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Domain Adeptaon
Deep Learning for Domain Adaptation

@ None or very weak supervision in the target task (new domain)
o Target classifier cannot be reliably trained due to overfitting
e Fine-tuning is impossible as it requires substantial supervision

@ Generalize related supervised source task to the target task
e Deep networks can learn transferable features for adaptation

@ Hard to find big source task for learning deep features from scratch

e Transfer from deep networks pre-trained on unrelated big dataset
e Transferring features from distant tasks better than random features
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How Transferable Are Deep Features!?

Transferability is restricted by (Yosinski et al. 2014; Glorot et al. 201 1)
@ Specialization of higher layer neurons to original task (new task |)
@ Disentangling of variations in higher layers enlarges task discrepancy
@ Transferability of features decreases while task discrepancy increases
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Deep Adaptation Network (DAN)

Key Observations (AlexNet) (Krizhevsky et al. 2012)
@ Convolutional layers learn general features: safely transferable

e Safely freeze convl-conv3 & fine-tune conv4-convb

@ Fully-connected layers fit task specificicy: NOT safely transferable
o Deeply adapt fc6-fc8 using statistically optimal two-sample matching
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Objective Function

Main Problems
@ Feature transferability decreases with increasing task discrepancy

@ Higher layers are tailored to specific tasks, NOT safely transferable

@ Adaptation effect may vanish in back-propagation of deep networks

v

Deep Adaptation with Optimal Matching

Deep adaptation: match distributions in multiple layers, including output

Optimal matching: maximize two-sample test power by multiple kernels
I
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A > 0 is a penalty, DY = {h*e} is the ¢-th layer hidden representation
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MK-MMD

Multiple Kernel Maximum Mean Discrepancy (MK-MMD)
£ RKHS distance between kernel embeddings of distributions p and g

o (p,q) £ 1B, [¢ ()] — Eq [& (x)]ll3, -

k(x®,x") = (¢ (x°), ¢ (x')) is a convex combination of m PSD kernels

K £ {k:zm:/ﬁuku : iﬂu =106, 2 O,Vu}.
u=1 u=1
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Theorem (Two-Sample Test (Gretton et al. 2012))

e p=qifandonly if & (p,q) = 0 (In practice, d? (p, q) < ¢

® max @ (p,q) o, 2 < minType Il Error (d? (p,q) < & when p # q)
S
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Method Algorithm

Learning CNN

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)
O(n?): & (p,q) = Exexrrk(x*, X°) + Eyyrik(x, x*) — 2Eexek(x°, X1)
O(n): &2 (p,q) = %Z)”:/f g (z)) — linear-time unbiased estimate

® Quad-tuple 7 £ (x3,_;, X3, Xb;_1, X))

° g (z) £ k(xyp,X5) + k(x5 1, Xy) — k(x5_1,%5) — k(xy, X5 )

v

Stochastic Gradient Descent (SGD)

For each layer ¢ and for each quad-tuple z{ = (hy_;, hy, hf_, h})

(z) , |0 (+)

Ver = 5o 00"
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Agortm
Learning Kernel

Learning optimal kernel k = """ | Bk,

Maximizing test power £ minimizing Type Il error (Gretton et al. 2012)

2 (T Ty
rpee}éd (D D)ak, (5)

where 02 = E,g2 (z) — [E,g (2)]” is the estimation variance.

Quadratic Program (QP), scaling linearly to sample size: O(m?n + m?)

min  B7(Q+<I) B, (6)

d’8=1,8>0

where d = (dy,ds, ..., d,)", and each d, is MMD using base kernel k,.
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Method Analysis

Analysis

Theorem (Adaptation Bound)

(Ben-David et al. 2010) Let @ € H be a hypothesis, €,(0) and €.(6) be the
expected risks of source and target respectively, then

6[(0) < 65(0) + dH(Pv Q) + C0 < €s<0) + 2d/<(p Q) + Ca (7)

where C is a constant for the complexity of hypothesis space, the empirical
estimate of H-divergence, and the risk of an ideal hypothesis for both tasks.

Two-Sample Classifier: Nonparametric vs. Parametric
@ Nonparametric MMD directly approximates d, (p, q)

@ Parametric classifier: adversarial training to approximate d(p, q)

v
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Experiment Setup

Datasets: pre-trained on ImageNet, fined-tuned on Office&Caltech
Tasks: |2 adaptation tasks — An unbiased look at dataset bias
Variants: DAN; single-layer: DAN7, DANg; single-kernel: DANgk
Protocols: unsupervised adaptation vs semi-supervised adaptation
Parameter selection: cross-validation by jointly assessing

e test errors of source classifier and two-sample classifier (MK-MMD)

(Jia et al. 2014)
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Results and Discussion

Learning transferable features by deep adaptation and optimal matching

@ Deep adaptation of multiple domain-specific layers (DAN)

vs. shallow adaptation of one hard-to-tweak layer (DDC)
@ [wo samples can be matched better by MK-MMD vs. SK-MMD

Table: Accuracy on Office-31 dataset via standard protocol (Gong et al. 2013)

Method A—W D — W

W=D A—=D D—=A WA Average

TCA  215+00 50.1£00
GFK  19.7£0.0 49.7£0.0
CNN 61605 954+£03
LapCNN 60.4+0.3 94.7£0.5
DDC  61.8+£04 95.0£0.5

584£00 114400
63.1£0.0 10.6£0.0
99.0+02 63.8+£05
99.1+02 63.1+06
985+04 644403

80+00 14.6+00
79400 158400
51,1406 49.84+04
516404 482405
52.140.8 522404

27.3
27.8
70.1
69.5
70.6

DAN; 632402 94.8+04
DANg 63.8404 94.6+05

989+£0.3 652404
98.8£0.6 65.84+0.4

52.3+04 52.1£04
52.84£04 519405

DANgk 633403 956402 99.0+404 659407 532405 52.1404

DAN  68.5+£04 96.04+0.3

99.0+02 67.0£04

54.0+:04 53.1£0.3

711
713
715
729
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Results and Discussion

Semi-supervised adaptation: source supervision vs. target supervision?

@ Limited target supervision is prone to overfitting the target task

@ Source supervision can provide strong but inaccurate inductive bias

@ Via source inductive bias, target supervision is much more powerful

@ Two-sample matching is more effective for bridging dissimilar tasks

Table: Accuracy on Office-31 dataset via down-sample protocol (Saenko et al.)

Paradigm Method A—-W D—-W W =D Average
Un- DDC  594+£08 925403 917408 812
supervised DAN  66.0£ 04 93.5+02 953403 84.9
Semi- DDC  84.1£06 954404 9634+03 919
Supervised DAN 857403 97.2+02 964402  93.1
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Analsi
Visualization

How transferable are DAN features? t-SNE embedding for visualization

o With DAN features, target points form clearer class boundaries

o With DAN features, target points can be classified more accurately
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A-distance d 4

How is generalization performance related to two-sample discrepancy?
° 8A on CNN & DAN features is larger than aA on Raw features
e Deep features are salient for both category & domain discrimination
° dA on DAN feature is much smaller than dA on CNN feature
e Domain adaptation can be boosted by reducing domain discrepancy
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Summary

@ A deep adaptation network for learning transferable features

@ [wo important improvements:
o Deep adaptation of multiple task-specific layers (including output)
e Optimal adaptation using multiple kernel two-sample matching

@ A brief analysis of learning bound for the proposed deep network

@ Open Problems
e Principled way of deciding the boundary of generality and specificity
e Deeper adaptation of convolutional layers to enhance transferability
e Fine-grained adaptation using structural embeddings of distributions
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