

Thirty-sixth Conference on Neural Information Processing Systems

Debiased Self-Training for Semi-Supervised Learning

Baixu Chen, Junguang Jiang, Ximei Wang, Pengfei Wan[§], Jianmin Wang, Mingsheng Long[⊠]

Baixu Chen

Junguang Jiang

Ximei Wang

Jianmin Wang Mingsheng Long

Semi-Supervised Learning (SSL)

> Aim to improve data efficiency of deep models

> Explore supervision from unlabeled data

Few Labeled Data \mathcal{L}

Numerous Unlabeled Data ${oldsymbol{\mathcal{U}}}$

Overview of SSL Methods

ALI

2017

Self-Training

Self-Supervised Learning

Adversarial Training

S4LSimCLRv2Self-Tuning, PAWS, CoMatch201920202021

VAT, VAdD

2018

Today's Focus

RAT

2020

Achieve remarkable performance through self-supervision Heavy computation & Hard to obtain task-specific supervision

SSL Methods

Generate fake samples or impose local smoothness Surpassed by recent methods

Utilize the pseudo labels generated by itself Suffer from confirmation bias

Overview of Self-Training Methods

Consistency Regularization

Bias Issue of Self-Training

Training instability

- ➢ Slow down convergence speed ⊗
- > Lead to catastrophic forgetting of pre-trained models 😣

Bias Issue of Self-Training

Matthew Effect

> Enlarges performance imbalance across classes 🛞

Top-1 Accuracy on 7 categories from CIFAR-100

Top-1 Accuracy on all classes from CIFAR-100

Previous Solutions to Self-Training Bias

Generate Higher Quality Pseudo Labels

FixMatch, UDA, FlexMatch ...

(1) Confidence Thresholds (Static or Dynamic)(2) Weak Data Augmentation

Data Flow of FixMatch

Relies on manual design of criteria to improve the quality of pseudo labels 😕

Previous Solutions to Self-Training Bias

Improve Tolerance to Inaccurate Pseudo Labels

Mean Teacher, MMT, Noisy Student...

Maintain Discrepancy Between Generation and Utilization of Pseudo Labels

The decision boundary still has the potential to be damaged by incorrect labels 😣

Definition of Bias

The **deviation** between the learned decision hyperplanes and the true decision hyperplanes

 $\bigcirc \triangle \square$ Different Classes $\bigcirc \triangle \square$ Unlabeled Data

True Hyperplane
 Learnt Hyperplane

Question

What is the cause of bias in self-training process?

Effect of Data Sampling

With fewer data, the distances between supporting data of each category and the true decision hyperplanes may vary

Top-1 Accuracy on 7 categories from CIFAR-100 with different labeled data sampling

Effect of Pre-Trained Representations

Different pre-trained models focus on different aspects of the data

Top-1 Accuracy on 7 categories from CIFAR-100 with different pre-trained models

Effect of Self-Training Algorithm

Training with pseudo labels aggressively in turn enlarges the self-training bias on some categories

 $\bigcirc \triangle \square$ Different Classes $\bigcirc \triangle \square$ Unlabeled Data

True Hyperplane Learnt Hyperplane

With biased learnt hyperplane, the model makes a mistake on data point

Effect of Self-Training Algorithm

Training with pseudo labels aggressively in turn enlarges the self-training bias on some categories

 $\bigcirc \triangle \square$ Different Classes $\bigcirc \triangle \square$ Unlabeled Data

True Hyperplane Learnt Hyperplane

The misclassified data point further pushes the learnt hyperplane far away

Effect of Self-Training Algorithm

Ultimately, the accuracy of some categories increases, while that of other categories may decrease to near zero

Top-1 Accuracy on 7 categories from CIFAR-100 with different training strategies

Decomposition of Bias in Self-Training

Data Bias

The bias inherent in semi-supervised learning tasks, such as data sampling and pre-trained representations

Training Bias

The bias **increment** brought by some unreasonable **training strategies**

How to Decrease Training Bias?

Decouple the generation and utilization of pseudo labels by introducing a complete parameter-independent pseudo head

How to Decrease Training Bias?

$$\min_{\psi,h,h_{\text{pseudo}}} L_{\mathcal{L}}(\psi,h) + \lambda L_{\mathcal{U}}(\psi,h_{\text{pseudo}},\hat{f}_{\psi,h})$$

Classifier head: > more sensitive to noisy data

Feature generator:
more parameters, data hungry,
better tolerance to noisy data

How to Decrease Data Bias?

Worst Case Estimation

(1) **Training bias** can be considered as the accumulation of data bias

How to Decrease Data Bias?

Worst Case Estimation

(1) **Training bias** can be considered as the accumulation of data bias

(2) The worst training bias that can be achieved is a good measure of data bias

How to Decrease Data Bias?

Estimate the Worst Training Bias

$$\max_{h'} L_{\mathcal{U}}(\psi, h', \hat{f}_{\psi, h}) - L_{\mathcal{L}}(\psi, h')$$

Introduce a worst case estimation head **h**', *which*

- Correctly classifies the labeled samples
- Deviates from the current hyperplanes as much as possible

How to Decrease Data Bias?

Decrease the Worst Training Bias

$$\min_{\psi} \max_{h'} L_{\mathcal{U}}(\psi, h', \hat{f}_{\psi, h}) - L_{\mathcal{L}}(\psi, h')$$

Encourage the features to be generated far away from the current hyperplanes

How to Decrease Data Bias?

Decrease the Worst Training Bias

$$\min_{\psi} \max_{h'} L_{\mathcal{U}}(\psi, h', \hat{f}_{\psi, h}) - L_{\mathcal{L}}(\psi, h')$$

Implementation

- ➢ We optimize ψ and h' with stochastic gradient descent alternatively
- The optimization can be viewed as an alternative form of GAN

Experiments: Standard SSL Benchmarks

Method	CIFAR-10	CIFAR-100	SVHN	STL-10	Avg
Psuedo Label [30]	25.4	12.6	25.3	25.3	22.2
VAT [34]	25.3	15.1	26.1	25.5	23.0
ALI [15]	25.9	12.4	28.5	24.1	22.7
RAT [52]	33.2	20.5	52.6	30.7	34.2
MixMatch [4]	52.6	32.4	57.5	45.1	46.9
UDA [59]	71.0	40.7	47.4	62.6	55.4
ReMixMatch [3]	80.9	55.7	96.6	64.0	74.3
Dash [61]	86.8	55.2	97.0	64.5	75.9
FixMatch [49]	87.2	50.6	96.5	67.1	75.4
DST (FixMatch)	89.3	56.1	96.7	71.0	78.3
FlexMatch [64]	94.7	59.5	89.6	71.3	78.8
DST (FlexMatch)	95.0	65.4	94.2	79.6	83.6

DST achieves new state-of-the-art Especially on the challenging tasks CIFAR-100 and STL10

Experiments: Standard SSL Benchmarks

Experiments: Standard SSL Benchmarks

Experiments: SSL with Supervised Pre-trained Models

		Caltech101	CIFAR-10	CIFAR-100	SUN397	DTD	Aircraft	CUB	Flowers	Pets	Cars	Food101	Average
	Baseline	81.4	65.2	48.2	39.9	47.7	25.4	46.5	85.2	78.1	33.3	33.8	53.2
	Pseudo Label [30]	86.3	83.3	54.7	41.0	50.2	27.2	54.3	92.3	87.8	41.4	38.0	59.7
	Π-Model [29]	83.5	73.1	49.2	39.7	50.3	24.3	47.1	90.7	82.2	30.9	33.9	55.0
	Mean Teacher [53]	83.7	82.1	56.0	37.9	51.6	30.7	49.6	91.0	82.8	39.1	40.3	58.6
	VAT [34]	84.1	72.2	48.8	39.5	50.6	25.9	48.1	89.4	81.8	32.4	36.7	55.4
g	ALI [15]	82.2	69.5	46.3	36.4	50.5	21.3	42.5	82.9	77.4	29.8	31.7	51.9
ise	RAT [52]	84.0	81.8	55.4	39.0	49.1	31.6	50.0	89.9	84.1	37.9	38.4	58.3
erv	MixMatch [4]	85.4	82.8	53.5	41.8	50.1	24.7	51.7	91.5	83.3	42.5	38.2	58.7
dn	UDA [59]	85.8	83.6	54.7	41.3	49.0	27.1	52.1	92.0	83.1	45.6	41.7	59.6
5	FixMatch [49]	86.3	84.6	53.1	41.3	48.6	25.2	52.3	93.2	83.7	46.4	37.1	59.3
	Self-Tuning [55]	87.2	<u>76.0</u>	57. 1	<u>41.8</u>	5 <u>0.</u> 7	35.2	<u>58</u> .9	92.6	<u>86.6</u>	5 <u>8.</u> 3	41 <u>.9</u>	6 <u>2.</u> 4
	FlexMatch [64]	87.1	89.0	63.4	48.3	52.5	34.0	54.9	94.5	88.3	57.5	49.5	65.4
	DebiasMatch [56]	88.6	91.0	65.7	46.6	52.4	37.5	58.6	95.6	86.4	60.5	53.5	66.9
	DST (FixMatch)	89.6	94.9	70.4	48.1	53.5	43.2	68.7	94.8	89.8	71.0	58.5	71.1
	DST (FlexMatch)	90.6	95.9	71.2	49.8	56.2	44.5	70.5	95.8	90.4	72.7	57.1	72.2

DST achieves the best performance on all datasets

Experiments: SSL with Unsupervised Pre-trained Models

	Baseline	79.5	66.6	46.5	38.1	47.9	28.7	37.5	87.7	60.0	38.1	32.9	51.2
	Pseudo Label [30]	86.2	70.8	49.8	38.6	50.0	26.6	41.8	93.0	68.4	37.3	32.8↓	54.1
	П-Model [29]	80.1	76.2	44.8	37.8	50.0	23.5	31.6	93.1	62.8	25.6	30.4↓	50.5
	Mean Teacher [53]	80.4	80.8	51.3	34.2	48.8	33.8	41.6	92.9	67.0	50.5	39.1	56.4
	VAT [34]	79.9	73.8	45.1	38.3	49.2	24.2	36.4	92.4	61.7	29.9	33.1	51.3
sed	ALI [15]	76.4	69.2	44.4	34.9	50.1	22.2	33.8	84.9	59.6	33.1	31.0	49.1
Vis	RAT [52]	80.9	79.5	52.4	37.0↓	50.4	30.1	40.7	91.8	70.5	47.9	35.6	56.1
per	MixMatch [4]	84.1	81.5	51.7	38.4	47.0	31.7	39.8	93.5	66.4	47.1	34.6	56.0
nsu	UDA [59]	85.0	87.4	53.6	42.3	46.2	35.7	41.4	94.1	69.3	51.5	39.3	58.7
Б	FixMatch [49]	83.1	82.2	51.4	39.2	43.9	30.1	36.8	94.3	65.7	48.6	36.8	55.6
	Self-Tuning [55]	81.6	63.6	47.8	<u>38.8</u>	4 <u>5</u> .5↓	31.4	41.6	91.0	66.9	<u>52.0</u>	34.0	<u>54.</u> 0
	FlexMatch [64]	86.4	96.7	60.2	45.3	53.9	42.0	49.2	95.8	72.9	69.0	37.5	64.4
	DebiasMatch [56]	86.4	96.3	66.3	44.5	53.9	44.8	51.2	95.4	70.9	72.5	53.6	66.9
	DST (FixMatch)	90.1	95.0	68.2	46.8	54.2	47.7	53.6	95.6	75.4	72.0	57.1	68.7
	DST (FlexMatch)	90.4	96.9	68.9	48.8	55.9	47.3	55.2	96.4	75.1	74.6	56.9	69.7

Again, DST achieves the best performance on all datasets

On average, DST surpasses FixMatch by over 15%

Experiments: Ablation Study

Method	Multiple Heads	Linear Pseudo Head	Nonlinear Pseudo Head	Worst Case Estimation	Supervised Pre-training	Unsupervised Pre-training
FixMatch					53.1	51.4
Mutual Learning	─				53.4	52.5
DST w/o worst	└ _ ✓				5 <u>8.2</u> _	<u> </u>
DST w/o worst	 				60.6	60.9
DST	✓		\checkmark	\checkmark	70.4	68.2

(1) Compared with Mutual Learning, the decoupled pseudo labeling in DST can better reduce training bias

Experiments: Ablation Study

Method	Multiple Heads	Linear Pseudo Head	Nonlinear Pseudo Head	Worst Case Estimation	Supervised Pre-training	Unsupervised Pre-training
FixMatch					53.1	51.4
Mutual Learning	✓				53.4	52.5
DST w/o worst	─	$\overline{\checkmark}$			58.2	59.0
DST w/o worst					60.6	<u> 60.9 </u>
DST					70.4	68.2

(1) Compared with Mutual Learning, the decoupled pseudo labeling in DST can better reduce training bias

(2) A nonlinear pseudo head is always better than a linear pseudo one. Possibly because it can reduce the degeneration of representation with biased pseudo labels

Experiments: Ablation Study

Method	Multiple Heads	Linear Pseudo Head	Nonlinear Pseudo Head	Worst Case Estimation	Supervised Pre-training	Unsupervised Pre-training
FixMatch					53.1	51.4
Mutual Learning	 ✓ 				53.4	52.5
DST w/o worst	✓	\checkmark			58.2	59.0
DST w/o worst	─				60.6	60.9
DST	└_✓		⁄		70.4	68.2

(1) Compared with Mutual Learning, the decoupled pseudo labeling in DST can better reduce training bias

(2) A nonlinear pseudo head is always better than a linear pseudo one. Possibly because it can reduce the degeneration of representation with biased pseudo labels

(3) The worst-case estimation of pseudo labeling improves the performance by large margins

Experiments: DST as a General Add-on

DST can be seamlessly incorporated into mainstream self-training methods to reduce bias and boost their performance

Open Source

₽ thuml / Debiased-Self-Trai	ining (Public)	🕅 🏹 Edit Pins 👻	Watch 3 • Y Fork 1 • Starre	d (12) 🔻
<> Code ⊙ Issues \$\$ Pull req	uests 🗄 Projects 🛱 Wiki 🛈 Security 🗠	Insights 🔞 Settings		
१ ° main → १ ° 1	I branch 🔿 0 tags	Go to file Add file * Code •	About 🕸	
🍓 thucbx99 Upda	ate README.md	ff1ae9e 16 days ago 🕚 7 commits	Training for Semi-Supervised Learning	
fig	Code Release	last month	1 2 arviv org/abs/2202 07136	
C README.md	Update README.md	16 days ago	o (semi-supervised-learning)	
E README.md	ed-Self-Training-for-Sem	i-Supervised-Learning	P ☐ Readme ☆ 12 stars ⊙ 3 watching ¥ 1 fork	
Code release of	f paper Debiased Self-Training for Semi-Supervised	Learning (NeurIPS 2022 Oral).		
Updates			Releases	
Introduction	n		No releases published	
Experiment	ts			
Contact			Packages	
Citation Acknowledge	gments		No packages published Publish your first package	
Updates				

https://github.com/thuml/Debiased-Self-Training

Complete benchmarks & datasets & scripts

Thank You!

cbx22@mails.tsinghua.edu.cn jjg20@mails.tsinghua.edu.cn

