Learning Transferable Features with Deep Adaptation Networks

Mingsheng Long¹², Yue Cao¹, Jianmin Wang¹, and Michael I. Jordan²

¹School of Software, Institute for Data Science Tsinghua University

²Department of EECS, Department of Statistics University of California, Berkeley

International Conference on Machine Learning, 2015

M. Long et al. (Tsinghua & UC Berkeley)

Deep Adaptation Networks

ICML 2015 1 / 15

Deep Learning for Domain Adaptation

- None or very weak supervision in the target task (new domain)
 - Target classifier cannot be reliably trained due to over-fitting
 - Fine-tuning is impossible as it requires substantial supervision
- Generalize related supervised source task to the target task
 - Deep networks can learn transferable features for adaptation
- Hard to find big source task for learning deep features from scratch
 - Transfer from deep networks pre-trained on unrelated big dataset
 - Transferring features from distant tasks better than random features

How Transferable Are Deep Features?

Transferability is restricted by (Yosinski et al. 2014; Glorot et al. 2011)

- Specialization of higher layer neurons to original task (new task \downarrow)
- Disentangling of variations in higher layers enlarges task discrepancy
- Transferability of features decreases while task discrepancy increases

M. Long et al. (Tsinghua & UC Berkeley)

ICML 2015 3 / 15

Model

Deep Adaptation Network (DAN)

Key Observations (AlexNet) (Krizhevsky et al. 2012)

- Convolutional layers learn general features: safely transferable
 - Safely freeze conv1-conv3 & fine-tune conv4-conv5
- Fully-connected layers fit task specificicy: NOT safely transferable
 - Deeply adapt fc6-fc8 using statistically optimal two-sample matching

Objective Function

Main Problems

- Feature transferability decreases with increasing task discrepancy
- Higher layers are tailored to specific tasks, NOT safely transferable
- Adaptation effect may vanish in back-propagation of deep networks

Deep Adaptation with Optimal Matching

Deep adaptation: match distributions in multiple layers, including output Optimal matching: maximize two-sample test power by multiple kernels

$$\min_{\theta \in \Theta} \max_{k \in \mathcal{K}} \frac{1}{n_a} \sum_{i=1}^{n_a} \int \left(\theta \left(\mathbf{x}_i^a \right), y_i^a \right) + \lambda \sum_{\ell=l_1}^{l_2} d_k^2 \left(\mathcal{D}_s^{\ell}, \mathcal{D}_t^{\ell} \right), \tag{1}$$

 $\lambda>0$ is a penalty, $\mathcal{D}^\ell_*=\left\{\mathbf{h}^{*\ell}_i
ight\}$ is the ℓ -th layer hidden representation

MK-MMD

Multiple Kernel Maximum Mean Discrepancy (MK-MMD)

 \triangleq RKHS distance between kernel embeddings of distributions p and q

$$d_{k}^{2}(p,q) \triangleq \left\| \mathbf{E}_{p} \left[\phi \left(\mathbf{x}^{s} \right) \right] - \mathbf{E}_{q} \left[\phi \left(\mathbf{x}^{t} \right) \right] \right\|_{\mathcal{H}_{k}}^{2},$$
(2)

 $k(\mathbf{x}^{s}, \mathbf{x}^{t}) = \langle \phi(\mathbf{x}^{s}), \phi(\mathbf{x}^{t}) \rangle \text{ is a convex combination of } m \text{ PSD kernels}$ $\mathcal{K} \triangleq \left\{ k = \sum_{u=1}^{m} \beta_{u} k_{u} : \sum_{u=1}^{m} \beta_{u} = 1, \beta_{u} \ge 0, \forall u \right\}.$ (3)

Theorem (Two-Sample Test (Gretton et al. 2012))

- p = q if and only if $d_k^2(p,q) = 0$ (In practice, $d_k^2(p,q) < \varepsilon$)
- $\max_{k \in \mathcal{K}} d_k^2(p,q) \sigma_k^{-2} \Leftrightarrow \min \text{Type II Error} (d_k^2(p,q) < \varepsilon \text{ when } p \neq q)$

Algorithm

Learning CNN

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)

 $\begin{array}{l} O(n^2): d_k^2(p,q) = \mathbf{E}_{\mathbf{x}^s \mathbf{x}'^s} k(\mathbf{x}^s, \mathbf{x}'^s) + \mathbf{E}_{\mathbf{x}^t \mathbf{x}'^t} k(\mathbf{x}^t, \mathbf{x}'^t) - 2\mathbf{E}_{\mathbf{x}^s \mathbf{x}^t} k(\mathbf{x}^s, \mathbf{x}^t) \\ O(n): d_k^2(p,q) = \frac{2}{n_s} \sum_{i=1}^{n_s/2} g_k(\mathbf{z}_i) \rightarrow \text{linear-time unbiased estimate} \end{array}$

• Quad-tuple
$$\mathbf{z}_i \triangleq (\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^s, \mathbf{x}_{2i-1}^t, \mathbf{x}_{2i}^t)$$

•
$$g_k(\mathbf{z}_i) \triangleq k(\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^s) + k(\mathbf{x}_{2i-1}^t, \mathbf{x}_{2i}^t) - k(\mathbf{x}_{2i-1}^s, \mathbf{x}_{2i}^t) - k(\mathbf{x}_{2i}^s, \mathbf{x}_{2i-1}^t)$$

Stochastic Gradient Descent (SGD)

For each layer ℓ and for each quad-tuple $\mathbf{z}_i^{\ell} = \left(\mathbf{h}_{2i-1}^{s\ell}, \mathbf{h}_{2i}^{s\ell}, \mathbf{h}_{2i-1}^{t\ell}, \mathbf{h}_{2i}^{t\ell}\right)$

$$\nabla_{\Theta^{\ell}} = \frac{\partial J(\mathbf{z}_{i})}{\partial \Theta^{\ell}} + \lambda \frac{\partial g_{k}\left(\mathbf{z}_{i}^{\ell}\right)}{\partial \Theta^{\ell}}$$

$$\tag{4}$$

Algorithm

Learning Kernel

Learning optimal kernel $k = \sum_{u=1}^{m} \beta_u k_u$

Maximizing test power \triangleq minimizing Type II error (Gretton et al. 2012)

$$\max_{k \in \mathcal{K}} d_k^2 \left(\mathcal{D}_s^{\ell}, \mathcal{D}_t^{\ell} \right) \sigma_k^{-2}, \tag{5}$$

where $\sigma_k^2 = \mathbf{E}_{\mathbf{z}} g_k^2 (\mathbf{z}) - [\mathbf{E}_{\mathbf{z}} g_k (\mathbf{z})]^2$ is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size: $O(m^2n + m^3)$

$$\min_{\mathbf{d}^{\mathsf{T}}\boldsymbol{\beta}=1,\boldsymbol{\beta}\geq\mathbf{0}}\boldsymbol{\beta}^{\mathsf{T}}\left(\mathbf{Q}+\varepsilon\mathbf{I}\right)\boldsymbol{\beta},\tag{6}$$

where $\mathbf{d} = (d_1, d_2, \dots, d_m)^T$, and each d_u is MMD using base kernel k_u .

Analysis

Theorem (Adaptation Bound)

(Ben-David et al. 2010) Let $\theta \in \mathcal{H}$ be a hypothesis, $\epsilon_s(\theta)$ and $\epsilon_t(\theta)$ be the expected risks of source and target respectively, then

$$\epsilon_{t}(\theta) \leqslant \epsilon_{s}(\theta) + d_{\mathcal{H}}(p,q) + C_{0} \leqslant \epsilon_{s}(\theta) + 2d_{k}(p,q) + C, \qquad (7)$$

where C is a constant for the complexity of hypothesis space, the empirical estimate of \mathcal{H} -divergence, and the risk of an ideal hypothesis for both tasks.

Two-Sample Classifier: Nonparametric vs. Parametric

- Nonparametric MMD directly approximates $d_{\mathcal{H}}(p,q)$
- Parametric classifier: adversarial training to approximate $d_{\mathcal{H}}(p,q)$

< ロ > < 同 > < 回 > < 回 >

Experiment Setup

- Datasets: pre-trained on ImageNet, fined-tuned on Office&Caltech
- Tasks: 12 adaptation tasks \rightarrow An unbiased look at dataset bias
- Variants: DAN; single-layer: DAN₇, DAN₈; single-kernel: DAN_{SK}
- Protocols: unsupervised adaptation vs semi-supervised adaptation
- Parameter selection: cross-validation by jointly assessing
 - test errors of source classifier and two-sample classifier (MK-MMD)

ICMI 2015

Results

Results and Discussion

Learning transferable features by deep adaptation and optimal matching

- Deep adaptation of multiple domain-specific layers (DAN) vs. shallow adaptation of one hard-to-tweak layer (DDC)
- Two samples can be matched better by MK-MMD vs. SK-MMD

Table: Accuracy on Office-31 dataset via standard protocol (Gong et al. 2013)

Method	$A \to W$	$D\toW$	$W\toD$	$A\toD$	$D\toA$	$W\toA$	Average
TCA	21.5±0.0	50.1 ± 0.0	58.4±0.0	11.4±0.0	8.0±0.0	14.6±0.0	27.3
GFK	19.7±0.0	49.7±0.0	63.1±0.0	10.6±0.0	7.9±0.0	15.8±0.0	27.8
CNN	61.6±0.5	95.4±0.3	<u>99.0</u> ±0.2	$63.8 {\pm} 0.5$	51.1 ± 0.6	49.8±0.4	70.1
LapCNN	60.4±0.3	94.7±0.5	99.1 ±0.2	63.1 ± 0.6	51.6±0.4	48.2±0.5	69.5
DDC	61.8±0.4	95.0±0.5	$98.5 {\pm} 0.4$	64.4±0.3	$52.1{\pm}0.8$	<u>52.2</u> ±0.4	70.6
DAN ₇	63.2±0.2	94.8±0.4	98.9±0.3	65.2±0.4	52.3±0.4	52.1±0.4	71.1
DAN_8	<u>63.8</u> ±0.4	94.6±0.5	98.8±0.6	$65.8 {\pm} 0.4$	52.8±0.4	51.9±0.5	71.3
DAN_{SK}	63.3±0.3	<u>95.6</u> ±0.2	<u>99.0</u> ±0.4	<u>65.9</u> ±0.7	<u>53.2</u> ±0.5	52.1±0.4	<u>71.5</u>
DAN	$\textbf{68.5}{\pm}0.4$	96.0 ±0.3	<u>99.0</u> ±0.2	67.0 ±0.4	$\textbf{54.0}{\pm}0.4$	$\textbf{53.1}{\pm}0.3$	72.9

イロン イヨン イヨン

Results and Discussion

Semi-supervised adaptation: source supervision vs. target supervision?

- Limited target supervision is prone to over-fitting the target task
- Source supervision can provide strong but inaccurate inductive bias
- Via source inductive bias, target supervision is much more powerful
- Two-sample matching is more effective for bridging dissimilar tasks

Table: A	Accuracy on	Office-31	dataset via	down-sample	e protocol ((Saenko et a	l.)
----------	-------------	-----------	-------------	-------------	--------------	--------------	-----

Paradigm	Method	$A \to W$	$D\toW$	$W\toD$	Average
Un-	DDC	59.4±0.8	92.5±0.3	91.7±0.8	81.2
supervised	DAN	$\textbf{66.0}{\pm}~0.4$	93.5 ±0.2	95.3 ±0.3	84.9
Semi-	DDC	84.1±0.6	95.4±0.4	96.3±0.3	91.9
Supervised	DAN	85.7 ±0.3	97.2 ±0.2	96.4 ±0.2	93.I

Visualization

How transferable are DAN features? t-SNE embedding for visualization

- With DAN features, target points form clearer class boundaries
- With DAN features, target points can be classified more accurately
 - Source and target categories are aligned better with DAN features

< □ > < 同

\mathcal{A} -distance $\hat{d}_{\mathcal{A}}$

How is generalization performance related to two-sample discrepancy?

- $\hat{d}_{\mathcal{A}}$ on CNN & DAN features is larger than $\hat{d}_{\mathcal{A}}$ on Raw features
 - Deep features are salient for both category & domain discrimination
- $\hat{d}_{\mathcal{A}}$ on DAN feature is much smaller than $\hat{d}_{\mathcal{A}}$ on CNN feature
 - Domain adaptation can be boosted by reducing domain discrepancy

Summary

- A deep adaptation network for learning transferable features
- Two important improvements:
 - Deep adaptation of multiple task-specific layers (including output)
 - Optimal adaptation using multiple kernel two-sample matching
- A brief analysis of learning bound for the proposed deep network
- Open Problems
 - Principled way of deciding the boundary of generality and specificity
 - Deeper adaptation of convolutional layers to enhance transferability
 - Fine-grained adaptation using structural embeddings of distributions

< ロ > < 同 > < 回 > < 回 > < 回 > <