Deep Hashing for Multimedia Retrieval

Mingsheng Long

National Engineering Laboratory for Big Data Software School of Software Tsinghua University

https://github.com/thuml International Conference on Data Science, 2017

Outline

Introduction

Deep Hashing: A Bayesian Framework

Single-Modal Retrieval

- Deep Quantization Network (AAAI 2016)
- Deep Hashing Network (AAAI 2016)
- HashNet (ICCV 2017)

Cross-Modal Retrieval

• Deep Visual-Semantic Hashing (KDD 2016)

B 4 *		
Nunge	heng	
10111123	ICHE	LOUE

Multimedia Retrieval

- Nearest Neighbor (NN) similarity retrieval across modalities
 - Database: $\mathcal{X}^{img} = \{\mathbf{x}_1^{img}, \dots, \mathbf{x}_N^{img}\}$ and Query: $\mathbf{q}^{img}, \mathbf{q}^{t\times t}$
 - NN: NN $(\mathbf{q}^{img}) = \min_{\mathbf{x}^{img} \in \mathcal{X}^{img}} d(\mathbf{x}^{img}, \mathbf{q}^{img})$
 - Cross-modal NN: NN ($\mathbf{q}^{t \times t}$) = min_{ximg \in \mathcal{X}img} d ($\mathbf{x}^{img}, \mathbf{q}^{t \times t}$)

(a) $I \to T$ (Image Query on Text DB) (b) $T \to I$ (Text Query on Image DB)

Top 16 Returned Images

Search Pipeline

Approximate Nearest Neighbor (ANN) Search

Exact nearest neighbor search

- Linear scan: O(ND)
- Costly and impractical for large scale high-dimensional cases

Approximate nearest neighbor search

- Compression
 - Reduce the <u>cost</u> of distance computation
 - Time complexity: $O(ND'), D' \ll D$
- Pruning
 - Reduce the <u>number</u> of distance computations
 - Time complexity: $O(N'D), N' \ll N$

(日) (周) (日) (日)

Hashing Approaches

Hamming Embedding

- Compression: continuous -> binary codes (1100) -> points in Hamming space
- Pruning: Hamming Radius within 2/3/4
- Limited ability and flexibility of distance approximation

Quantization

- Compression: continuous -> binary codes (1100) -> nearest centers in original space
- Pruning: inverted index
- More costly in distance computation, and more accurate than binary embedding

지 미 에 지 않아 지 말 에 다 하는 것을 수 있다.

Outline

Introduction

Deep Hashing: A Bayesian Framework

Single-Modal Retrieval

- Deep Quantization Network (AAAI 2016)
- Deep Hashing Network (AAAI 2016)
- HashNet (ICCV 2017)
- Cross-Modal Retrieval
 - Deep Visual-Semantic Hashing (KDD 2016)

N 4 *		
N/linge	heng	
10111123	ICHE	LOUE

Deep Hashing

- Training data: $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{x}_j, s_{ij}) : s_{ij} \in \mathcal{S}\}$ where $\mathbf{x}_i \in \mathbb{R}^D, i = 1, \dots, N$
- $s_{ij} = 1$ if x_i and x_j are similar, $s_{ij} = 0$ if x_i and x_j are dissimilar
- Learn *nonlinear* hash function via deep network $f : \mathbf{x} \mapsto \mathbf{h} \in \{-1, 1\}^K$
- End-to-end pipeline: feature learning (metric learning) + hash coding

Image: Image:

Deep Hashing: A Bayesian Framework

Maximum A Posterior (MAP) Framework

The logarithm MAP of $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_N]$ given $\{(\mathbf{x}_i, \mathbf{x}_j, s_{ij}) : s_{ij} \in S\}$ is

$$\log P(\mathbf{H}|S) \propto \log P(S|\mathbf{H}) P(\mathbf{H})$$
$$= \sum_{s_{ij} \in S} w_{ij} \log P(s_{ij}|\mathbf{h}_i, \mathbf{h}_j) + \sum_{i=1}^{N} \log P(\mathbf{h}_i)$$
(1)

Image: Image:

where $P(\mathbf{h}_i)$ is the prior, $P(\mathcal{S}|\mathbf{H}) = \prod_{s_{ij} \in \mathcal{S}} [P(s_{ij}|\mathbf{h}_i, \mathbf{h}_j)]^{w_{ij}}$ is the weighted likelihood function, and w_{ij} is the weight for each training pair $(\mathbf{x}_i, \mathbf{x}_j, s_{ij})$.

Deep Hashing: A Bayesian Framework

Maximum A Posterior (MAP) Framework

 $P(s_{ij}|\mathbf{h}_i, \mathbf{h}_j)$ is the conditional probability of similarity label s_{ij} given a pair of hash codes \mathbf{h}_i and \mathbf{h}_j , which can be defined by the Bernoulli distribution

$$P(\mathbf{s}_{ij}|\mathbf{h}_i, \mathbf{h}_j) = \begin{cases} \sigma(\mathsf{d}(\mathbf{h}_i, \mathbf{h}_j)), & \mathbf{s}_{ij} = 1\\ 1 - \sigma(\mathsf{d}(\mathbf{h}_i, \mathbf{h}_j)), & \mathbf{s}_{ij} = 0 \end{cases}$$
(2)
$$= \sigma(\mathsf{d}(\mathbf{h}_i, \mathbf{h}_j))^{\mathbf{s}_{ij}} (1 - \sigma(\mathsf{d}(\mathbf{h}_i, \mathbf{h}_j)))^{1 - \mathbf{s}_{ij}} \end{cases}$$

where $d(\mathbf{h}_i, \mathbf{h}_j)$ is Hamming distance, and σ is specific probability function

Outline

Introduction

Deep Hashing: A Bayesian Framework

Single-Modal Retrieval

- Deep Quantization Network (AAAI 2016)
- Deep Hashing Network (AAAI 2016)
- HashNet (ICCV 2017)

Cross-Modal Retrieval

• Deep Visual-Semantic Hashing (KDD 2016)

N 4 *		
N/LUD CCC	hong	0.000
IVITIES	пепе	LOUN

→ 3 → 4 3

Deep Quantization Network

Main idea: improve quantizability such that data can be clustered easily

Deep Quantization Network (DQN)

Quantizability: feature vectors should exhibit cluster/manifold structures

• Gaussian prior over hash representations **h**_i (continuous relaxation)

$$p(\mathbf{h}_i) = \frac{1}{\sqrt{2\pi\gamma}} \exp\left(-\left\|\mathbf{h}_i - \sum_{m=1}^M \mathbf{C}_m \mathbf{b}_{mi}\right\|^2 / 2\gamma^2\right)$$
(3)

Likelihood function: taking inner product to quantify Hamming distance

• Based on a widely-adopted connection: $d(\mathbf{h}_i, \mathbf{h}_j) = \frac{1}{2} (\mathcal{K} - \langle \mathbf{h}_i, \mathbf{h}_j \rangle)$

$$p(s_{ij}|\mathbf{h}_{i},\mathbf{h}_{j}) = \begin{cases} \sigma(\langle \mathbf{h}_{i},\mathbf{h}_{j}\rangle), & s_{ij} = 1\\ 1 - \sigma(\langle \mathbf{h}_{i},\mathbf{h}_{j}\rangle), & s_{ij} = 0 \end{cases}$$
(4)
$$= \sigma(\langle \mathbf{h}_{i},\mathbf{h}_{j}\rangle)^{s_{ij}}(1 - \sigma(\langle \mathbf{h}_{i},\mathbf{h}_{j}\rangle))^{1-s_{ij}}$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function to turn logit into probability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Deep Quantization Network (DQN)

Overall optimization problem: Metric Learning + Product Quantization

$$\begin{split} \min_{\Theta} C &= L + \lambda Q \\ L &= \sum_{s_{ij} \in \mathcal{S}} \left(\log \left(1 + \exp \left(\langle \mathbf{h}_i, \mathbf{h}_j \rangle \right) \right) - s_{ij} \langle \mathbf{h}_i, \mathbf{h}_j \rangle \right) \\ Q &= \sum_{i=1}^N \left\| \mathbf{h}_i - \sum_{m=1}^M \mathbf{C}_m \mathbf{b}_{mi} \right\|^2 \end{split}$$
(5)

э

< □ > < □ > < □ > < □ > < □ > < □ >

Deep Quantization Network (DQN)

Experimental results and ablation study: end-to-end quantizability is key

Dataset		NUS-	WIDE		CIFAR-10				Flickr			
Dataset	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits
KSH	0.556	0.572	0.581	0.588	0.303	0.337	0.346	0.356	0.690	0.702	0.702	0.706
KSH-D	0.673	0.705	<u>0.717</u>	0.725	0.502	0.534	<u>0.558</u>	0.563	0.777	0.786	0.792	0.793
CNNH	0.617	0.663	0.657	0.688	0.484	0.476	0.472	0.489	0.749	0.761	0.768	0.776
DNNH	0.674	0.697	0.713	0.715	0.552	0.566	0.558	0.581	0.783	0.789	0.791	0.802
DQN	0.768	0.776	0.783	0.792	0.554	<u>0.558</u>	0.564	0.580	0.839	0.848	0.854	0.863

Dataset		NUS-	WIDE		CIFAR-10				Flickr			
Dataset	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits
DQN ₂	0.755	0.763	0.764	0.766	0.533	0.537	0.542	0.545	0.806	0.815	0.821	0.831
DQN_{2+}	0.750	0.754	0.756	0.764	0.528	0.534	0.538	0.541	0.804	0.809	0.815	0.829
DQN	0.623	0.646	0.655	0.673	0.506	0.513	0.519	0.529	0.748	0.756	0.759	0.775
DQN	0.768	0.776	0.783	0.792	0.554	0.558	0.564	0.580	0.839	0.848	0.854	0.863

Mingsheng Long

Deep Hashing

ICDS 2017 15 / 30

Deep Hashing Network (DHN)

Bimodal Laplacian prior (unnormalized) over continuous representations h_i

$$p(\mathbf{h}_{i}) = \frac{1}{2\epsilon} \exp\left(-\frac{\||\mathbf{h}_{i}| - \mathbf{1}\|_{1}}{\epsilon}\right)$$
(6)

The prior puts the largest probability density on the discrete values $\{-1, 1\}$.

	۲ 🗆		≣ ►	◆言◆	2	9 Q P
Mingsheng Long	Deep Hashing		ICI	OS 2017		16 / 30

Deep Hashing Network (DHN)

Overall optimization problem: Metric Learning + Iterative Quantization

$$\begin{split} \min_{\Theta} C &= L + \lambda Q \\ L &= \sum_{s_{ij} \in \mathcal{S}} \left(\log \left(1 + \exp \left(\langle \mathbf{h}_i, \mathbf{h}_j \rangle \right) \right) - s_{ij} \left\langle \mathbf{h}_i, \mathbf{h}_j \right\rangle \right) \\ Q &= \sum_{s_{ij} \in \mathcal{S}} \left(\||\mathbf{h}_i| - \mathbf{1}\|_1 + \||\mathbf{h}_j| - \mathbf{1}\|_1 \right) \\ Q &= \sum_{s_{ij} \in \mathcal{S}} \sum_{k=1}^{K} \left(\log \cosh \left(|h_{ik}| - 1 \right) + \log \cosh \left(|h_{jk}| - 1 \right) \right) \end{split}$$
(7)

Mingsheng Long

■ ◆ ■ ◆ ■ · ク < ペ ICDS 2017 17 / 30

< □ > < □ > < □ > < □ > < □ > < □ >

Deep Hashing Network (DHN)

Ablation study: minimizing quantization loss improves the hashing qualityThe first work that jointly minimizes quantization loss in deep hashing

Method	N	IUS-WID	DE (MAF	')	CIFAR-10 (MAP)				Flickr (MAP)			
Methou	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits
DHN-B	0.760	0.779	0.788	0.789	0.606	0.599	0.597	0.592	0.842	0.850	0.851	0.856
DHN	0.708	0.735	0.748	0.758	0.555	0.594	0.603	0.620	0.810	0.828	0.829	0.841
DHN-Q	0.632	0.667	0.683	0.703	0.532	0.551	0.574	0.569	0.784	0.797	0.801	0.804
DHN-E	0.611	0.643	0.664	0.670	0.485	0.512	0.521	0.535	0.751	0.764	0.763	0.766

Mi	ings	heng	Long

HashNet

Motivation

- Learn exactly binary hash codes by optimizing sign activation functions
- Learn discriminative metrics by tackling the data imbalance problem We account for the data imbalance between similar and dissimilar pairs by

$$w_{ij} = c_{ij} \cdot \begin{cases} |S| / |S_1|, & s_{ij} = 1 \\ |S| / |S_0|, & s_{ij} = 0 \end{cases}$$
(8)

- To trade-off precision vs. recall, $S_1 = \{s_{ij} \in S : s_{ij} = 1\}$ is the set of similar pairs, and $S_0 = \{s_{ij} \in S : s_{ij} = 0\}$ is the set of dissimilar pairs,
- c_{ij} is continuous similarity, i.e. $c_{ij} = \frac{\mathbf{y}_i \cap \mathbf{y}_j}{\mathbf{y}_i \cup \mathbf{y}_j}$ if labels \mathbf{y}_i and \mathbf{y}_j of \mathbf{x}_i and \mathbf{x}_j are given, $c_{ij} = 1$ if only s_{ij} is given

・ロト ・ 四ト ・ ヨト ・ ヨト …

HashNet

Optimization problem: Cost-Sensitive Metric Learning + Sign Activation

$$\min_{\Theta} \sum_{s_{ij} \in S} w_{ij} \left(\log \left(1 + \exp \left(\alpha \left\langle \mathbf{h}_{i}, \mathbf{h}_{j} \right\rangle \right) \right) - \alpha s_{ij} \left\langle \mathbf{h}_{i}, \mathbf{h}_{j} \right\rangle \right), \tag{9}$$

$$h = \operatorname{sgn}(z) = \begin{cases} +1, & \text{if } z \ge 0\\ -1, & \text{otherwise} \end{cases}$$
(10)

$$\lim_{\beta \to \infty} \tanh(\beta z) = \operatorname{sgn}(z) \tag{11}$$

Input: A sequence $1 = \beta_0 < \beta_1 < \ldots < \beta_m = \infty$ for stage t = 0 to m

- Train HashNet with $tanh(\beta_t z)$ as activation
- Set converged HashNet as next stage initialization

Output: HashNet with sgn(z) as activation, $\beta_m \rightarrow \infty$

Overall optimization problem: Metric Learning + Continuation Method

Method	Method ImageNet					NUS-	WIDE		MS COCO			
Method	16 bits	32 bits	48 bits	64 bits	16 bits	32 bits	48 bits	64 bits	16 bits	32 bits	48 bits	64 bits
HashNet	0.5059	0.6306	0.6633	0.6835	0.6623	0.6988	0.7114	0.7163	0.6873	0.7184	0.7301	0.7362
DHN	0.3106	<u>0.4717</u>	0.5419	0.5732	<u>0.6374</u>	0.6637	0.6692	0.6714	0.6774	0.7013	0.6948	0.6944
DNNH	0.2903	0.4605	0.5301	0.5645	0.5976	0.6158	0.6345	0.6388	0.5932	0.6034	0.6045	0.6099
CNNH	0.2812	0.4498	0.5245	0.5538	0.5696	0.5827	0.5926	0.5996	0.5642	0.5744	0.5711	0.5671
SDH	0.2985	0.4551	0.5549	0.5852	0.4756	0.5545	0.5786	0.5812	0.5545	0.5642	0.5723	0.5799
KSH	0.1599	0.2976	0.3422	0.3943	0.3561	0.3327	0.3124	0.3368	0.5212	0.5343	0.5343	0.5361
ITQ-CCA	0.2659	0.4362	0.5479	0.5764	0.4598	0.4052	0.3732	0.3467	0.5659	0.5624	0.5297	0.5019
ITQ	0.3255	0.4620	0.5170	0.5520	0.5086	0.5425	0.5580	0.5611	0.5818	0.6243	0.6460	0.6574
BRE	0.0628	0.2525	0.3300	0.3578	0.5027	0.5290	0.5475	0.5546	0.5920	0.6224	0.6300	0.6336
SH	0.2066	0.3280	0.3951	0.4191	0.4058	0.4209	0.4211	0.4104	0.4951	0.5071	0.5099	0.5101
LSH	0.1007	0.2350	0.3121	0.3596	0.3283	0.4227	0.4333	0.5009	0.4592	0.4856	0.5440	0.5849

Method		Imag	eNet			NUS-	WIDE		MS COCO			
Wethou	16 bits	32 bits	48 bits	64 bits	16 bits	32 bits	48 bits	64 bits	16 bits	32 bits	48 bits	64 bits
HashNet+C	0.5059	0.6306	0.6633	0.6835	0.6646	0.7024	0.7209	0.7259	0.6876	0.7261	0.7371	0.7419
HashNet	0.5059	0.6306	0.6633	0.6835	0.6623	0.6988	0.7114	0.7163	0.6873	0.7184	0.7301	0.7362
HashNet-W	0.3350	0.4852	0.5668	0.5992	0.6400	0.6638	0.6788	0.6933	0.6853	0.7174	0.7297	0.7348
HashNet-sgn	<u>0.4249</u>	<u>0.5450</u>	0.5828	0.6061	0.6603	0.6770	0.6921	0.7020	0.6449	0.6891	0.7056	0.7138

N / I	nore	hong	0.000
	IIIES	HEHE	LOUNE

 э

Image: A matrix

HashNet

HashNet

Mingsheng Long

ICDS 2017 23 / 30

Outline

Introduction

Deep Hashing: A Bayesian Framework

Single-Modal Retrieval

- Deep Quantization Network (AAAI 2016)
- Deep Hashing Network (AAAI 2016)
- HashNet (ICCV 2017)

Cross-Modal Retrieval

• Deep Visual-Semantic Hashing (KDD 2016)

N 4 * 1		
N/lun cel	heng	
10111163	ICHE	LOUE

(日) (周) (日) (日)

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Deep Visual-Semantic Hashing

 \bullet Previous work: separate pipeline for cross-modal feature embedding and binary encoding \to large information loss, unbalanced encoding

Mingsheng Long

$$\mathbf{h}_{it} = f\left(\mathbf{h}_i^{\mathsf{x}} + \mathbf{h}_{it}^{\mathsf{y}}\right) \tag{12}$$

イロト イポト イヨト イヨト

$$\mathbf{h}_{i} = \frac{\sum_{t=1}^{T} \pi_{it} \mathbf{h}_{it}}{\sum_{t=1}^{T} \pi_{it}} = \frac{\sum_{t=1}^{T} \pi_{it} f\left(\mathbf{h}_{i}^{x} + \mathbf{h}_{it}^{y}\right)}{\sum_{t=1}^{T} \pi_{it}}$$
(13)

$$L = \sum_{s_{ij} \in S} \max\left(0, \mu_c - s_{ij} \frac{\mathbf{h}_i \cdot \mathbf{h}_j}{\|\mathbf{h}_i\| \|\mathbf{h}_j\|}\right)$$
(14)
$$Q = \sum_{i=1}^N \sum_{k=1}^K \max\left(0, \mu_b - |\mathbf{h}_{ik}|\right)$$
(15)

Mingsheng Long

→ ▲ 置 → 量 → Q へ へ ICDS 2017 27 / 30

イロト イポト イヨト イヨト

$$L^{x} = \frac{1}{2N} \sum_{i=1}^{N} \left(\mathbf{u}_{i} - \frac{\sum_{t=1}^{T} \pi_{it} \mathbf{h}_{it}}{\sum_{t=1}^{T} \pi_{it}} \right)^{2} \quad L^{y} = \frac{1}{2N} \sum_{i=1}^{N} \frac{\sum_{t=1}^{T} \pi_{it} (\mathbf{v}_{it} - \mathbf{h}_{it})^{2}}{\sum_{t=1}^{T} \pi_{it}} \quad (16)$$

 $\min_{\Theta} O = L + \lambda Q + \beta \left(L^{x} + L^{y} \right)$ (17)

(I) $I \rightarrow T$ COCO (m) $T \rightarrow I$ COCO (n) $I \rightarrow T$ IAPR

- 1\/I	ings	heng	long
	ing J	ii Ciig	LONG

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Task	Method	Microsoft COCO			IAPR TC-12				
Task		16 bits	32 bits	64 bits	128 bits	16 bits	32 bits	64 bits	128 bits
$I \rightarrow T$	SCM	0.5699	0.6002	0.6307	0.6487	0.5880	0.6110	0.6282	0.6370
	QCH	0.5723	0.5954	0.6132	0.6345	0.5259	0.5546	0.5785	0.6054
	SePH	0.5813	0.6134	0.6253	0.6339	0.5070	0.5130	0.5151	0.5309
	DNH-C	0.5353	0.5560	0.5693	0.5824	0.4801	0.5093	0.5259	0.5349
	DVSH	0.5870	0.7132	0.7386	0.7552	0.5696	0.6321	0.6964	0.7236
$T \rightarrow I$	SCM	0.5581	0.6188	0.6583	0.6858	0.5876	0.6045	0.6200	0.6262
	QCH	0.5742	0.6057	0.6375	0.6669	0.4997	0.5364	0.5652	0.5885
	SePH	0.6127	0.6496	0.6723	0.6929	0.4712	0.4801	0.4812	0.4955
	DNH-C	0.5250	0.5592	0.5902	0.6339	0.4692	0.4838	0.4905	0.5053
	DVSH	0.5906	0.7365	0.7583	0.7673	0.6037	0.6395	0.6806	0.6751

Task	Method	Microsoft COCO			IAPR TC-12				
IdSK		16 bits	32 bits	64 bits	128 bits	16 bits	32 bits	64 bits	128 bits
$I \rightarrow T$	DVSH-B	0.6658	0.7408	0.7532	0.7645	0.6260	0.6761	0.7359	0.7554
	DVSH	0.5870	0.7132	0.7386	0.7552	0.5696	0.6321	0.6964	0.7236
	DVSH-Q	0.5746	0.7019	0.7145	0.7505	0.5385	0.6113	0.6869	0.7097
	DVSH-I	0.5264	0.5745	0.6056	0.6391	0.4792	0.5035	0.5583	0.5890
	DVSH-H	0.4856	0.5244	0.5545	0.5786	0.4575	0.4975	0.5493	0.5690
$T \rightarrow I$	DVSH-B	0.7605	0.8192	0.8034	0.8194	0.6285	0.6728	0.6922	0.6756
	DVSH	0.5906	0.7365	0.7583	0.7673	0.6037	0.6395	0.6806	0.6751
	DVSH-Q	0.5530	0.7105	0.7541	0.7569	0.5684	0.6153	0.6618	0.6693
	DVSH-I	0.5185	0.5353	0.5805	0.6136	0.4903	0.5496	0.5890	0.6012
	DVSH-H	0.5025	0.5368	0.5688	0.5939	0.4396	0.4853	0.5185	0.5337

<ロト < 四ト < 回ト < 回ト < 回ト = 三 三

кл	10000	hong	1 0 0 0
101	IIIRS	пепе	LOUP
		··-··	

ICDS 2017 30 / 30