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Experiment Setup

Miultile Kernel Masimum Mean Discrepancy (MK-MMD)

» A deep adaptation network for learning transferable features 2 RKHS distance between kernel embeddings of distributions p and g » Datasets: pre-trained on ImageNet, fined-tuned on Office& Caltech
> Two important improvements: d; (p,q) = |E, [0 (x°)] — E4 [ (xt)]Hii : (2) » Tasks: 12 adaptation tasks — An unbiased look at dataset bias
» Deep adaptation of multiple task-specific layers (including output) _ o ) : :
» Optimal adaptation using multiple kernel two-sample matching K (Xsa Xt) — <¢ (Xs) , @ (Xt)> is a convex combination of m PSD kernels > Baselines: TCA, GF.K’ CNN, La.pC'\ll\l, .DDC (Tzeng et al 2014)
A brief analusic of learning bound for the oroneced deen network m m » Protocols: unsupervised vs semi-supervised, full-set vs sub-sample
y g prop p L2l k=— Z B,k, - Z B,=1,6,>0Vuyp. (3) » Parameter selection: cross-validation by jointly assessing
» Outlook —1 =1 » validation errors of source classifier and two-sample classifier (MK-MMD)

» Principled way of deciding the boundary of generality and specificity
» Deeper adaptation of convolutional layers to enhance transferability

Two-Sample Test (Gretton et al. 2012)

- £ 2 _ ; 2
» Fine-grained adaptation using structural embedding of distributions > p=q it and only i dk (Pv q) =0 (In practice, dk (Pv q) < 5)

> max d? (p, q) o, > < min Type Il Error (d? (p, q) < € when p # q)
c

Fine-tune

Deep Learning for Domain Adaptation

» None or very limited supervision in the target task (new domain) Learning CNN

(Fel Fel et al 2012) (Jia et al. 2014) (Saenko et al. 2010)

- larget classifier cannot be reliably trained due to over fitting Linear-Time Algorithm of MK-MMD (Streaming Algorithm)
» Fine-tuning is impossible as it requires substantial supervision O(r2): o2 E k(xS E o (xt x OE... k(x5 xt
» Leverage supervision (same categories) from related source task (77): dic (P, @) = Bxoxsk (X%, X7) 4 Btk (X7, X7) = 2Btk (X%, X) Results and Discussion
Y. 2 N \Ns/2 . . . _
» Deep networks can learn more transferable features for adaptation O(n)- dk (Pa CI) — 2/21 8k (Z,-) — linear-time unbiased estimate
» Transferability of features decreases as the task discrepancy increases » Quad-tuple z; AN (XS X5 Xé- 1 XS) Learn transferable features by deep adaptation and optimal matching
. . . / Y / / Y / .
» Hard to find big source task for learning deep features from scratch s g (2)) 2 k(xS x5) + k(xh X)) — k(xS 1 xE) — k(xg Xt ) » Deep adaptation of multiple domain-specific layers (DAN)
. . : / .
» Fine-tune from deep networks pre-trained on unrelated big dataset SCD. f . = é Id ) = (’j / | _’ h’ / h h X I‘Il vs. shallow adaptation of one hard-to-tweak layer (DDC)
» Transferring features from distant tasks is better than random features or each layer £ and each quad-tuple z ( 2i—1> 2i—1> )
5 » [wo samples can be matched better by MIK-MMD vs. SK-MMD
S— Fmetunm — Ve = 0J (z)) Y Ek (Zi) (4) » Semi-supervised adaptation: source vs. target supervision?
e I 00¢ 00" » Limited target supervision is prone to over-fitting the target task
o e Adaptation II qoaneed » Source supervision can provide strong but inaccurate inductive bias
Learning Kernel » Via source inductive bias, target supervision is much more powerful
: » Two-sample matching is more effective for bridging dissimilar tasks
Deep Adaptation Network (DAN _
P P ( ) Learning optimal kernel k = >"" . B,k, by minimizing Type Il error Paradigm Method A —-W D —-W W — D Average
Key Assumptions (AIexNet) Max dk (D€ DE) Uk | (5) Un— DDC 50.44+-0.8 92.5+0.3 91.7+0.8 31.2
» Conv-layers learn general features: safely transferable kek , supervised DAN 66.0+ 0.4 93.5+0.2 95.3+0.3 84.9
» Safely freeze convl-conv3 & fine-tune conv4-conv5 where O/% — Ezglg (z) — [E.gk (z)]” is the estimation variance. Semi- DDC 84.1+06 954404 96.3+0.3 91.9
» FC-layers fit domain-specific variations: NO| transferable Quadratic Program (QP), scaling linearly to sample size: O(m*n + m>) Supervised DAN 85.7+0.3 97.2+0.2 96.4+0.2 93.1
» Deeply adapt fc6-fc8 using optimized two-sample matching _ -
_min (3 (Q + el) 3, (6) - :
6 learn O learn O learn O learn d /6:1’/620 Emp|r|ca| AnaIyS|S
ol [0 [0 [O] [O] |O : AT A where d = (di, db, ..., d,)', and each d, is MMD using base kernel k,,.
Ol 10| O], 1O|u||O]um O How generallzatlon performance relates to two- sample discrepancy?’
Ol >t > TS @& »-d tt”: Theorem (Adaptation Bound) > a’A on CNN & DAN features is larger than dA on Raw features
O ¢ * * * * outpu » Deep features are salient for both category & domain discrimination
o| [O] [O] [O] [O] |© O_) 4 9 Let 0 € H be a hypothesis, €5(0) and €;(0) be the expected risks of » d4 on DAN feature is much smaller than d4 on CNN feature
8input Qconvl BconvZ‘EconvS 80011\/480011\/5 C fc6 C fc7 C fc8 '::‘ source and target reSpeCtive/_)/, then > Domaln adaptatlon can be bOOSted by m|n|m|Z|ng domaln dlscrepancy
Deep adaptation: match distributions in multi-layers, including output e:(0) < es(0) + 2d,(p, q)+ C, (7) T .2 | 1 . |1 7 2 S *
Optimal matching: maximize two-sample test power by multi-kernels where C is a constant for the complexity of hypothesis space and the L ) //,\_\_\_
risk of an ideal hypothesis for both domains. E I e A I R D I e
min max — J (0 v+ A a’k Dé Dg 0 k , (1) _ _ L o e e e e e oE L
AcO kek n, Z i ;1 VVC-Dimension of neural nets with linear-threshold gates O (W log W). () CNN on Source (b)DDC on Target (c)DAN on Target  (d) A-distance () Accuracy vs. A
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