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Summary

▶ A deep adaptation network for learning transferable features
▶ Two important improvements:

▶ Deep adaptation of multiple task-specific layers (including output)
▶ Optimal adaptation using multiple kernel two-sample matching

▶ A brief analysis of learning bound for the proposed deep network

▶ Outlook
▶ Principled way of deciding the boundary of generality and specificity
▶ Deeper adaptation of convolutional layers to enhance transferability
▶ Fine-grained adaptation using structural embedding of distributions

Deep Learning for Domain Adaptation

▶ None or very limited supervision in the target task (new domain)
▶ Target classifier cannot be reliably trained due to over-fitting
▶ Fine-tuning is impossible as it requires substantial supervision

▶ Leverage supervision (same categories) from related source task
▶ Deep networks can learn more transferable features for adaptation
▶ Transferability of features decreases as the task discrepancy increases

▶ Hard to find big source task for learning deep features from scratch
▶ Fine-tune from deep networks pre-trained on unrelated big dataset
▶ Transferring features from distant tasks is better than random features
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Key Assumptions (AlexNet)
▶ Conv-layers learn general features: safely transferable

▶ Safely freeze conv1-conv3 & fine-tune conv4-conv5

▶ FC-layers fit domain-specific variations: NOT transferable
▶ Deeply adapt fc6-fc8 using optimized two-sample matching
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Deep adaptation: match distributions in multi-layers, including output
Optimal matching: maximize two-sample test power by multi-kernels
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Multiple Kernel Maximum Mean Discrepancy (MK-MMD)

≜ RKHS distance between kernel embeddings of distributions p and q
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Two-Sample Test (Gretton et al. 2012)
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Learning CNN

Linear-Time Algorithm of MK-MMD (Streaming Algorithm)
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Learning Kernel

Learning optimal kernel k =
∑m

u=1 βuku by minimizing Type II error
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where σ2
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2 is the estimation variance.
Quadratic Program (QP), scaling linearly to sample size: O(m2n+m3)

min
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βT (Q + εI)β, (6)

where d = (d1, d2, . . . , dm)
T, and each du is MMD using base kernel ku.

Theorem (Adaptation Bound)

Let θ ∈ H be a hypothesis, ϵs(θ) and ϵt(θ) be the expected risks of
source and target respectively, then

ϵt(θ) ⩽ ϵs(θ) + 2dk(p, q) + C , (7)

where C is a constant for the complexity of hypothesis space and the
risk of an ideal hypothesis for both domains.

VC-Dimension of neural nets with linear-threshold gates O (W logW ).

Experiment Setup

▶ Datasets: pre-trained on ImageNet, fined-tuned on Office&Caltech
▶ Tasks: 12 adaptation tasks → An unbiased look at dataset bias
▶ Baselines: TCA, GFK, CNN, LapCNN, DDC (Tzeng et al. 2014)
▶ Protocols: unsupervised vs semi-supervised, full-set vs sub-sample
▶ Parameter selection: cross-validation by jointly assessing

▶ validation errors of source classifier and two-sample classifier (MK-MMD)
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(Fei-Fei et al. 2012) (Jia et al. 2014) (Saenko et al. 2010)

Results and Discussion

Learn transferable features by deep adaptation and optimal matching
▶ Deep adaptation of multiple domain-specific layers (DAN)
vs. shallow adaptation of one hard-to-tweak layer (DDC)

▶ Two samples can be matched better by MK-MMD vs. SK-MMD
▶ Semi-supervised adaptation: source vs. target supervision?

▶ Limited target supervision is prone to over-fitting the target task
▶ Source supervision can provide strong but inaccurate inductive bias
▶ Via source inductive bias, target supervision is much more powerful
▶ Two-sample matching is more effective for bridging dissimilar tasks

Paradigm Method A → W D → W W → D Average
Un-

supervised
DDC 59.4±0.8 92.5±0.3 91.7±0.8 81.2
DAN 66.0± 0.4 93.5±0.2 95.3±0.3 84.9

Semi-
Supervised

DDC 84.1±0.6 95.4±0.4 96.3±0.3 91.9
DAN 85.7±0.3 97.2±0.2 96.4±0.2 93.1

Empirical Analysis

How generalization performance relates to two-sample discrepancy?
▶ d̂A on CNN & DAN features is larger than d̂A on Raw features

▶ Deep features are salient for both category & domain discrimination

▶ d̂A on DAN feature is much smaller than d̂A on CNN feature
▶ Domain adaptation can be boosted by minimizing domain discrepancy
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(c)DAN on Target
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