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ABSTRACT

Cross-domain object detection is more challenging than object classification since
multiple objects exist in an image and the location of each object is unknown in
the unlabeled target domain. As a result, when we adapt features of different ob-
jects to enhance the transferability of the detector, the features of the foreground
and the background are easy to be confused, which may hurt the discriminability
of the detector. Besides, previous methods focused on category adaptation but ig-
nored another important part for object detection, i.e., the adaptation on bounding
box regression. To this end, we propose D-adapt, namely Decoupled Adaptation,
to decouple the adversarial adaptation and the training of the detector. Besides,
we introduce a bounding box adaptor to improve the localization performance.
Experiments show that D-adapt achieves state-of-the-art results on four cross-
domain object detection tasks and yields 17% and 21% relative improvement on
benchmark datasets Clipart1k and Comic2k in particular.

1 INTRODUCTION

The object detection task has aroused great interest due to its wide applications. In the past few years,
the development of deep neural networks has boosted the performance of object detectors [33; 15;
41]. While these detectors have achieved excellent performance on the benchmark datasets [11; 31],
object detection in the real world still faces challenges from the large variance in viewpoints, object
appearance, backgrounds, illumination, image quality, etc. Such domain shifts have been observed
to cause significant performance drop [8]. Thus, some work uses domain adaptation [39] to transfer
a detector from a source domain, where sufficient training data is available, to a target domain where
only unlabeled data is available [8; 43]. This technique successfully improves the performance of the
detector on the target domain. However, the improvement of domain adaptation in object detection
remains relatively mild compared with that in object classification.

The inherent challenges come from three aspects. Data challenge: what to adapt in the object detec-
tion task is unknown. Instance feature adaptation in the object level (Figure 1(a)) might confuse the
features of the foreground and the background since the generated proposals may not be true objects
and many true objects might be missing (Figure 5). Global feature adaptation in the image level
(Figure 1(b)) is likely to mix up features of different objects since each input image of detection
has multiple objects. Local feature adaptation in the pixel level (Figure 1(c)) can alleviate domain
shift when the shift is primarily low-level, yet it will struggle when the domains are different at
the semantic level. Architecture challenge: while the above adaptation methods introduce domain
discriminators and gradient reverse layers [12] into the detector architecture to encourage domain-
invariant features, the discriminability of features might get deteriorated [6; 5], which will greatly
influence the localization and the classification of the detectors. Besides, where to place these mod-
ules in the detection architecture has a great impact on the final performance but is a little tricky.
Therefore, the scalability of these methods to different detection architectures is not so satisfactory.
Task challenge: object detection is a multi-task learning problem, consisting of both classification
and localization. Yet previous adaptation algorithms mainly explored the category adaptation, and
it’s still difficult to obtain an adaptation model suitable for different tasks at the same time.

To overcome these challenges, we propose a general framework – D-adapt, namely Decoupled
Adaptation. Since adversarial alignment directly on the features of the detector might hurt its dis-
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Figure 1: Comparisons among techniques. Most previous methods can be categorized into instance
adaptation [8], global adaptation [58], or local adaptation [43], which perform adaptation on the
features of the detector. In decoupled adaptation, the adaptors are decoupled from the detector, and
different adaptors are also decoupled. Decouple means that different parts have independent model
parameters, independent input data distributions and independent training losses. Different parts are
coordinated into some relationships through data rather than gradients, e.g., different adaptors form
a cascading relationship while the detector and the adaptors form a self-feedback relationship.

criminability (architecture challenge), we decouple the adversarial adaptation from the training of
the detector by introducing a parameter-independent category adaptor (see Figure 1(d)). To tackle
the task challenge, we introduce another bounding box adaptor that’s decoupled from both the de-
tector and the category adaptor. To tackle the data challenge, we propose to adjust the object-level
data distribution for specific adaptation tasks. For example, in the category adaptation step, we en-
courage the input proposals to have IoU1 close to 0 or 1 to better satisfy the low-density separation
assumption, while in the bounding box adaptation step, we encourage the input proposals to have
IoU between 0.5 and 1 to ease the optimization of the bounding box localization task.

The contributions of this work are summarized as three-fold. (1) We introduce D-adapt framework
for cross-domain object detection, which is general for both two-stage and single-stage detectors.
(2) We propose an effective method to adapt the bounding box localization task, which is ignored
by existing methods but is crucial for achieving superior final performance. (3) We conduct exten-
sive experiments and validate that our method achieves state-of-the-art performance on four object
detection tasks, and yields 17% and 21% relative improvement on Clipart1k and Comic2k.

2 RELATED WORK
Generic domain adaptation for classification. Domain adaptation is proposed to overcome the
distribution shift across domains. In the classification setting, most of the domain adaptation meth-
ods are based on Moment Matching or Adversarial Adaptation. Moment Matching methods [50; 36]
align distributions by minimizing the distribution discrepancy in the feature space. Taking the same
spirit as Generative Adversarial Networks [16], Adversarial Adaptation [12; 37] introduces a domain
discriminator to distinguish the source from the target, then the feature extractor is encouraged to
fool the discriminator and learn domain invariant features. However, directly applying these methods
to object detection yields an unsatisfactory effect. The difficulty is that the image of object detec-
tion usually contains multiple objects, thus the features of an image can have complex multimodal
structures [20; 58; 5], making the image-level feature alignment problematic [58; 20].
Generic domain adaptation for regression. Most domain adaptation methods designed for clas-
sification do not work well on regression tasks since the regression space is continuous with no
clear decision boundary [22]. Some specific regression algorithms are proposed, including impor-
tance weighting [54] or learning invariant representations [40; 38]. RSD [7] defines a geometrical
distance for learning transferable representations and disparity discrepancy [57] proposes an upper
bound for the distribution distance in the regression problems. Yet previous methods are mainly
tested on simple tasks while this paper extends domain adaptation to the object localization tasks.
Domain adaptation for object detection. DA-Faster [8] performs feature alignment at both
image-level and instance-level. SWDA [43] proposes that strong alignment of the local features
is more effective than the strong alignment of the global features. Hsu et al. [20] carries out center-

1The Intersection-over-Union between the proposals and the ground-truth instance.
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aware alignment by paying more attention to foreground pixels. HTCN [5] calibrates the transfer-
ability of feature representations hierarchically. Zheng et al. [59] proposes to extract foreground
regions and adopts coarse-to-fine feature adaptation. ATF [19] introduces an asymmetric tri-way
approach to account for the differences in labeling statistics between domains. CRDA [53] and
MCAR [58] use multi-label classification as an auxiliary task to regularize the features. However,
although the auxiliary task of outputting domain-invariant features to fool a domain discriminator
in most aforementioned methods can improve the transferability, it also impairs the discriminability
of the detector. In contrast, we decouple the adversarial adaptation and the training of the detec-
tor, thus the adaptors could specialize in transfer between domains, and the detector could focus on
improving the discriminability while enjoying the transferability brought by the adaptors.
Self-training with pseudo labels. Pseudo-labeling [30], which leverages the model itself to ob-
tain labels on unlabeled data, is widely used in self-training. To generate reliable pseudo labels,
temporal ensembling [29] maintains an exponential moving average prediction for each sample,
while the mean-teacher [49] averages model weights at different training iterations to get a teacher
model. Deep mutual learning [56] trains a pool of student models with supervisions from each other.
FixMatch [47] uses the model’s predictions on weakly-augmented images to generate pseudo-labels
for the strongly-augmented ones. Unbiased Teacher [35] introduces the teacher-student paradigm
to Semi-Supervised Object Detection (SS-OD). When some image-level labels exist, the perfor-
mance can be further improved by encoding correlations between coarse-grained and fine-grained
classes [55], employing noise-tolerant training strategies [13], or learning a mapping from weakly-
supervised to fully-supervised detectors [24] in SS-OD. Recent works [21; 25; 26] utilize self-
training in cross-domain object detection and take the most confident predictions as pseudo labels.
MTOR [3] uses the mean teacher framework and UMT [10] adopts distillation and CycleGAN [60]
in self-training. However, self-training suffers from the problem of confirmation bias [1; 4]: the
performance of the student will be limited by that of the teacher. Although pseudo labels are also
used in our proposed D-adapt, they are generated from adaptors that have independent parameters
and different tasks from the detector, thereby alleviating the confirmation bias of the overly tight
relationship in self-training.

3 PROPOSED METHOD

In supervised object detection, we have a labeled source domain Ds = {(Xi
s,B

i
s,Y

i
s)}

ns
i=1, where

Xi
s is the image, Bi

s is the bounding box coordinates, and Yi
s is the categories. The detector Gdet

is trained with Ldet
s , which consists of four losses in Faster RCNN [42]: the RPN classification loss

Lrpn
cls , the RPN regression loss Lrpn

reg , the RoI classification loss Lroi
cls and the RoI regression loss Lroi

reg,

Ldet
s = E(Xs,Bs,Ys)∈Ds

Lrpn
cls + Lrpn

reg + Lroi
cls + Lroi

reg. (1)

In cross-domain object detection, there exists another unlabeled target domain Dt = {Xi
t}

nt
i=1 that

follows different distributions from Ds. The objective of Gdet is to improve the performance on Dt.

3.1 D-ADAPT FRAMEWORK

To deal with the architecture challenge mentioned in Section 1, we propose the D-adapt framework,
which has three steps: (1) decouple the original cross-domain detection problem into several sub-
problems (2) design adaptors to solve each sub-problem (3) coordinate the relationships between
different adaptors and the detector.

Since adaptation might hurt the discriminability of the detector, we decouple the category adaptation
from the training of the detector by introducing a parameter-independent category adaptor (see Fig-
ure 1(d)). The adaptation is only performed on the features of the category adaptor, thus will not hurt
the detector’s ability to locate objects. To fill the blank of regression domain adaptation in object
detection, we need to perform adaptation on the bounding box regression. Yet feature visualization
in Figure 6(c) reveals that features that contain both category and location information do not have
an obvious cluster structure, and alignment might hurt its discriminability. Besides, the common
category adaptation methods are also not effective on regression tasks [22], thus we decouple cate-
gory adaptation and the bounding box adaptation to avoid their interfering with each other. Section
3.2 and 3.3 will introduce the design of category adaptor and box adaptor in details. In this section,
we will assume that such two adaptors are already obtained.
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To coordinate the adaptation on different tasks, we maintain a cascading relationship between the
adaptors. In the cascading structure, the later adaptors can utilize the information obtained by the
previous adaptors for better adaptation, e.g. in the box adaptation step, the category adaptor will se-
lect foreground proposals to facilitate the training of the box adaptor. Compared with the multi-task
learning relationship where we need to balance the weights of different adaptation losses carefully,
the cascade relationship greatly reduces the difficulty of hyper-parameter selection since each adap-
tor has only one adaptation loss. Since the adaptors are specifically designed for cross-domain tasks,
their predictions on the target domain can serve as pseudo labels for the detector. On the other hand,
the detector generates proposals to train the adaptors and higher-quality proposals can improve the
adaptation performance (see Table 5 for details). And this enables the self-feedback relationship
between the detector and the adaptors.

For a good initialization of this self-feedback loop, we first pre-train the detector Gdet on the source
domain with Ldet

s . Using the pre-trained Gdet, we can derive two new data distributions, the source
proposal distribution Dprop

s and the target proposal distribution Dprop
t . Each proposal consists of a

crop of the image x2, its corresponding bounding box bdet, predicted category ydet and the class
confidence cdet. We can annotate each source-domain proposal xs ∈ Dprop

s with a ground truth
bounding box bgt

s and category label ygt
s , similar to labeling each RoI in Fast RCNN [14], and then

use these labels to train the adaptors. In turn, for each target proposal xt ∈ Dprop
t , adaptors will

provide category pseudo label ycls
t and box pseudo label breg

t to train the RoI heads,

Ldet
t = E(Xt,bdet

t ,ycls
t ,breg

t )∈Dprop
t
Lroi

cls(Xt,b
det
t ,ycls

t ) + Lroi
cls(Xt,b

reg
t ,ycls

t )

+Ifg(y
cls
t ) · Lroi

reg(Xt,b
det
t ,breg

t ),
(2)

Algorithm 1: D-adapt Training Pipeline.
input : Source domainDs and target domainDt,

number of iterations T
output: Cross-domain object detector Gdet

initialize the object detector Gdet by optimizing with Ldet
s ;

for t← 1 to T do
generate proposalsDprop

s andDprop
t for each sample

inDs andDt by Gdet;
for each mini-batch inDprop

s andDprop
t do

train the category adaptor Gcls;
end
generate category label for each proposal inDprop

t ;
generate foreground proposalsDfg

s andDfg
t

fromDprop
s andDprop

t ;
for each mini-batch inDfg

s andDfg
t do

train the bounding box adaptor Greg;
end
generate bounding box label for each proposal inDfg

t ;
train the object detector Gdet by optimizing with Ldet

t ;
end

where Ifg is a function that indicates whether it is
a foreground class. Note that regression loss is ac-
tivated only for foreground anchors. After obtain-
ing a better detector by optimizing Equation 2, we
can generate higher-quality proposals, which fa-
cilitate better category adaptation and bounding
box adaptation. This process can iterate multiple
times and the detailed optimization procedures
are summarized in Algorithm 1.

Note that our D-adapt framework does not intro-
duce any computational overhead in the inference
phase, since the adaptors are independent of the
detector and can be removed during detection.
Also, D-adapt does not depend on a specific de-
tector, thus the detector can be replaced by SSD
[34], RetinaNet [32], or other detectors.

3.2 CATEGORY ADAPTATION

The goal of category adaptation is to use labeled source-domain proposals (xs,y
gt
s ) ∈ Dprop

s to ob-
tain a relatively accurate classification ycls

t of the unlabeled target-domain proposals xt ∈ Dprop
t .

Some generic adaptation methods, such as DANN [12], can be adopted. DANN introduces a do-
main discriminator to distinguish the source from the target, then the feature extractor tries to learn
domain-invariant representations to fool the discriminator, which will enlarge the decision bound-
aries between classes on the unlabeled target domain. However, the above adversarial alignment
might fail due to the data challenge – the input data distribution doesn’t satisfy the low-density sep-
aration assumption well, i.e., the Intersection-over-Union of a proposal and a foreground instance
may be any value between 0 and 1 (see Figure 2(a)) and explicit task-specific boundaries between
classes hardly exist, which will impede the adversarial alignment [22]. Recall that in standard object
detection, proposals with IoU between 0.3 and 0.7 will be removed to discretize the input space
and ease the optimization of the classification. Yet it can hardly be used in the domain adaptation
problem since we cannot obtain ground truth IoU for target proposals.

2We use uppercase letters to represent the whole image, lowercase letters to represent an instance of object.
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Figure 2: Category adaptation (best viewed in color). (a) The IoU distribution of the proposals from
Foggy Cityscapes. When we increase the confidence threshold from 0 to 0.9, undefined proposals
(proposals with IoU between 0.3 and 0.7) will decrease. (b) Proposals with lower confidence will
be assigned a lower weight in the adaptation. (c) The discriminator D is trained to separate the
source-domain proposals from the target-domain proposals for each class independently, while the
feature extractor F cls is encouraged to fool D.

To overcome the data challenge, we use the confidence of each proposal to discretize the input space,
i.e., when a proposal has a high confidence cdet being the foreground or background, it should have
a higher weight w(cdet) in the adaptation, and vice versa (see Figure 2(b)). This will reduce the
participation of proposals that are neither foreground nor background and improve the discreteness
of the input space in the sense of probability. Then the objective of the discriminator D is,

max
D
Lcls

adv = Exs∼Dprop
s
w(cs) log[D(fs,gs)] + Ext∼Dprop

t
w(ct) log[1−D(ft,gt)], (3)

where both the feature representation f = F cls(x) and the category prediction g = Gcls(f) are
fed into the domain discriminator D (see Figure 2(c)). This will encourage features aligned in a
conditional way [37], and thus avoid that most target proposals aligned to the dominant category on
the source domain. The objective of the feature extractor F cls is to separate different categories on
the source domain and learn domain-invariant features to fool the discriminator,

min
F cls,Gcls

E(xs,y
gt
s )∼Dprop

s
LCE(G

cls(fs),y
gt
s ) + λLcls

adv, (4)

where LCE is the cross-entropy loss, λ is the trade-off between source risk and domain adversarial
loss. After obtaining the adapted classifier, we can generate category pseudo label ycls

t = Gcls ◦
F cls(xt) for each proposal xt ∈ Dprop

t .

3.3 BOUNDING BOX ADAPTATION

The objective of box adaptation is to utilize labeled source-domain foreground proposals (xs,b
gt
s ) ∈

Dfg
s to obtain bounding box labels breg

t of the unlabeled target-domain proposals xt ∈ Dfg
t . Recall

that in object detection, regression loss is activated only for foreground anchor and is disabled oth-
erwise [14], thus we only adapt the foreground proposals when training the bounding box regressor.
Since the ground truth labels of target-domain proposals are unknown, we use the prediction ob-
tained in the category adaptation step, i.e. Dfg

t = {(xt,y
cls
t ) ∈ Dprop

t |Ifg(y
cls
t )}.

Following RCNN [15], we adopt a class-specific bounding-box regressor, which predicts the bound-
ing box regression offsets, tk = (tkx, t

k
y , t

k
w, t

k
h) for each of the K foreground classes, indexed by k.

On the source domain, we have the ground truth category and bounding box label for each proposal,
thus we use the smooth L1 loss to train the regressor,

min
F reg,Greg

Lreg
s = E(xs,y

gt
s ,b

gt
s ,bdet

s )∼Dfg
s

∑
i∈{x,y,w,h}

smoothL1
(tui − vi), (5)

where t = Greg ◦ F reg(xs) is the regression prediction, u = ygt
s is ground truth category, v is

the ground truth bounding box offsets calculated from bgt
s and bdet

s . However, it’s hard to obtain a
satisfactory regressor with Lreg

s on the target domain due to the domain shift.

Inspired by the lastest theory [57], we propose an IoU disparity discrepancy method. As shown
in Figure 3(a), we train a feature generator network F reg which takes proposal inputs, and two
regressor networks Greg and Greg

adv which take features from F reg. The objective of the adversarial
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Figure 3: Bounding box adaptation (best viewed in color). Box adaptor has three parts: feature
generator F reg, regressor Greg and adversarial regressor Greg

adv . Greg
adv learns to maximize the target

disparity by moving two predicted boxes far from each other while F reg learns to minimize the target
disparity by making two predicted boxes overlap as much as possible.

regressor network Greg
adv is to maximize its disparity with the main regressor on the target domain

while minimizing the disparity on the source domain to measure the discrepancy across domains.
Then the objective of the adversarial regressor is

max
Greg

adv

Lreg
adv =E(xt,ycls

t )∼Dfg
t

smoothL1
(Greg

adv ◦ F
reg(xt)

ycls
t , Greg ◦ F reg(xt)

ycls
t )

−E(xs,y
gt
s )∼Dfg

s
smoothL1(G

reg
adv ◦ F

reg(xs)
ygt
s , Greg ◦ F reg(xs)

ygt
s ).

(6)

Note that smoothL1
on the source domain is only defined on the box corresponding to the ground

truth category ygt
s and that on the target domain is only defined on the box associated with the pre-

dicted category ycls
t . Equation 6 guides the adversarial regressor to predict correctly on the source

domain while making as many mistakes as possible on the target domain (Figure 3(b)). Then the
feature extractor F reg is encouraged to output domain-invariant features to decrease domain discrep-
ancy,

min
F reg
Lreg
s + ηLreg

adv, (7)

where η is the trade-off between source risk and adversarial loss. After obtaining the adapted re-
gressor, we can generate box pseudo label breg

t = Greg ◦ F reg(xt) for each proposal xt ∈ Dfg
t .

4 EXPERIMENTS

4.1 DATASETS

Following six object detection datasets are used: Pascal VOC [11], Clipart [21], Comic [21], Sim10k
[23], Cityscapes [9] and FoggyCityscapes [44]. Pascal VOC contains 20 categories of common real-
world objects and 16, 551 images. Clipart contains 1k images and shares 20 categories with Pascal
VOC. Comic2k contains 1k training images and 1k test images, sharing 6 categories with Pascal
VOC. Sim10k has 10, 000 images with 58, 701 bounding boxes of car categories, rendered by the
gaming engine Grand Theft Auto. Both Cityscapes and FoggyCityscapes have 2975 training images
and 500 validation images with 8 object categories. Following [43], we evaluate the domain adap-
tation performance of different methods on the following four domain adaptation tasks, VOC-to-
Clipart, VOC-to-Comic2k, Sim10k-to-Cityscapes, Cityscapes-to-FoggyCityscapes, and report the
mean average precision (mAP) with a threshold of 0.5.

4.2 IMPLEMENTATION DETAILS

Stage 1: Source-domain pre-training. In the basic experiments, Faster-RCNN [42] with ResNet-
101 [17] or VGG-16 [46] as backbone is adopted and pre-trained the on the source domain with a
learning rate of 0.005 for 12k iterations.

Stage 2: Category adaptation. The category adaptor has the same backbone as the detector but a
simple classification head. It’s trained for 10k iterations using SGD optimizer with an initial learning
rate of 0.01, momentum 0.9, and a batch size of 32 for each domain. The discriminator D is a three-
layer fully connected networks following DANN [12]. λ is kept 1 for all experiments. w(c) is 1
when c > 0.5 and 0 otherwise.
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Table 1: Results from PASCAL VOC to Clipart (ResNet101).
aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP

Source Only 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8
DA-Faster [8] 15.0 34.6 12.4 11.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8
BDC-Faster [43] 20.2 46.4 20.4 19.3 18.7 41.3 26.5 6.4 33.2 11.7 26.0 1.7 36.6 41.5 37.7 44.5 10.6 20.4 33.3 15.5 25.6
WST-BSR [27] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.0 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7
SWDA [43] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
MAF [18] 38.1 61.1 25.8 43.9 40.3 41.6 40.3 9.2 37.1 48.4 24.2 13.4 36.4 52.7 57.0 52.5 18.2 24.3 32.9 39.3 36.8
SCL [45] 44.7 50.0 33.6 27.4 42.2 55.6 38.3 19.2 37.9 69.0 30.1 26.3 34.4 67.3 61.0 47.9 21.4 26.3 50.1 47.3 41.5
CRDA [53] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3
HTCN [5] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
ATF [19] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1
Unbiased [35] 30.9 51.8 27.2 28.0 31.4 59.0 34.2 10.0 35.1 19.6 15.8 9.3 41.6 54.4 52.6 40.3 22.7 28.8 37.8 41.4 33.6
D-adapt 56.4 63.2 42.3 40.9 45.3 77.0 48.7 25.4 44.3 58.4 31.4 24.5 47.1 75.3 69.3 43.5 27.9 34.1 60.7 64.0 49.0
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Figure 4: Qualitative results on the target domain.

Stage 3: Bounding box adaptation. The box adaptor has the same backbone as the detector but a
simple regression head (two-layer convolutions networks). The training hyper-parameters (learning
rate, batch size, etc.) are the same as that of the category adaptor. η is kept 0.1 for all experiments.
The input of the bounding box adaptor (the crops of objects) will be twice larger than the original
predicted box, so that the bounding box adapter could access more location information.

Stage 4: Target-domain pseudo-label training. The detector is trained on the target domain for
4k iterations, with an initial learning rate of 2.5× 10−4 and reducing to 2.5× 10−5 exponentially.

The adaptors and the detector are trained in an alternative way for T = 3 iterations. We perform
all experiments on public datasets using a 1080Ti GPU. Code is available at https://github.
com/thuml/Decoupled-Adaptation-for-Cross-Domain-Object-Detection.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

Adaptation between dissimilar domains. We first show experiments on dissimilar domains using
the Pascal VOC Dataset as the source domain and Clipart as the target domain. Table 1 shows
that our proposed method outperforms the state-of-the-art method by 6.9 points on mAP. Figure 4
presents some qualitative results in the target domain. We also compare with Unbiased Teacher [35],
the state-of-the-art method in semi-supervised object detection, which generates pseudo labels on
the target domain from the teacher model. Due to the large domain shift, the prediction from the
teacher detection model is unreliable, thus it doesn’t do well. In contrast, our method alleviates the
confirmation bias problem by generating pseudo labels from different models (adaptors).

Table 2: Results from VOC to Comic
(ResNet-101). Oracle results are obtained by
training on labeled data in the target domain.

Method bike bird car cat dog prsn mAP

Source Only 32.5 12.0 21.1 10.4 12.4 29.9 19.7
DA-Faster [8] 31.1 10.3 15.5 12.4 19.3 39.0 21.2
SWDA [43] 36.4 21.8 29.8 15.1 23.5 49.6 29.4
MCAR [58] 47.9 20.5 37.4 20.6 24.5 53.6 33.5
Instance Adapt 39.5 17.7 26.5 27.3 22.4 48.4 30.3
Global Adapt 31.9 15.7 30.3 21.3 17.1 37.9 25.7
D-adapt 52.4 25.4 42.3 43.7 25.7 53.5 40.5

Oracle 42.2 35.3 31.9 46.2 40.9 70.9 44.6

We also use Comic2k as the target domain, which
has a very different style from Pascal VOC and a
lot of small objects. As shown in Table 2, both
image-level and instance-level feature adaptation
will fall into the dilemma of transferability and dis-
criminability, and do not work well on this difficult
dataset. In contrast, our method effectively solves
this problem by decoupling the adversarial adapta-
tion from the training of the detector and improves
mAP by 7.0 compared with the state-of-the-art.
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Adaptation from synthetic to real images. We use Sim10k as the source domain and Cityscapes
as the target domain. Following [43], we evaluate on the validation split of the Cityscapes and report
the mAP on car. Table 3 shows that our method surpasses all other methods.

Table 3: Sim10k to Cityscapes.
Method Backbone AP on Car

Source Only

VGG-16

34.6
DA-Faster [8] 38.9
BDC-Faster [43] 31.8
SWDA [43] 40.1
MAF [18] 41.1
Selective DA [61] 43.0
CDN [48] 49.3
HTCN* [5] 42.5
CFFA [59] 43.8
ATF [19] 42.8
CADA [20] 49.0
MeGA-CDA [52] 44.8
UMT* [10] 43.1
D-adapt 50.3

Oracle 69.7

Source-only
ResNet101

41.8
CADA [20] 51.2
D-adapt 51.9

Oracle 70.4

Table 4: Results from Cityscapes to Foggy Cityscapes.
Method Backbone prsn rider car truck bus train mcycle bcycle MAP

Source only

VGG-16

25.1 32.7 31.0 12.5 23.9 9.1 23.7 29.1 23.4
DA-Faster [8] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.7
BDC-Faster [43] 26.4 37.2 42.4 21.2 29.2 12.3 22.6 28.9 27.5
SW-DA [43] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3
Selective DA [61] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
DD-MRL* [28] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.5
CADA [20] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
CRDA [53] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
CFFA [59] 34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6
ATF [19] 34.6 47.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7
MCAR [58] 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8
HTCN* [20] 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
D-adapt 43.1 51.8 58.1 26.3 36.8 14.6 32.2 42.0 38.1
D-adapt* 44.9 54.2 61.7 25.6 36.3 24.7 37.3 46.1 41.3

Oracle 47.4 40.8 66.8 27.2 48.2 32.4 31.2 38.3 41.5

Source-only
ResNet101

33.8 34.8 39.6 18.6 27.9 6.3 18.2 25.5 25.6
CADA [20] 41.5 43.6 57.1 29.4 44.9 39.7 29.0 36.1 40.2
D-adapt 42.8 48.4 56.8 31.5 42.8 37.4 35.2 42.4 42.2
D-adapt* 40.8 47.1 57.5 33.5 46.9 41.4 33.6 43.0 43.0

Oracle 44.7 43.9 64.7 31.5 48.8 44.0 31.0 36.7 43.2

Adaptation between similar domains. We perform adaptation from Cityscapes to FoggyCi-
tyscape and report the results3 in Table 4. Note that since the two domains are relatively similar, the
performance of adaptation is already close to the oracle results.

4.4 ABLATION STUDIES

In this part, we will analyze both the performance of the detector and the adaptors. Denote nij be the
number of proposals of class i predicted as class j, ti be the total number of proposals of class i, and
N be the number of classes (including the background), then we use mIoUcls = 1

N

∑
i nii

ti+
∑

j nji−nii

to measure the overall performance of the category adaptor. We use the intersection-over-union
between the predicted bounding boxes and the ground truth boxes, i.e., mIoUreg, to measure the
performance of the bounding box adaptor. All ablations are performed on VOC→ Clipart and the
iteration T is kept 1 for a fair comparison.

Table 5: Effect of pro-
posals’ quality.
IoU threshold 0.05 0.3 0.5 0.7

mIoUcls 36.1 38.2 46.7 51.4

Ablation on the category adaptation. Table 6(a) show the effective-
ness of several specific designs mentioned in Section 3.2. Among them,
the weight mechanism has the greatest impact, indicating the necessity
of the low-density assumption in the adversarial adaptation. To verify
this, we assume that the ground truth IoU of each proposal is known,
and then we select the proposal with IoU greater than a certain threshold
when we train the category adaptor. Table 5 shows that as the IoU threshold of the foreground pro-
posals improves from 0.05 to 0.7, the accuracy of the category adaptor will increase from 36.1 to
51.4, which shows the importance of the low-density separation assumption.
Ablation on the bounding box adaptation. Table 6(b) illustrates that minimizing the disparity
discrepancy improves the performance of the box adaptor and bounding box adaptation improves
the performance of the detector in the target domain.
Ablation on the training strategy with pseudo-labels. In Equation 2, losses are only calculated
on the regions where the proposals are located, and those anchor areas overlapping with the propos-
als are ignored. Here, we compare this strategy with the common practice in self-training – filter
out bounding boxes with low confidence, then label each proposal that overlaps with these boxes.
Although the category labels of these bounding boxes are also generated from the category adaptor,
the accuracy of these generated proposals is low (see Table 6(c)). In contrast, our strategy is more
conservative and both the mIoUcls on the proposals and the final mAP of the detector are higher.

4.5 ANALYSIS

3* denotes this method utilizes CycleGAN to perform source-to-target translation.

8



Published as a conference paper at ICLR 2022

Table 6: Ablations on PASCAL VOC to Clipart. Note that no bounding box adaptation is adopted
in (a) and (c) for a fair comparison. (a) Category adaptation. w/o condition: use a class-independent
discriminator. w/o bg proposals: no background proposals added to source domain or target domain
or neither. w/o weight: remove the weight mechanism in Equation 3. w/o adaptor: remove the
category adaptation step and directly use the labels generated from detector on the target domain as
pseudo labels. (b) Spatial Adaptation. w/o DD: remove the disparity discrepancy in Equation 6. w/o
adaptor: remove the bounding box adaptation step and only trains the classification branch of the
detector. (c) Training strategy. In the standard training, if the confidence threshold increases, the
number of false negatives will increase, otherwise the number of false positives will increase.

(a) Category adaptation

metric ours w/o
condition

w/o bg proposals w/o
weight

w/o
adaptorsource 7 7 4

target 7 4 7

mIoUcls 38.2 36.9 - 36.6 33.6 25.1 17.2 12.6
mAP 43.5 41.7 - 41.7 38.8 36.5 33.3 28.0

(b) Spatial Adaptation

metric Ours w/o DD w/o adaptor

mIoUreg 0.631 0.598 0.531
mAP 45.0 44.4 43.5

(c) Training strategy

metric standard way ours

confidence
threshold 0.1 0.3 0.5 0.7 0.1

mIoUcls 17.2 17.6 17.1 16.3 38.2
mAP 38.9 37.3 35.9 34.4 43.5
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Figure 5: Error analysis.

Error Analysis. Figure 5 gives the percent of error of each model
on VOC→Clipart following [2]. The main errors in the target domain
come from: Miss (ground truth regarded as backgrounds) and Cls (clas-
sified incorrectly). Loc (classified correctly but localized incorrectly)
errors are slightly less, but still cannot be ignored especially after cate-
gory adaptation, which implies the necessity of box adaptation in object
detection. Category adaptation can effectively reduce the proportion
of Cls errors while increasing that of Loc errors, thus it is reasonable
to cascade the box adaptor after the category adaptor. Bounding box
adaptation can reduce the proportion of Loc errors, revealing its effectiveness.

Feature visualization. We visualize by t-SNE [51] in Figures 6(a)-6(b) the representations of task
VOC → Comic2k (6 classes) by category adaptor with λ = 0 and category adaptor with λ = 1.
The source and target are well aligned in the latter, which indicates that it learns domain-invariant
features. We also extract box features from the detector and get Figure 6(c)-6(d). We find that the
features of the detector do not have an obvious cluster structure, even on the source domain. The
reason is that the features of the detector contain both category information and location information.
Thus adversarial adaptation directly on the detector will hurt its discriminability, while our method
achieves better performance through decoupled adaptation.

(a) Adaptor (λ = 0) (b) Adaptor (λ = 1) (c) Baseline (mAP:19.7) (d) Ours (mAP:40.5)

Figure 6: T-SNE visualization of features. (a) and (b) are features from the category adaptor. (c) and
(d) are features from the Faster RCNN. (Orange: VOC; Blue: Comic2k).

5 DISCUSSION AND CONCLUSION

Our method achieved considerable improvement on several benchmark datasets for domain adapta-
tion. In actual deployment, the detection performance can be further boosted by employing stronger
adaptors without introducing any computational overhead since the adaptors can be removed dur-
ing inference. It is also possible to extend the D-adapt framework to other detection tasks, e.g.,
instance segmentation and keypoint detection, by cascading more specially designed adaptors. We
hope D-adapt will be useful for the wider application of detection tasks.
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A MORE EXPERIMENT RESULTS

Results on Other Architecture. As shown in Tables 7, our method also applies to the one-stage
detector RetinaNet [32] , which improves the mAP by 17.5 on VOC → Clipart. The proposed
D-adapt framework also surpasses both image-level1(b) and feature-level1(c) alignment as well as
their combination by a considerable margin.

Table 7: Results from PASCAL VOC to Clipart (RetinaNet, ResNet101).
Method aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP

Source Only 30.1 40.8 21.7 15.3 28.4 51.6 33.1 13.1 34.5 14.2 29.6 16.2 21.4 53.1 37.4 30.3 6.9 24.8 31.8 42.1 28.8
Global Adapt 33.2 43.4 23.8 24.5 43.4 54.9 36.5 6.5 36.0 19.1 26.4 13.0 23.6 49.4 52.6 39.8 5.8 27.6 39.1 54.1 32.6
Local Adapt 31.0 28.3 26.2 18.2 42.2 53.5 33.6 18.4 37.2 33.2 28.7 14.3 33.4 54.6 48.7 40.4 6.8 30.4 42.1 48.1 33.4
Global + Local 37.5 50.4 25.3 28.8 45.0 51.7 45.9 16.9 38.2 31.9 24.2 12.6 26.4 48.7 53.4 44.5 5.5 28.2 45.7 53.5 35.7
D-adapt 47.4 65.0 33.1 37.5 56.8 61.2 55.1 27.3 45.5 51.8 29.1 29.6 38.0 74.5 66.7 46.0 24.2 29.3 54.2 53.8 46.3

Results on VOC→WaterColor. As shown in Table 8, D-adapt also achieves strong performance
on WaterColor dataset.

Table 8: Results from VOC to WaterColor (ResNet-101).

Method bike bird car cat dog prsn mAP

Source Only 68.8 46.8 37.2 32.7 21.3 60.7 44.6
BDC-Faster [43] 68.6 48.3 47.2 26.5 21.7 60.5 45.5
DA-Faster [8] 75.2 40.6 48.0 31.5 20.6 60.0 46.0
WST-BSR [27] 75.6 45.8 49.3 34.1 30.3 64.1 49.9
MAF [18] 73.4 55.7 46.4 36.8 28.9 60.8 50.3
SWDA [43] 82.3 55.9 46.5 32.7 35.5 66.7 53.3
ATF [19] 78.8 59.9 47.9 41.0 34.8 66.9 54.9
SCL [45] 82.2 55.1 51.8 39.6 38.4 64.0 55.2
MCAR [58] 87.9 52.1 51.8 41.6 33.8 68.8 56.0
UMT* [10] 88.2 55.3 51.7 39.8 43.6 69.9 58.1
D-adapt 77.4 54.0 52.8 43.9 48.1 68.9 57.5

Oracle 48.5 54.7 41.3 36.2 52.6 74.6 51.3

Ablations on the decouple strategy. Further, we discuss whether the decoupling of different
adaptors is useful.

In our original implementation, the input distributions of different adaptors are completely different.
In the category adaptation step, we encourage the input proposals to have IoU close to 0 or 1 to better
satisfy the low-density separation assumption. In the bounding box adaptation step, we encourage
the input proposals to have IoU between 0.5 and 1 to ease the optimization of the bounding box
localization task.

If different adaptors are coupled, they must share the same input distribution. Table 9 shows that
only sharing the input distributions will greatly damage their respective performance. Note that
different adaptors still have independent architectures. And we can conclude that the decoupling of
different adaptors is quite crucial.

Table 9: Ablations on the decouple strategy on VOC→Clipart.

Input Distribution mIoUcls mIoUreg

all proposals w/o weight (both adaptors use the proposals directly output by the detector) 17.2 0.551
all proposals w/ weight (both adaptors use the proposals fed to the original category adaptor) 33.3 0.319
foreground proposals weight (both adaptors use the proposals fed to the original box adaptor) 24.7 0.631
Ours (different adaptors have different input data distributions) 33.3 0.631

Table 10: Ablations on the box adaptor when T varies.

Setting mAP (T=1) mAP (T=2) mAP (T=3)

without box adaptor 43.5 45.8 47.0
with box adaptor (ours) 45.0 47.7 49.1

14



Published as a conference paper at ICLR 2022

Ablation on bounding box adaptor. Table 10 shows that the gain brought by box adaptation is
consistent, for example when T = 3, it can still improve the mAP from 47.0 to 49.1.

B MORE VISUALIZATION RESULTS.

Figure 7-10 gives more qualitative results on Faster RCNN.
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Figure 7: Qualitative results on VOC→ Clipart.
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Figure 8: Qualitative results on VOC→ Comic.
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Figure 9: Qualitative results on Sim10k→ Cityscapes.
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Figure 10: Qualitative results on Cityscapes→ Foggy Cityscapes.
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