Transfer Learning with Joint Adaptation Networks. ICML 2017.
Mingsheng Long Domain Adaptation December 3, 2022 18 / 44

Multiclass Classification Formulation

Scoring function: f ∈ F : X × Y → R
Labeling function induced by f : hf : x 7→ argmaxy∈Y f (x, y)

Labeling function class: H = {hf |f ∈ F}
Margin of a hypothesis f :

ρf (x, y) =
1

2
(f (x, y)−max

y ′ ̸=y
f (x, y ′))

Margin Loss:

Φρ(x) =

0 ρ ⩽ x

1− x/ρ 0 ⩽ x ⩽ ρ

1 x ⩽ 0

1

0 ρ 1

Mingsheng Long Domain Adaptation December 3, 2022 19 / 44

Margin Theory

Margin error: ϵ
(ρ)
D (f) = E(x,y)∼D [Φρ(ρf (x, y))]

This error takes the margin of the hypothesis f into consideration:

1

0 ρ 10

1

2

3

4

5

6

7

�� 1 �� 2 �� 3 �� 4 �� 5 �� 6 �� 7 �� 8 �� 9

�� 1

�� 1

𝜌!

The Margin of 𝑓

𝑓

Decrease

第 l章 迁移学习理论及算法综述

论。值得一提的是，间隔理论目前也是多类别分类的主流理论，为了更好地联系

实际，这里直接介绍多类别分类的情形。

考虑基于打分函数的模型，假定假设空间为 ༳，其中的打分函数 ো ҧ ཅ · ཆ Ќϗ}ཆ} > ϗ. 在每一个数据点上为每一个类别输出一个实数作为分数。这个打分
函数将分数最大的类别作为输出，从而可以诱导得到一个输出离散类别的分类器ωো ҧ ཅ Ќ ཆ：

ωো ҧ ড় Р �a< L�uঢ়ѹཆ ো)ড়- ঢ়*/ VlA4W

所有这样的分类器构成输出离散类别的假设空间 ༵。
根据打分函数的结构，可以定义 ো 在数据)ড়- ঢ়*上的间隔：

౪ো)ড়- ঢ়* Ӎ 23)ো)ড়- ঢ়* ҃ L�uঢ়༧ӑঢ় ো)ড়- ঢ়༠**/ VlAOW

间隔即为正确的类别打分与其他的类别最高分之间的差。当间隔为负时分类错误，

间隔为正时，间隔的值越大，也就代表该分类器给正确的类别一个相对更高的分

数，置信度越高。

可以看到，经典的 12损失函数可以认为是 cC<N)౪ো)ড়- ঢ়**，能够反映输出标签
的正确性，却不能区分置信度的大小。基于间隔的定义，可以引进新的损失函数

的定义，该损失函数首先应当能够保证可以是 12损失函数的一个上界，同时应该
可以将置信度纳入考量。间隔损失函数即为符合这些优点的损失函数：

定义 lY: V间隔损失函数)lS*W： ো 在联合分布 及相应的经验分布 ห 上间隔参数
为 ౪ ? 1的间隔损失函数定义如下：

3aa)౪*)ো * Ӎ ઢড়ҭযౕ౪ ҉ ౪ো)ড়- ঢ়*-
3aa)౪*ห)ো * Ӎ ઢড়ҭ ห ౕ౪ ҉ ౪ো)ড়- ঢ়* > 2

্ุ>2 ౕ౪)౪ো)ড়্- ঢ়্**- VlASzW

其中，间隔变换 ౕ౪的定义如下：

ౕ౪)ড়* Ӎ
֪֭֭
֭֭֫
֬

1 ౪ ࢮ ড়
2 ҃ ড়0౪ 1 ࢮ ড় ࢮ ౪
2 ড় ࢮ 1

/ VlASSW

可以看到间隔损失函数和 12损失函数都是取值在 \1- 2^之间的函数，同时有
性质 3aa)౪*য)ো* ࢯ 3aaয)ωো *。由于 3aaয)ωো *实际上反映了分类器的准确率，所以间

O

第 l章 迁移学习理论及算法综述

论。值得一提的是，间隔理论目前也是多类别分类的主流理论，为了更好地联系

实际，这里直接介绍多类别分类的情形。

考虑基于打分函数的模型，假定假设空间为 ༳，其中的打分函数 ো ҧ ཅ · ཆ Ќϗ}ཆ} > ϗ. 在每一个数据点上为每一个类别输出一个实数作为分数。这个打分
函数将分数最大的类别作为输出，从而可以诱导得到一个输出离散类别的分类器ωো ҧ ཅ Ќ ཆ：

ωো ҧ ড় Р �a< L�uঢ়ѹཆ ো)ড়- ঢ়*/ VlA4W

所有这样的分类器构成输出离散类别的假设空间 ༵。
根据打分函数的结构，可以定义 ো 在数据)ড়- ঢ়*上的间隔：

౪ো)ড়- ঢ়* Ӎ 23)ো)ড়- ঢ়* ҃ L�uঢ়༧ӑঢ় ো)ড়- ঢ়༠**/ VlAOW

间隔即为正确的类别打分与其他的类别最高分之间的差。当间隔为负时分类错误，

间隔为正时，间隔的值越大，也就代表该分类器给正确的类别一个相对更高的分

数，置信度越高。

可以看到，经典的 12损失函数可以认为是 cC<N)౪ো)ড়- ঢ়**，能够反映输出标签
的正确性，却不能区分置信度的大小。基于间隔的定义，可以引进新的损失函数

的定义，该损失函数首先应当能够保证可以是 12损失函数的一个上界，同时应该
可以将置信度纳入考量。间隔损失函数即为符合这些优点的损失函数：

定义 lY: V间隔损失函数)lS*W： ো 在联合分布 及相应的经验分布 ห 上间隔参数
为 ౪ ? 1的间隔损失函数定义如下：

3aa)౪*)ো * Ӎ ઢড়ҭযౕ౪ ҉ ౪ো)ড়- ঢ়*-
3aa)౪*ห)ো * Ӎ ઢড়ҭ ห ౕ౪ ҉ ౪ো)ড়- ঢ়* > 2

্ุ>2 ౕ౪)౪ো)ড়্- ঢ়্**- VlASzW

其中，间隔变换 ౕ౪的定义如下：

ౕ౪)ড়* Ӎ
֪֭֭
֭֭֫
֬

1 ౪ ࢮ ড়
2 ҃ ড়0౪ 1 ࢮ ড় ࢮ ౪
2 ড় ࢮ 1

/ VlASSW

可以看到间隔损失函数和 12损失函数都是取值在 \1- 2^之间的函数，同时有
性质 3aa)౪*য)ো* ࢯ 3aaয)ωো *。由于 3aaয)ωো *实际上反映了分类器的准确率，所以间

O

第 l章 迁移学习理论及算法综述

论。值得一提的是，间隔理论目前也是多类别分类的主流理论，为了更好地联系

实际，这里直接介绍多类别分类的情形。

考虑基于打分函数的模型，假定假设空间为 ༳，其中的打分函数 ো ҧ ཅ · ཆ Ќϗ}ཆ} > ϗ. 在每一个数据点上为每一个类别输出一个实数作为分数。这个打分
函数将分数最大的类别作为输出，从而可以诱导得到一个输出离散类别的分类器ωো ҧ ཅ Ќ ཆ：

ωো ҧ ড় Р �a< L�uঢ়ѹཆ ো)ড়- ঢ়*/ VlA4W

所有这样的分类器构成输出离散类别的假设空间 ༵。
根据打分函数的结构，可以定义 ো 在数据)ড়- ঢ়*上的间隔：

౪ো)ড়- ঢ়* Ӎ 23)ো)ড়- ঢ়* ҃ L�uঢ়༧ӑঢ় ো)ড়- ঢ়༠**/ VlAOW

间隔即为正确的类别打分与其他的类别最高分之间的差。当间隔为负时分类错误，

间隔为正时，间隔的值越大，也就代表该分类器给正确的类别一个相对更高的分

数，置信度越高。

可以看到，经典的 12损失函数可以认为是 cC<N)౪ো)ড়- ঢ়**，能够反映输出标签
的正确性，却不能区分置信度的大小。基于间隔的定义，可以引进新的损失函数

的定义，该损失函数首先应当能够保证可以是 12损失函数的一个上界，同时应该
可以将置信度纳入考量。间隔损失函数即为符合这些优点的损失函数：

定义 lY: V间隔损失函数)lS*W： ো 在联合分布 及相应的经验分布 ห 上间隔参数
为 ౪ ? 1的间隔损失函数定义如下：

3aa)౪*)ো * Ӎ ઢড়ҭযౕ౪ ҉ ౪ো)ড়- ঢ়*-
3aa)౪*ห)ো * Ӎ ઢড়ҭ ห ౕ౪ ҉ ౪ো)ড়- ঢ়* > 2

্ุ>2 ౕ౪)౪ো)ড়্- ঢ়্**- VlASzW

其中，间隔变换 ౕ౪的定义如下：

ౕ౪)ড়* Ӎ
֪֭֭
֭֭֫
֬

1 ౪ ࢮ ড়
2 ҃ ড়0౪ 1 ࢮ ড় ࢮ ౪
2 ড় ࢮ 1

/ VlASSW

可以看到间隔损失函数和 12损失函数都是取值在 \1- 2^之间的函数，同时有
性质 3aa)౪*য)ো* ࢯ 3aaয)ωো *。由于 3aaয)ωো *实际上反映了分类器的准确率，所以间

O

Given a class of scoring functions F , Π1F is defined as

Π1F = {x 7→ f (x, y)
∣∣y ∈ Y, f ∈ F}. (15)

Margin Bound for IID setup (generalization error controlled by ρ):

err
(ρ)
P (f) ⩽ err

(ρ)

P̂
(f) +

2k2

ρ
Rn,P (Π1F) +

√
log 2

δ

2n
(16)

Mingsheng Long Domain Adaptation December 3, 2022 20 / 44

Step II: Margin Disparity Discrepancy (MDD)7

Margin Disparity: ϵ
(ρ)
D (f ′, f) ≜ Ex∼DX

[Φρ(ρf ′(x, hf (x)))].

We further define the margin version of Disparity Discrepancy (DD):

Definition (Margin Disparity Discrepancy (MDD))

Given a hypothesis space F and a specific hypothesis f ∈F , the Margin
Disparity Discrepancy (MDD) induced by f ′ ∈ F and its empirical version
are defined by

d
(ρ)
f ,F (P,Q) ≜ sup

f ′∈F

(
ϵ
(ρ)
Q (f ′, f)− ϵ

(ρ)
P (f ′, f)

)
,

d
(ρ)
f ,F (P̂, Q̂) ≜ sup

f ′∈F

(
ϵ
(ρ)

Q̂
(f ′, f)− ϵ

(ρ)

P̂
(f ′, f)

)
.

(17)

MDD satisfies d
(ρ)
f ,F (P,P) = 0 as well as nonnegativity and subadditivity.

7Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

Mingsheng Long Domain Adaptation December 3, 2022 21 / 44

Margin Theory for Domain Adaptation

Theorem (Generalization Bound with Rademacher Complexity)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Fix ρ > 0.
For all δ > 0, with probability 1− 3δ the following inequality holds for all
hypothesis f ∈ F :

ϵQ(f) ≤ϵ(ρ)
P̂

(f) + d
(ρ)
f ,F (P̂, Q̂) + ϵideal

+
2k2

ρ
Rn,P(Π1F) +

k

ρ
Rn,P(ΠHF) + 2

√
log 2

δ

2n

+
k

ρ
Rm,Q(ΠHF) +

√
log 2

δ

2m
.

(18)

An expected observation is that the generalization risk is controlled by ρ.

Mingsheng Long Domain Adaptation December 3, 2022 22 / 44

Margin Theory for Domain Adaptation

Theorem (Generalization Bound with Covering Numbers)

Let F ⊆ RX×Y be a hypothesis set with label set Y = {1, · · · , k} and
H ⊆ YX be the corresponding Y-valued labeling function class. Suppose
Π1F is bounded in L2 by L. Fix ρ > 0. For all δ > 0, with probability
1− 3δ the following inequality holds for all hypothesis f ∈ F :

ϵQ(f) ≤ϵ(ρ)
P̂

(f) + d
(ρ)
f ,F (P̂, Q̂) + ϵideal + 2

√
log 2

δ

2n

+

√
log 2

δ

2m
+

16k2
√
k

ρ
inf
ϵ≥0

{
ϵ+ 3

(1√
n
+

1√
m

)

(∫ L

ϵ

√
logN2(τ,Π1F)dτ+L

∫ 1

ϵ/L

√
logN2(τ,Π1H)dτ

)}
.

(19)

The margin bound for OOD has same order with the margin bound for IID.

Mingsheng Long Domain Adaptation December 3, 2022 23 / 44

Hypothesis Adversarial Learning8

Minimax domain adaptation implied directly through the margin theory

min
f ,ψ

ϵ
(ρ)

ψ(P̂)
(f) +

(
ϵ
(ρ)

ψ(Q̂)
(f ∗, f)− ϵ

(ρ)

ψ(P̂)
(f ∗, f)

)

f ∗ = max
f ′

(
ϵ
(ρ)

ψ(Q̂)
(f ′, f)− ϵ

(ρ)

ψ(P̂)
(f ′, f)

) (20)

1. Multiclass learning with scoring functions
2. Tight bound with only one hypothesis space
3. Informative bound with computable margin

Theory Algorithm
Bridge the Gap

8Zhang & Long. Bridging Theory and Algorithm for Domain Adaptation. ICML 2019.

Mingsheng Long Domain Adaptation December 3, 2022 24 / 44

Hypothesis Adversarial Learning

𝜓

Source
Risk
𝓔(𝑷%)

𝑓

MDD
𝓓𝜸 𝑷%,𝑸%

GRL

𝒚-

𝒚-′

𝑓′

Min

Max

E(P̂) = −E
(xs ,y s)∼P̂

log[σy s (f (ψ(xs)))]

Dγ(P̂, Q̂) = Ext∼Q̂
log[1− σhf (ψ(xt))(f

′(ψ(xt)))]

+ γExs∼P̂
log[σhf (ψ(xs))(f

′(ψ(xs)))]

(21)

Theorem (Margin Implementation)

(Informal) Assuming that there is no restriction on the choice of f ′ and
γ > 1, the global minimum of Dγ(P,Q) is P = Q. The value of σhf (f

′(·))
at equilibrium is γ/(1 + γ) and the corresponding margin of f ′ is ρ = log γ.

Mingsheng Long Domain Adaptation December 3, 2022 25 / 44

Outline

1 Domain Adaptation

2 Theory and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
TLLib: Transfer Learning Library

Mingsheng Long Domain Adaptation December 3, 2022 26 / 44

Theory vs. Practice
Previous discrepancies are supremum over whole hypothesis space —
will include bad hypotheses that make the bound excessively large.

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

A common observation is that difficulty of transfer is asymmetric —
Previous bounds will remain unchanged after switching P and Q.

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-

Simulation Real

pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
vi that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in T distinct training samples. Each
sample i includes xi,vi, and the success label yi of the entire
grasp sequence. The visual inputs are 640⇥512 images that
are randomly cropped to a 472⇥472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section IV-A, most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure 2d.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World (b) Real World

(c) Simulated Samples (d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t = 0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation techniques: domain-adversarial training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain–adversarial neural networks (DANNs),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d̂ of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
LDANN = ÂNs+Nt

i=0

�
di log d̂i + (1�di) log(1� d̂i)

, where

di 2 {0,1} is the ground truth domain label for sample i,
and Ns,Nt are the number of source and target samples.

The shared layers are trained to maximize LDANN, while
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-

Harder transfer

Easier transfer

Mingsheng Long Domain Adaptation December 3, 2022 27 / 44

Localization for Discrepancies

ℋ ℋ

Δ

Supremum over all pairs

ℋ ℋ

Δ

Supremum over single space

ℎ

ℋΔℋ-Divergence Disparity Discrepancy

ℋ ℋ

Δ

Supremum over localized space

ℋ ℋ

Δ

Supremum over localized space

ℎ

Localized ℋΔℋ-Divergence Localized Disparity Discrepancy

ℎ!∗ℎ!∗
ℎ!∗

Mingsheng Long Domain Adaptation December 3, 2022 28 / 44

Step III: Localized Discrepancies

Definition (Localized Hypothesis Space)

For any distributions P and Q on X × Y, any hypothesis space H and any
r ≥ 0, the localized hypothesis space Hr is defined as

Hr = {h ∈ H|EPL(h(x), y) ≤ r}. (22)

Definition (Localized H∆H-Discrepancy (LHH))

The localized H∆H-discrepancy from P to Q is defined as

dHr∆Hr (P,Q) = sup
h,h′∈Hr

(
EQL(h

′, h)− EPL(h
′, h)

)
. (23)

Definition (Localized Disparity Discrepancy (LDD))

For h ∈ H, the localized disparity discrepancy from P to Q is defined as

dh,Hr (P,Q) = sup
h′∈Hr

(
EQL(h

′, h)− EPL(h
′, h)

)
. (24)

Mingsheng Long Domain Adaptation December 3, 2022 29 / 44

Localization Theory for Domain Adaptation9

Recall the generalization bound induced by previous discrepancies:

ϵQ(h) ≤ ϵ
P̂
(h) + dH∆H(P̂, Q̂) + ϵideal + O(

√
d log n

n
+

√
d logm

m
)

Theorem (Generalization Bound with Localized H∆H-Discrepancy)

Set fixed r > λ. Let ĥ be the solution of the source error minimization.
Then with probability no less than 1− δ, we have

errQ(ĥ) ≤ err
P̂
(ĥ) + dHr∆Hr (P̂, Q̂) + λ+ O

(
d log n

n
+

d logm

m

)

+ O

√

2rd log n

n
+

√
(dHr∆Hr (P̂, Q̂) + 2r)d logm

m

 .

(25)

To make domain adaptation feasible, we require dHr∆Hr (P̂, Q̂) + r ≪ 1.
9Zhang & Long. On Localized Discrepancy for Domain Adaptation. Preprint 2021.

Mingsheng Long Domain Adaptation December 3, 2022 30 / 44

Localization Theory for Domain Adaptation10

Recall that Disparity Discrepancy is tighter than H∆H-Discrepancy:

min
h̄∈H

{err
P̂
(h̄) + dh̄,Hr

(P̂, Q̂)} ≤ min
ĥ∈H

err
P̂
(ĥ) + dHr∆Hr (P̂, Q̂) (26)

Theorem (Generalization bound with localized disparity discrepancy)

Set fixed r > λ. Let h̄ be the solution of above left objective function.
Then with probability no less than 1− δ, we have

errQ(h̄) ≤ err
P̂
(h̄) + dh̄,Hr

(P̂, Q̂) + λ+ O

(
d log n

n
+

d logm

m

)

+ O

√

(err
P̂
(h̄) + r)d log n

n
+

√
(err

P̂
(h̄) + dh̄,Hr

(P̂, Q̂) + r)d logm

m

 .

10Long et al. On Localized Discrepancy for Domain Adaptation. Preprint 2021.

Mingsheng Long Domain Adaptation December 3, 2022 31 / 44

Outline

1 Domain Adaptation

2 Theory and Algorithms
Classic Theory
Margin Theory
Localization Theory

3 Open Library
TLLib: Transfer Learning Library

Mingsheng Long Domain Adaptation December 3, 2022 32 / 44

Transfer Learning Library

pip

v0.4 v0.4

pip install -i https://test.pypi.org/simple/ tllib==0.4

Mingsheng Long Domain Adaptation December 3, 2022 33 / 44

Design Patterns

Tutorials
p More data formats
p More model backbones
p ……

Benchmarks
p Various setups
p Reproducible
p ……

Examples
p Training codes
p Hyperparameters
p ……

Adaptation
p DAN
p DANN
p MDD
p CDAN
p ……

Module
p Discriminator
p GradRevLayer
p Kernel
p ……

Backbone
p ResNet
p VGG
p Inception
p ……

Dataset
p Office-31
p Office-Home
p VisDA-2017
p DomainNet
p ……

Utils

Docs

Core

Platform ……

Reproducible Stable TorchVision DocumentationEase of UseExtendible

Code: https://github.com/thuml/Transfer-Learning-Library

Mingsheng Long Domain Adaptation December 3, 2022 34 / 44

https://github.com/thuml/Transfer-Learning-Library

Learning Settings

Task

Core

DA
Learning
Setup

TA OOD SSL Model Hub

Alignment Translation Self-Training Regularization

								-𝑦"

Reweighting

?
?

2

Fig. 1. SegNet predictions on road scenes and indoor scenes. To try our system yourself, please see our online web demo at http://mi.eng.cam.ac.
uk/projects/segnet/.

advantages; (i) it improves boundary delineation , (ii) it reduces the
number of parameters enabling end-to-end training, and (iii) this
form of upsampling can be incorporated into any encoder-decoder
architecture such as [2], [10] with only a little modification.

One of the main contributions of this paper is our analysis
of the SegNet decoding technique and the widely used Fully
Convolutional Network (FCN) [2]. This is in order to convey
the practical trade-offs involved in designing segmentation archi-
tectures. Most recent deep architectures for segmentation have
identical encoder networks, i.e VGG16, but differ in the form
of the decoder network, training and inference. Another common
feature is they have trainable parameters in the order of hundreds
of millions and thus encounter difficulties in performing end-to-
end training [4]. The difficulty of training these networks has led
to multi-stage training [2], appending networks to a pre-trained
architecture such as FCN [10], use of supporting aids such as
region proposals for inference [4], disjoint training of classification
and segmentation networks [18] and use of additional training data
for pre-training [11] [20] or for full training [10]. In addition,
performance boosting post-processing techniques [3] have also
been popular. Although all these factors improve performance on
challenging benchmarks [21], it is unfortunately difficult from
their quantitative results to disentangle the key design factors
necessary to achieve good performance. We therefore analysed
the decoding process used in some of these approaches [2], [4]
and reveal their pros and cons.

We evaluate the performance of SegNet on two scene seg-
mentation tasks, CamVid road scene segmentation [22] and SUN
RGB-D indoor scene segmentation [23]. Pascal VOC12 [21] has
been the benchmark challenge for segmentation over the years.
However, the majority of this task has one or two foreground

classes surrounded by a highly varied background. This implicitly
favours techniques used for detection as shown by the recent
work on a decoupled classification-segmentation network [18]
where the classification network can be trained with a large set of
weakly labelled data and the independent segmentation network
performance is improved. The method of [3] also use the feature
maps of the classification network with an independent CRF post-
processing technique to perform segmentation. The performance
can also be boosted by the use additional inference aids such as
region proposals [4], [24]. Therefore, it is different from scene
understanding where the idea is to exploit co-occurrences of
objects and other spatial-context to perform robust segmentation.
To demonstrate the efficacy of SegNet, we present a real-time
online demo of road scene segmentation into 11 classes of interest
for autonomous driving (see link in Fig. 1). Some example test
results produced on randomly sampled road scene images from
Google and indoor test scenes from the SUN RGB-D dataset [23]
are shown in Fig. 1.

The remainder of the paper is organized as follows. In Sec.
2 we review related recent literature. We describe the SegNet
architecture and its analysis in Sec. 3. In Sec. 4 we evaluate the
performance of SegNet on outdoor and indoor scene datasets. This
is followed by a general discussion regarding our approach with
pointers to future work in Sec. 5. We conclude in Sec. 6.

2 LITERATURE REVIEW

Semantic pixel-wise segmentation is an active topic of research,
fuelled by challenging datasets [21], [22], [23], [25], [26]. Before
the arrival of deep networks, the best performing methods mostly
relied on hand engineered features classifying pixels indepen-
dently. Typically, a patch is fed into a classifier e.g. Random

13

cup : 0.807

bowl : 0.847

bowl : 0.816
bowl : 0.744

bowl : 0.710

chair : 0.772

dining table : 0.618
oven : 0.969

refrigerator : 0.631

cup : 0.990

pizza : 0.919

dining table : 0.888 person : 0.984personpersoncar : 0.816

pizza : 0.965

clock : 0.988

person : 0.998

kite : 0.934

toothbrush : 0.668

teddy bear : 0.999

teddy bear : 0.890

teddy bear : 0.802teddy bear : 0.738

bowl : 0.602

potted plant : 0.769

toilet : 0.921sink : 0.969

sink : 0.994
sink : 0.992

sink : 0.97666sink : 0.938

person : 0.970: 0.970ersonperson : 0.869

bus : 0.999

bottle : 0.768

cup : 0.720

chair : 0.644

tv : 0.964

tv : 0.959

laptop : 0.986

mouse : 0.871

mouse : 0.677

m
keyboard : 0.956

book : 0.611

person : 0.986

boat : 0.758 boat : 0.746boat : 0.613

bench : 0.971

train : 0.965

tra!c light : 0.869
tra!c light : 0.713

chair : 0.631

couch : 0.991
couch : 0.719

couch : 0.627

dining table : 0.637

dog : 0.966

frisbee : 0.998

bird : 0.987

bird : 0.968

bird : 0.894

person : 0.723

cup : 0.986
cup : 0.931

bowl : 0.958

sandwich : 0.629

dining table : 0.941

zebra : 0.996

zebra : 0.993
zebra : 0.970970zebra : 0.848

person : 0.917person : 0.792: 0.7920 792tv : 0.711

laptop : 0.973

mouse : 0.981

keyboard : 0.638

keyboard : 0.615

person : 0.999person : 0.999person : 0.999persopersotennis racket : 0.960

bird : 0.956

bird : 0.906

bird : 0.746
horse : 0.990

person : 0.993

bottle : 0.982

oven : 0.655

refrigerator : 0.699

clock : 0.982

bed : 0.999

person : 0.808

bottle : 0.627

pizza : 0.995

pizza : 0.985

pizza : 0.982

pizza : 0.938
dining table : 0.956person : 0.998

skis : 0.919

bowl : 0.759

broccoli : 0.953

person : 0.999

person : 0.934

surfboard : 0.979

person : 0.940 person : 0.927

person : 0.864

0.940person : 0.854

person : 0.82555person : 0.813

person : 0.716

person : 0.692

ppperson : 0.691
927927person : 0.665

person : 0.618

boat : 0.992

umbrella : 0.885

gira"e : 0.993gira"e : 0.989

gira"e : 0.988

person : 0.867

airplane : 0.997

person : 0.970
person : 0.950 person : 0.931p

person : 0.916

person : 0.897
person : 0.842 person : 0.841person : 0.84person : 0.772

bicycle : 0.891
bicycle : 0.639

car : 0.957

motorcycle : 0.827

motorcycle : 0.713

tra!c light : 0.802

umbrella : 0.824

person : 0.800

clock : 0.986
clock : 0.981

person : 0.996

person : 0.976

person : 0.975rson : 0.975rsonson : 0onperson : 0.958

person : 0.950

person : 0.941

0.9760 976person : 0.939

pepeperson : 0.928 9589580 975n : 0.n : 0.0.9750.9750.person : 0.823

on : 0.9500 50
person : 0.805

person : 0.766
person : 0.759

.9414person : 0.673

dog : 0.996

dog : 0.691

0 939

p
backpack : 0.756

handbag : 0.848

Figure 6: Selected examples of object detection results on the MS COCO test-dev set using the Faster R-CNN
system. The model is VGG-16 and the training data is COCO trainval (42.7% mAP@0.5 on the test-dev set).
Each output box is associated with a category label and a softmax score in [0, 1]. A score threshold of 0.6 is
used to display these images. For each image, one color represents one object category in that image.

networks for large-scale image recognition,” in International
Conference on Learning Representations (ICLR), 2015.

[4] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeul-
ders, “Selective search for object recognition,” International
Journal of Computer Vision (IJCV), 2013.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic seg-
mentation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[6] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object
proposals from edges,” in European Conference on Computer
Vision (ECCV), 2014.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2010.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun, “Overfeat: Integrated recognition, localization
and detection using convolutional networks,” in International
Conference on Learning Representations (ICLR), 2014.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards

Dog

Classification Detection Segmentation Regression

Etc.

https://github.com/thuml/A-Roadmap-for-Transfer-Learning

Mingsheng Long Domain Adaptation December 3, 2022 35 / 44

https://github.com/thuml/A-Roadmap-for-Transfer-Learning

Benchmark Datasets

Vision: Office-31, Office-Home, DomainNet, ImageCLEF, PACS, ...

Language: Multi-Domain Sentiment Dataset, ...

WILDS: Diverse domains http://ai.stanford.edu/blog/wilds

Still not work due to large #domains, natural shifts, and harder tasks

Domain generalization Subpopulation
shift Domain generalization + subpopulation shift

Train example

What do Black
and LGBT
people have to
do with bicycle
licensing?

import
numpy as np

…

norm=np.___

Overall a solid
package that
has a good
quality of
construction
for the price.

Train Val (OOD) Test (OOD)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

siRNA A

siRNA B

Test example

As a Christian,
I will not be
patronizing
any of those
businesses.

import
subprocess
as sp

p=sp.Popen()
stdout=p.___

I *loved* my
French press,
it’s so perfect
and came with
all this fun
stuff!

Train Val (OOD) Test (OOD)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

siRNA A

siRNA B

Domain (d) hospitalcamera country, rural-urbandemographicscaffold time, region git repositoryuserlocation, timebatch

Adapted from Bandi et al.
2018

Beery et al.
2020

Yeh et al.
2020

Borkan et al.
2019

Hu et al.
2020

Christie et al.
2018

Raychev et al.
2016

Ni et al.
2019

David et al.
2021

Taylor et al.
2019

Dataset Camelyon17iWildCam PovertyMapCivilCommentsOGB-MolPCBA FMoW Py150AmazonGlobalWheatRxRx1

Prediction (y) tumoranimal species asset wealthtoxicitybioassays land use autocompletesentimentwheat head bboxperturbed gene

Input (x) tissue slidecamera trap photo satellite imageonline commentmolecular graph satellite image codeproduct reviewwheat imagecell image

examples 455,954203,029 448,000437,929 539,502523,846 19,669 150,0006,515125,510

domains 5323 16120,084 2,58616 x 5 23 x 2 8,4214751

Figure 2: The Wilds benchmark contains 10 datasets across a diverse set of application areas, data modalities,
and dataset sizes. Each dataset comprises data from different domains, and the benchmark is set up to
evaluate models on distribution shifts across these domains.

Despite their ubiquity in real-world deployments, these types of distribution shifts are under-
represented in the datasets widely used in the ML community today (Geirhos et al., 2020). Most
of these datasets were designed for the standard i.i.d. setting, with training and test sets from the
same distribution, and prior work on retrofitting them with distribution shifts has focused on shifts
that are cleanly characterized but not always likely to arise in real-world deployments. For instance,
many recent papers have studied datasets with shifts induced by synthetic transformations, such
as changing the color of MNIST digits (Arjovsky et al., 2019), or by disparate data splits, such as
generalizing from cartoons to photos (Li et al., 2017a). Datasets like these are important testbeds for
systematic studies, but they do not generally reflect the kinds of shifts that are likely to arise in the
wild. To develop and evaluate methods for real-world shifts, we need to complement these datasets
with benchmarks that capture shifts in the wild, as model robustness need not transfer across shifts:
e.g., models can be robust to image corruptions but not to shifts across datasets (Taori et al., 2020;
Djolonga et al., 2020), and a method that improves robustness on a standard vision dataset can even
consistently harm robustness on real-world satellite imagery datasets (Xie et al., 2020).

In this paper, we present Wilds, a curated benchmark of 10 datasets with evaluation metrics and
train/test splits representing a broad array of distribution shifts that ML models face in the wild
(Figure 2). With Wilds, we seek to complement existing benchmarks by focusing on datasets with
realistic shifts across a diverse set of data modalities and applications: animal species categorization
(Beery et al., 2020a), tumor identification (Bandi et al., 2018), bioassay prediction (Wu et al., 2018;
Hu et al., 2020b), genetic perturbation classification (Taylor et al., 2019), wheat head detection
(David et al., 2020), text toxicity classification (Borkan et al., 2019b), land use classification (Christie
et al., 2018), poverty mapping (Yeh et al., 2020), sentiment analysis (Ni et al., 2019), and code
completion (Raychev et al., 2016; Lu et al., 2021). These datasets reflect natural distribution shifts
arising from different cameras, hospitals, molecular scaffolds, experiments, demographics, countries,
time periods, users, and codebases.

Wilds builds on extensive data-collection efforts by domain experts, who are often forced to
grapple with distribution shifts to make progress in their applications. To design Wilds, we worked
with them to identify, select, and adapt datasets that fulfilled the following criteria:

5

Mingsheng Long Domain Adaptation December 3, 2022 36 / 44

http://ai.stanford.edu/blog/wilds

Regression on Visual Domains

Domain adaptation regression tasks on dSprite (simulation-to-real).

Method C→ N C→ S N→ C N→ S S→ C S→ N Avg

ResNet-18 0.94 0.90 0.16 0.65 0.08 0.26 0.498
TCA 0.94 0.87 0.19 0.66 0.10 0.23 0.498
DAN 0.70 0.77 0.12 0.50 0.06 0.11 0.377
DANN 0.47 0.46 0.16 0.65 0.05 0.10 0.315
MCD 0.81 0.81 0.17 0.65 0.07 0.19 0.450
RSD 0.32 0.35 0.16 0.57 0.08 0.09 0.262
RSD+BMP 0.31 0.31 0.12 0.53 0.07 0.08 0.237
DD 0.09 0.27 0.07 0.21 0.12 0.11 0.145

To our knowledge, this is the first successful regression algorithm!

(a) Src Only (b) DANN (c) RSD (d) DD

Mingsheng Long Domain Adaptation December 3, 2022 37 / 44

Classification on Visual Domains
Domain adaptation classification tasks on DomainNet and ImageNet.

Methods c→p c→r c→s p→c p→r p→s r→c r→p r→s s→c s→p s→r Avg

ResNet101 32.7 50.6 39.4 41.1 56.8 35.0 48.6 48.8 36.1 49.0 34.8 46.1 43.3
DAN 38.8 55.2 43.9 45.9 59.0 40.8 50.8 49.8 38.9 56.1 45.9 55.5 48.4
DANN 37.9 54.3 44.4 41.7 55.6 36.8 50.7 50.8 40.1 55.0 45.0 54.5 47.2
JAN 40.5 56.7 45.1 47.2 59.9 43.0 54.2 52.6 41.9 56.6 46.2 55.5 50.0
CDAN 40.4 56.8 46.1 45.1 58.4 40.5 55.6 53.6 43.0 57.2 46.4 55.7 49.9
MDD 42.9 59.5 47.5 48.6 59.4 42.6 58.3 53.7 46.2 58.7 46.5 57.7 51.8

Task IN→INR (ResNet50) IN→INS (ig resnext101 32x8d)

Source Only 35.6 54.9
DAN 39.8 55.7
DANN 52.7 56.5
JAN 41.7 55.7
CDAN 53.9 58.2
MDD 56.2 62.4

clipart real sketch painting

Im
ag
e

Ca
te
go
ry

Watermeleon Cow Tree Bird

(e) DomainNet

ImageNet ImageNet-R ImageNet-Sketch

Im
ag

e
Ca

te
go

ry
Daisy Guinea Pig,

Cavia Cobaya

Promontory,
Headland,
Foreland

(f) ImageNet

Mingsheng Long Domain Adaptation December 3, 2022 38 / 44

Classification on Language Domains

Domain adaptation classification tasks on Text Emotion datasets.

Methods g→s g→i g→e s→i s→e i→e avg

Source Only 45.4 47.0 58.2 31.5 33.7 50.6 44.4
DANN 38.3 44.3 57.3 32.5 39.4 54.5 44.4
DAN 34.6 42.7 57.1 34.5 37.7 49.6 42.7
JAN 32.6 43.1 57.6 34.2 39.4 50.3 42.9
CDAN 39.7 46.2 57.2 34.6 35.3 52.1 44.2
MDD 46.3 47.3 72.8 38.8 48.1 65.8 53.2
LDD 49.4 49.0 75.9 43.2 50.7 68.4 56.1

Dataset emotions examples

GoEmotions

admiration,amusement, anger, annoyance,
approval, caring, confusion,curiosity, desire,
disappointment, disapproval, disgust,
embarrassment, excitement, fear, gratitude,
grief, joy,love, nervousness, optimism, pride,
realization, relief, remorse, sadness, surprise

OMG, yep!!! That is the final answer. Thank you so much!
Let me give you a hint: THEY PLAY IN BOSTON!!!
I think this is my favourite one ever.
I think that question has a very complicated answer
I’m not even sure what it is, why do people hate it

SemEval-2018
anger, anticipation, disgust, fear, joy, love,
optimism, pessimism, sadness, surprise, trust

It appears my fire alarm disapproves of my cooking style
Heyyyy warriors!!!!! #panicattacks

Emotions-stimulus sadness, joy, anger, fear, surprise, disgust
There was a hint of exasperation in his voice.
He could see Harry ś puzzlement.

ISEAR joy, fear, anger, sadness, disgust, shame, guilt
I am happpy when I get good results in the field of academics or athletics.
My cat died from an illness. It had been with us for 7 years.

Mingsheng Long Domain Adaptation December 3, 2022 39 / 44

Classification on Time-Series Domains

Domain adaptation classication tasks on Human Activity datasets.

Methods 1→3 3→5 4→5 1→6 4→6 5→6 3→8 5→8 Average

FCN 90.3 82.9 74.9 83.2 61.9 58.8 81.4 91.8 78.2
DAN 91.2 93.7 89.7 89.7 78.0 80.2 86.8 93.3 87.8
DANN 92.5 95.9 93.1 91.8 78.8 91.6 95.2 96.6 91.9
VRADA 81.3 82.3 71.6 74.9 62.7 60.0 82.2 87.5 75.3
CDAN 93.9 96.8 95.2 92.9 83.6 91.6 95.6 97.6 93.4
R-DANN 85.1 85.4 70.4 81.7 64.6 54.4 82.8 82.5 75.9
CoDATS 93.2 95.6 94.2 90.5 93.7 90.7 93.4 97.1 93.5
CoDATS+WS 90.8 94.3 94.7 90.8 85.3 91.7 94.3 95.8 92.2
MDD 95.5 97.9 96.9 93.2 84.6 91.7 96.9 97.9 94.3

Participate 1

Vi
de

o
Ti

m
e

Se
rie

s
Ca

te
go

ry

Sit Stairsdown Walk

(g) HHAR

In
pu

t

Co
nv

1D
, 7

, 1
28

BN
+R

eL
U

Co
nv

1D
, 5

, 2
56

BN
+R

eL
U

Co
nv

1D
, 3

, 1
28

BN
+R

eL
U

G
lo

ba
l A

vg
. P

oo
l

D
en

se

(h) FFN

Mingsheng Long Domain Adaptation December 3, 2022 40 / 44

Distribution Shift in Semi-Supervised Learning

Forward Propagation

EMA EMA

head

(a) Pseudo Labeling / FixMatch (b) Mean Teacher (c) Noisy Student (d) Ours (DST)

student

teacher

generator generator

head

pseudo head

Backward Propagation

Labeled Data Pseudo Label

student

teacher

Parameter Replacement

T+1

T

T-1

Independent Model

Copied ModelUnlabeled Data

𝐱! 𝐿"#

𝐱$

#𝒑!

#𝒑$ 𝐿"#

%y$

𝐱! 𝐿"#

𝐱$

#𝒑!

'𝒑$ 𝐿!"#

#𝒑$

𝐱! 𝐿"#

𝐱$

#𝒑!

'𝒑$ 𝐿%&

#𝒑$

𝐱! 𝐿"#

𝐱$

#𝒑!

#𝒑$ 𝐿"#

%y$

Different Classes Unlabeled DataTrue Hyperplane Learnt Hyperplane Worst Hyperplane

(a) (b) (c)

min
ψ,h,hpseudo

LL(ψ, h)+ LU (ψ, hpseudo, f̂ψ,h)+max
h′

(
LU (ψ, h

′, f̂ψ,h)− LL(ψ, h
′)
)
.

Mingsheng Long Domain Adaptation December 3, 2022 41 / 44

Distribution Shift in Semi-Supervised Learning

0 20 40 60 80 1000
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

(i) FixMatch

0 20 40 60 80 1000
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

(j) DST w/o worst

0 20 40 60 80 1000
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

(k) DST

Figure: Top-1 accuracy of each category on CIFAR-100 (supervised pre-trained).

FixMatch 86.3 84.6 53.1 41.3 48.6 25.2 52.3 93.2 83.7 46.4 37.1 59.3
DST (FixMatch) 89.6 94.9 70.4 48.1 53.5 43.2 68.7 94.8 89.8 71.0 58.5 71.1

FixMatch 83.1 82.2 51.4 39.2 43.9 30.1 36.8 94.3 65.7 48.6 36.8 55.6
DST (FixMatch) 90.1 95.0 68.2 46.8 54.2 47.7 53.6 95.6 75.4 72.0 57.1 68.7

Chen et al. Debiased Self-Training for Semi-Supervised Learning. NeurIPS 2022 (Oral).

Mingsheng Long Domain Adaptation December 3, 2022 42 / 44

Transferability in Deep Learning: A Small Book11

Pre-Trained
ModelLabeled /

Unlabeled

Pre-Training

Upstream Task

Adapted
Model

Adaptation

Downstream Task

Target Domain

Source Domain

Upstream
Data

Downstream
Data

Lifecycle

Architecture

Pre-Training

Supervised
Pre-Training

Unsupervised
Pre-Training

Standard
Pre-Training

Meta
Learning

Casual
Learning

Generative
Learning

Contrastive
Learning

Adaptation

Task
Adaptation

Domain
Adaptation

Catastrophic
Forgetting

Negative
Transfer

Parameter
Efficiency

Statistics
Matching

Domain
Adversarial

Hypothesis
Adversarial

Domain
Translation

Semi-Supervised
Learning

Evaluation

Datasets

Benchmark

Data
Efficiency

Core
Method

Learning
Setup

Domain
Generalization

OOD
Generalization

Few-shot
Learning

Zero-shot
Learning

Library

Prompt
Learning

11https://arxiv.org/abs/2201.05867
Mingsheng Long Domain Adaptation December 3, 2022 43 / 44

https://arxiv.org/abs/2201.05867

Machine Learning Group @ THSS

Jianmin Wang
(王建民)

Tsinghua University
jimwang@tsinghua.edu.cn

Michael I. Jordan
(迈克尔·欧文·乔丹)

UC Berkeley
jordan@cs.berkeley.edu

Mingsheng Long
(龙明盛)

Tsinghua University
mingsheng@tsinghua.edu.cn

Yuchen Zhang
(张育宸)

Zhangjie Cao
(曹张杰)

Ximei Wang
(王希梅)

Kaichao You
(游凯超)

Junguang Jiang
(江俊广)

Yue Cao
(曹越)

Han Zhu
(朱晗)

Xinyang Chen
(陈新阳)

Yang Shu
(树扬)

Mingsheng Long Domain Adaptation December 3, 2022 44 / 44

	Domain Adaptation
	Theory and Algorithms
	Classic Theory
	Margin Theory
	Localization Theory

	Open Library
	TLLib: Transfer Learning Library

