
Mingsheng Long
School of Software, Tsinghua University

July 29, 2022

Deep Learning Models for
Sequential Data Analysis

Spatiotemporal Data Analysis

Radar Echo Traffic Map Robotics Pedestrian Motion

Temperature, Wind speed, Precipitation…Automatic stations

Predictive Learning

• Video frame prediction / Time series prediction
• Self-supervised / Unsupervised feature learning

𝒳!𝒳!"#𝒳!"$

"𝒳!%&"𝒳!%$"𝒳!%#

!𝒳#$%,…,#$(= arg max
"𝒳!"# ,…, "𝒳!"$

𝑝 𝒳#$%, … ,𝒳#$(|𝒳#)*$%,…,𝒳!

Predictive Learning

Credit: Yann LeCun [NIPS 2016]

Our Research

Spatiotemporal Predictive Learning

PredRNN-V2 for Precipitation Nowcasting

Time Series Forecasting

Autoformer for 2022 Beijing Olympics

Flowformer

A Foundation Model for General Task

Spatiotemporal Predictive Learning

Physical world understanding
[Lerer et al. ICML16; Wu et al. NeurIPS17]

Precipitation Nowcasting
[Wang et al. NeurIPS17; CVPR19]

Robotics control
[Ha & Schmidhuber, NeurIPS18]

Action intention estimation
[Wang et al. ICLR19]

Timeline
Motion Modeling

Spatiotemporal Information Modeling

Classic Methods

Deep Models

Optical flow
Extrapolation

Numerical
Methods

1900s

ConvLSTM

2015

PredRNN++

2018

2019

MIM

E3D-LSTM

PredRNN-V2

2022

PredRNN

2017

2017

TrajGRU

2021

MotionRNNSDC-NET

2018

Spatiotemporal Modeling in ConvLSTM

Seq2seq model for prediction

CNN for spatial information, RNN for temporal information

[Shi et al. NIPS 2015]

𝐿! 𝐿"

𝑥#𝑥#)%𝑥#)+

.𝑥#$% .𝑥#$+

ConvLSTM-1

ConvLSTM-2

ConvLSTM-3

ConvLSTM-4

Encoder: Extract information from past observations

Decoder: Predict the future step by step

Spatiotemporal Modeling in ConvLSTM

𝑥#)%𝑥#)+

.𝑥#.𝑥#)%

𝐶,𝐻

𝐶,𝐻

𝐶,𝐻
[Zeiler & Fergus. ECCV 2014]

𝐻

𝐻

(2) Temporal Dimension

(1) Spatial Dimension

Hierarchical

visual features

Capture the long- and short-term
dynamics with 𝐶!

Timeline

PredRNN-V2

2022

• Architecture: Spatiotemporal Memory Flow to enhance state transition

• Core Module: ST-LSTM with Memory Decoupling to cover long- and short-term dynamics

• Training Strategy: Reverse Scheduled Sampling to bridge the gap between encoder and decoder

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S. Yu, Mingsheng Long✉. PredRNN: A Recurrent Neural Network for
Spatiotemporal Predictive Learning. TPAMI, 2022.

Comparison with ConvLSTM
ConvLSTM PredRNN-V2

State

Transitions

Memory state 𝐶! is only updated along

the temporal dimension, which wastes

the hierarchical visual features

Spatiotemporal Memory Flow

forms a zig-zag transition to unify

the visual features in different layers

Comparison with ConvLSTM
ConvLSTM PredRNN-V2

Long Short-term

Dynamics

Modeling

ST-LSTM with 𝐶! and 𝑀! that are jointly

learned and explicitly decoupled to

cover long- and short-term dynamics

Memory state 𝐶! is forced to capture long-

and short-term dynamics simultaneously

𝑊

𝐻!"#

𝐶!"#

𝑋!

concat

𝑓

𝑖
𝑔

𝑜

𝑐!

tanh

𝐻!

∗

Comparison with ConvLSTM
ConvLSTM PredRNN-V2

Reverse Scheduled Sampling to bridge

the gap between encoder and decoder

The encoder and decoder share the same

parameter but their inputs are mismatched

Training

Strategy

PredRNN-V2

Spatiotemporal Memory 𝑀#: Transit in a (1) vertical and (2) zig-zag way

PredRNN-V2

(1) Vertical Transition

Unify the hierarchical visual features

PredRNN-V2

Low-level
feature

High-level
feature

Gated
Aggregation

(1) Vertical Transition

Unify the hierarchical visual features

PredRNN-V2

(2) Zig-zag Transition

𝑀 is in “Slow transition” → short-term dynamics

𝐶 is in “Fast transition” → long-term dynamics

Slow Transition for 𝑀

Achieve the long- and short-term dynamics decomposition.

Fast Transition for 𝐶

PredRNN-V2

long-term dynamics

Short-term dynamics

Can 𝐶 and 𝑀 be jointly learned as we expected?

PredRNN-V2

long-term dynamics

Short-term dynamics

PredRNN-V2 Red points: ∆𝐶; Black Points ∆𝑀

Successfully decouple 𝐶 and 𝑀, release the model prediction capability.

PredRNN-V2

Memory decoupling empowers the model with

stronger modeling capability in long- and short-term dynamics

PredRNN-V2

𝐿! 𝐿"

𝑥#𝑥#)%𝑥#)+

.𝑥#$% .𝑥#$+

ConvLSTM-1

ConvLSTM-2

ConvLSTM-3

ConvLSTM-4

Encoder: Always input the ground Truth

Decoder: Always input the last frame prediction

Encoder-decoder gap in Seq2seq model

Same parameter but with different inputs

Training Process of a Seq2Seq model

PredRNN-V2

Decoder inputs: ground truth 𝒳# → last frame prediction !𝒳#

Encoder inputs: last frame prediction !𝒳# → ground truth 𝒳#

Reverse Scheduled Sampling (RSS)

PredRNN-V2
Benefits of Reverse Scheduled Sampling

(1) Optimization: Alleviates the gradient
optimization problem in RNNs

(2) Long-term dependencies: RSS creates a
harder task, which can force the model to

memorize more information

Forget gate value of 𝐶!

PredRNN-V2 for Traffic

ST-LSTM can be used as a general

unit and combined with U-Net
Blank
area

Accurate
prediction

CrevNet [Yu et al. ICLR20]

Memory decoupling and RSS are general

techniques to improve performance

PredRNN-V2

PredRNN-V2 for Robotics

Action condition prediction

Prediction model can be the

world simulator for controlling Ground truth PredRNN-V2 SV2P

Action
condition

SV2P [Babaeizadeh et al. ICLR17]

PredRNN-V2 for Precipitation Nowcasting

PredRNN-V2 surpasses all other five methods and achieves the best performance in

long-term (≥60min) and high density (≥ 35dbz) radar prediction

Time Series Forecasting

Energy
Consumption

Traffic
Flow

Economic
Changes

Weather
Variations

Disease
Propagation

Wide Applications

Future Time SeriesPast Observations

…

Forecasting

Long-term Planning and

Early Warning

- Longer Forecasting Horizon

- More Accurate Prediction

Timeline

Holt-Winter

1960

ARIMA

1982

Statistical Models LSTM

1997

TCN

2018

N-BEATS

2019

DeepAR

2020

Deep Models

2021

Autoformer

Informer

Pyraformer

2022

Non-stationary
Transformer

ETSformer

Transformer-based models dealing with
long-term time series forecasting

Transformer

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Modeling temporal dependencies globally

with point-wise Self-Attention

Longer time series come with high complexity for Self-Attention

and complex temporal patterns to discover

Future Time SeriesPast Observations

Uptrend
Downtren
d

Uptrend

Steep
Drop

Fluctuatio
n

Plateau

Past
Observations

Future
Placeholder

Timeline

2021

Autoformer

• Decomposition architecture to split more predictable components

• Auto-Correlation to discover the temporal dependencies among

sub-series with Ο L log L complexity

Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long✉. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting. NeurIPS, 2021.

Comparison with Transformer
Transformer Autoformer

Intricate

Temporal

Patterns

Decomposition architecture to ravel

out the entangled temporal patterns

FuturePast

Uptrend

Downtrend

Uptrend

Steep
Drop

Plateau
Fluctuation

Hard to directly find reliable temporal

dependencies from raw series

Comparison with Transformer
Transformer Autoformer

Self-Attention discover the temporal

dependencies from scattered points

Auto-Correlation to discover the

Series-wise temporal dependencies

Time Series

Continuity

Comparison with Transformer

Auto-Correlation mechanism based on

stochastic process theory with inherent

Ο L log L complexity

Transformer Autoformer

OursOurs

• Point-wise Self-Attention is Ο L$

• Adopt sparse version for efficiency

resulting in the trade-off dilemma

Computation

Efficiency

Autoformer

Decomposition architecture for intricate temporal patterns

Autoformer

z

the point-wise dependency and aggregation. In this paper, our proposed Auto-Correlation mechanism
is based on the inherent periodicity of time series and can provide series-wise connections.

2.2 Decomposition of Time Series

As a standard method in time series analysis, time series decomposition [1, 25] deconstructs a time
series into several components, each representing one of the underlying categories of patterns that are
more predictable. It is primarily useful for exploring historical changes over time. For the forecasting
tasks, decomposition is always used as the pre-processing of historical series before predicting future
series [14], such as Prophet [32] and others [2]. However, such pre-processing is limited by the
plain decomposition effect of historical series and overlooks the hierarchical interaction between the
underlying patterns of series in the long-term future. This paper takes the decomposition idea from a
new progressive dimension. Our Autoformer harnesses the decomposition as an inner block of deep
models, which progressively decomposes the hidden series throughout the whole forecasting process.

3 Autoformer

The time series forecasting problem is to predict the most probable length-O series in the future given
the past length-I series, denoting as input-I-predict-O. The long-term forecasting setting is to predict
the long-term future given the short-term history, i.e. O � I . As aforementioned, we have highlighted
the difficulties of long-term series forecasting: handling intricate temporal patterns and breaking the
bottleneck of computation efficiency and information utilization. To tackle these two challenges, we
introduce the decomposition as a builtin block to the deep forecasting model and propose Autoformer

as a decomposition architecture. Besides, we design the Auto-Correlation mechanism to discover the
period-based dependencies and aggregate similar sub-series from underlying periods.

3.1 Decomposition Architecture

We renovate Transformer [34] to a deep decomposition architecture (Figure 1), including the inner
series decomposition block, Auto-Correlation mechanism, and corresponding Encoder and Decoder.

Series decomposition block To learn with the complex temporal patterns in long-term forecasting
context, we take the idea of decomposition [1, 25], which can separate the series into trend-cyclical
and seasonal parts. These two parts reflect the long-term progression and the seasonality of the series
respectively. However, directly decomposing is unrealizable for future series because the future is just
unknown. To tackle this dilemma, we present a series decomposition block as an inner operation of
Autoformer (Figure 1), which can extract the long-term stationary trend from predicted intermediate
hidden variables progressively. Concretely, we adapt the moving average to smooth out periodic
fluctuations and highlight the long-term trends. For length-L input series X 2 RL⇥d, the process is:

Xt = AvgPool(Padding(X))

Xs = X � Xt,
(1)

where Xs, Xt 2 RL⇥d denote the seasonal and the extracted trend-cyclical part respectively. We use
Xs, Xt = SeriesDecomp(X) to summarize above equations, which is the inner block of Autoformer.

Model inputs The inputs of encoder part are the past I time steps Xen 2 RI⇥d. As a decomposition
architecture (Figure 1), the input of Autoformer decoder contains both the seasonal part Xdes 2

R(I
2+O)⇥d and trend-cyclical part Xdet 2 R(I

2+O)⇥d to be refined. Each initialization consists of
two parts: the component decomposed from the latter half of encoder’s input Xen with length I

2 to
provide recent information, placeholders with length O filled by scalars. It’s formulized as follows:

Xens, Xent = SeriesDecomp(Xen I
2 :I)

Xdes = Concat(Xens, X0)

Xdet = Concat(Xent, XMean),

(2)

where Xens, Xent 2 R I
2⇥d denote the seasonal and trend-cyclical parts of Xen respectively, and

X0, XMean 2 RO⇥d denote the placeholders filled with zero and mean of Xen respectively.

3

Decomposition with Moving Average

the point-wise dependency and aggregation. In this paper, our proposed Auto-Correlation mechanism
is based on the inherent periodicity of time series and can provide series-wise connections.

2.2 Decomposition of Time Series

As a standard method in time series analysis, time series decomposition [1, 25] deconstructs a time
series into several components, each representing one of the underlying categories of patterns that are
more predictable. It is primarily useful for exploring historical changes over time. For the forecasting
tasks, decomposition is always used as the pre-processing of historical series before predicting future
series [14], such as Prophet [32] and others [2]. However, such pre-processing is limited by the
plain decomposition effect of historical series and overlooks the hierarchical interaction between the
underlying patterns of series in the long-term future. This paper takes the decomposition idea from a
new progressive dimension. Our Autoformer harnesses the decomposition as an inner block of deep
models, which progressively decomposes the hidden series throughout the whole forecasting process.

3 Autoformer

The time series forecasting problem is to predict the most probable length-O series in the future given
the past length-I series, denoting as input-I-predict-O. The long-term forecasting setting is to predict
the long-term future given the short-term history, i.e. O � I . As aforementioned, we have highlighted
the difficulties of long-term series forecasting: handling intricate temporal patterns and breaking the
bottleneck of computation efficiency and information utilization. To tackle these two challenges, we
introduce the decomposition as a builtin block to the deep forecasting model and propose Autoformer

as a decomposition architecture. Besides, we design the Auto-Correlation mechanism to discover the
period-based dependencies and aggregate similar sub-series from underlying periods.

3.1 Decomposition Architecture

We renovate Transformer [34] to a deep decomposition architecture (Figure 1), including the inner
series decomposition block, Auto-Correlation mechanism, and corresponding Encoder and Decoder.

Series decomposition block To learn with the complex temporal patterns in long-term forecasting
context, we take the idea of decomposition [1, 25], which can separate the series into trend-cyclical
and seasonal parts. These two parts reflect the long-term progression and the seasonality of the series
respectively. However, directly decomposing is unrealizable for future series because the future is just
unknown. To tackle this dilemma, we present a series decomposition block as an inner operation of
Autoformer (Figure 1), which can extract the long-term stationary trend from predicted intermediate
hidden variables progressively. Concretely, we adapt the moving average to smooth out periodic
fluctuations and highlight the long-term trends. For length-L input series X 2 RL⇥d, the process is:

Xt = AvgPool(Padding(X))

Xs = X � Xt,
(1)

where Xs, Xt 2 RL⇥d denote the seasonal and the extracted trend-cyclical part respectively. We use
Xs, Xt = SeriesDecomp(X) to summarize above equations, which is the inner block of Autoformer.

Model inputs The inputs of encoder part are the past I time steps Xen 2 RI⇥d. As a decomposition
architecture (Figure 1), the input of Autoformer decoder contains both the seasonal part Xdes 2

R(I
2+O)⇥d and trend-cyclical part Xdet 2 R(I

2+O)⇥d to be refined. Each initialization consists of
two parts: the component decomposed from the latter half of encoder’s input Xen with length I

2 to
provide recent information, placeholders with length O filled by scalars. It’s formulized as follows:

Xens, Xent = SeriesDecomp(Xen I
2 :I)

Xdes = Concat(Xens, X0)

Xdet = Concat(Xent, XMean),

(2)

where Xens, Xent 2 R I
2⇥d denote the seasonal and trend-cyclical parts of Xen respectively, and

X0, XMean 2 RO⇥d denote the placeholders filled with zero and mean of Xen respectively.

3

Predict Decompose Refine
Prediction Decompose Refine

Prediction

Progressive decomposition capacity

Autoformer

Autoformer

Focus on seasonal part modeling,

Provide cross information for decoder

Autoformer

Accumulation for
the trend-cyclical prediction

Adopt the Auto-Correlation
for the seasonal prediction

Autoformer

Benefit from the deep decomposition,
the seasonal part is highlighted with periodicity

Conduct the dependencies discovery and representation aggregation at the series level

Period-based dependencies
The same phase position of different periods

Autoformer

Series-wise Auto-Correlation towards information utilization bottleneck

Autoformer
Discover period-based dependencies with autocorrelation in stochastic process:

Autocorrelation reflects the time delay similarity,

and corresponds to the confidence of period estimation

Larger autocorrelation ℛ(τ) means

• stronger time delay similarity w.r.t. τ

• more confidence of period length as τ

Autoformer

Efficient computation of autocorrelation

with Wiener–Khinchin theorem by FFT

①

① Discover period-based
dependencies with
Ο L log L complexity

Autoformer

3. Align delayed series and aggregate
sub-series representations

1. Select the Top-k period lengths

②

Aggregate representations from similar sub-processes

2. Softmax-normalization

② Aggregate similar
sub-processes from
different periods

Autoformer

Energy

Economics

Traffic

Weather

Disease

Transformers LSTMs TCN
Prediction Accuracy

Relative Promotion (In MSE)

Input-96-predict-336
↑ 74%

Input-96-predict-336
↑ 18%

Input-96-predict-336
↑ 61%

Input-96-predict-336
↑ 15%

Input-96-predict-336
↑ 21%

Input-24-predict-48
↑ 43%

Benchmark

Autoformer

• Decomposition outperforms

separately forecasting convention

especially in the long-term setting

• Decomposition architecture can be

generalized to other Transformers

Ablation of Decomposition

• Under various input-predict settings,

Auto-Correlation outperforms Self-

Attention and its variants

Ablation of Auto-Correlation

Autoformer for 2022 Beijing Olympics

Provides online forecast service of temperature and
wind speed for the 2022 Beijing Winter Olympics,
assists athletes preparation and schedule planning,
works as a solid support for the competition.

Achieves 10-minute real-time temperature and wind
speed forecast based on meteorological observation,
and achieves 23% lower forecast error than the
mainstream numerical prediction methods.

Outdoors: Wind speedIndoors: Temperature

Real-time forecasting system
based on Autoformer

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.

[Data Universal]

Learn from various

modalities
[Task Universal]

Adapt to a wide range of

downstream tasks

Foundation Models

Image

Language

Time
Series

Agent
Trajectory

Relation among Image Patches

[SOS] Flowformer is a task-universal linear Transformer. [EOS]
Relation among Words

Relation among Time Points

Relation among Agent-Environment Interactions

… [S] [A] [R] …

General Relation Modeling of Transformers

Pair-wise Relation Modeling:

. . .

General Relation
Modeling

Quadratic
Complexity

Long Sequence
Model Efficiency

Big Model L Task & Data
Universal

？

Quadratic Complexity in Self-Attention

Pair-wise Relation Modeling:

. . .

𝒪(𝑛,𝑑)

Can we remove Softmax function?

𝑸𝑲𝑻 𝑽 = 𝑸(𝑲𝑻𝑽) 𝒪(𝑛,𝑑) → 𝒪(𝑛𝑑,)

Quadratic Complexity in Self-Attention

Competition
Mechanism

The key to avoid
trivial attention

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. NeurIPS 1989.

Softmax function is proposed as a differentiable generalization of
the

“winner-take-all” picking maximum operation.

Recap: Softmax function

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. NeurIPS 1989.

Softmax function is proposed as a differentiable generalization of
the

“winner-take-all” picking maximum operation.

𝐒𝐨𝐟𝐭𝐦𝐚𝐱
𝑸𝑲𝑻

𝒅
𝑽

𝝓 𝑸 (𝝓 𝑲 𝑻𝑽)
+

Competition Mechanism

“fixed resource will cause competition”

Recap: Softmax function

[Conservation Property]: The incoming flow
capacity of each node is equal to the outgoing

flow.

Flow Network Theory

Attention map

Results

(a) Inner View

𝑽 𝑹
Information flow

Attention: A Flow Network View

(b) Outer View

𝑽 𝑹
Information flowInformation flow Information flow

Attention: A Flow Network View

[Incoming Flow Conservation]: Competition among Source tokens

[Outgoing Flow Conservation]: Competition among Sink tokens

Flowformer: Conservation in Attention

Flow-Attention

Incoming flow: 𝐼: = 𝜙 𝑄: ∑;𝜙 𝐾;
<

Incoming flow conservation:
.(𝑸)
𝑰

Incoming flow: = >%
?%

∑;𝜙 𝐾;
<
= ?%

?%
= 1

Flow-Attention

Incoming flow: 𝐼: = 𝜙 𝑄: ∑;𝜙 𝐾;
<

Incoming flow conservation:
.(𝑸)
𝑰

Conserved outgoing flow: 3𝑶 = 𝜙 𝑲 ∑$
% &# $

'#

Flow-Attention

Outgoing flow: 𝑂: = 𝜙 𝐾: ∑;𝜙 𝑄;
<

Outgoing flow conservation:
.(𝑲)
𝑶

Outgoing flow: = (%
@%

∑;𝜙 𝑄;
<
= @%

@%
= 1

Flow-Attention

Outgoing flow: 𝑂: = 𝜙 𝐾: ∑;𝜙 𝑄;
<

Outgoing flow conservation:
.(𝑲)
𝑶

Conserved incoming flow: A𝑰 = 𝜙 𝑸 ∑'
()!

"

*!

Flow-Attention

Successfully bring the Competition Mechanism

Into Attention design to avoid trivial attention

Flow-Attention

[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network without specific inductive biases.

Flowformer: Efficiency and Universality

• Extensive tasks (covering 5 mainstream

tasks)

• Normal and causal versions

• Various sequence lengths (29-4000)

• Extensive baselines (20+)

Image

Language

Time
Series

Agent
Trajectory

Flowformer Experiments

Strong performance on all five mainstream tasks within the linear complexity.

Flowformer Experiments

General Relation
Modeling

Quadratic
Complexity

Long Sequence
Model Efficiency

Big Model L Task & Data
Universal

Flowformer

Linear complexity w.r.t. sequence length

Based on flow network & without specific inductive biases

Strong performance in Long Sequence, CV, NLP, Time Series, RL

Flowformer

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long✉. Flowformer: Linearizing Transformers with Conservation Flows. ICML, 2022.

Thank You!

龙明盛 王建民吴海旭 王韫博

大数据系统软件国家工程研究中心

