
Cycle Self-Training for Domain Adaptation

Hong Liu
Dept of Electronic Engineering

Tsinghua University
hongliu9903@gmail.com

Jianmin Wang
School of Software, BNRist

Tsinghua University
jimwang@tsinghua.edu.cn

Mingsheng Long∗
School of Software, BNRist

Tsinghua University
mingsheng@tsinghua.edu.cn

Abstract

Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-
invariant representations to narrow the domain shift, which are empirically effective
but theoretically challenged by the hardness or impossibility theorems. Recently,
self-training has been gaining momentum in UDA, which exploits unlabeled target
data by training with target pseudo-labels. However, as corroborated in this work,
under distributional shift, the pseudo-labels can be unreliable in terms of their large
discrepancy from target ground truth. In this paper, we propose Cycle Self-Training
(CST), a principled self-training algorithm that explicitly enforces pseudo-labels to
generalize across domains. CST cycles between a forward step and a reverse step
until convergence. In the forward step, CST generates target pseudo-labels with
a source-trained classifier. In the reverse step, CST trains a target classifier using
target pseudo-labels, and then updates the shared representations to make the target
classifier perform well on the source data. We introduce the Tsallis entropy as a
confidence-friendly regularization to improve the quality of target pseudo-labels.
We analyze CST theoretically under realistic assumptions, and provide hard cases
where CST recovers target ground truth, while both invariant feature learning and
vanilla self-training fail. Empirical results indicate that CST significantly improves
over the state-of-the-arts on visual recognition and sentiment analysis benchmarks.

1 Introduction
Transferring knowledge from a source domain with rich supervision to an unlabeled target domain is
an important yet challenging problem. Since deep neural networks are known to be sensitive to subtle
change in underlying distributions [70], models trained on one labeled dataset often fail to generalize
to another unlabeled dataset [58, 1]. Unsupervised domain adaptation (UDA) addresses the challenge
of distributional shift by adapting the source model to the unlabeled target data [50, 43].

The mainstream paradigm for UDA is feature adaptation, a.k.a. domain alignment. By reducing the
distance of the source and target feature distributions, these methods learn invariant representations to
facilitate knowledge transfer between domains [34, 22, 36, 54, 37, 73], with successful applications in
various areas such as computer vision [63, 27, 77] and natural language processing [75, 49]. Despite
their popularity, the impossibility theories [6] uncovered intrinsic limitations of learning invariant
representations when it comes to label shift [74, 32] and shift in the support of domains [29].

Recently, self-training (a.k.a. pseudo-labeling) [21, 78, 30, 32, 47, 68] has been gaining momentum
as a promising alternative to feature adaptation. Originally tailored to semi-supervised learning,
self-training generates pseudo-labels of unlabeled data, and jointly trains the model with source labels
and target pseudo-labels [31, 39, 30]. However, the distributional shift in UDA makes pseudo-labeling
more difficult. Directly using all pseudo-labels is risky due to accumulated error and even trivial
solution [14]. Thus previous works tailor self-training to UDA by selecting trustworthy pseudo-labels.
Using confidence threshold or reweighting, recent works try to alleviate the negative effect of domain

∗Corresponding author: Mingsheng Long (mingsheng@tsinghua.edu.cn)

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

𝑄 = {𝑥𝑖
𝑡}

Classifier Shared
Features

Source
Classifier

Target Classifier

Target
Loss

Cycle
Source

Loss

Standard Self-Training Cycle Self-Training

ℎ𝜙 𝑔𝜃
ෝ𝑦𝑠

𝑦′ෝ𝑦𝑡

𝐿 𝑃(𝜃, 𝜙)

𝑙(𝑦′, ෝ𝑦𝑡)

𝑦𝑠𝑃 = {𝑥𝑖
𝑠, 𝑦𝑖

𝑠}

𝑄 = {𝑥𝑖
𝑡}

ℎ𝜙

𝑔𝜃𝑡 ෝ𝑦𝑠′

𝑦′ෝ𝑦𝑡

𝐿𝐶𝑆𝑇(𝜃𝑡, 𝜙)

𝑙(𝑦′, ෝ𝑦𝑡′)

𝑦𝑠

𝑃 = {𝑥𝑖
𝑠, 𝑦𝑖

𝑠} 𝑔𝜃𝑠

ෝ𝑦𝑡′

ෝ𝑦𝑠 𝐿 𝑃(𝜃𝑠, 𝜙)𝑦𝑠

Source
Loss

Source
Loss

Target
Loss

𝐿𝑆

𝐿𝑆

Features

Forward Update 𝜙 and 𝜃 Label
Sharpening

Forward Outer loop:
update 𝜙 and 𝜃𝑠

Label
Sharpening

Inner loop:
update 𝜃𝑡

𝐿𝑆 𝐿𝑆

Figure 1: Standard self-training vs. cycle self-training. In standard self-training, we generate target pseudo-
labels with a source model, and then train the model with both source ground-truths and target pseudo-labels. In
cycle self-training, we train a target classifier with target pseudo-labels in the inner loop, and make the target
classifier perform well on the source domain by updating the shared representations in the outer loop.

shift in standard self-training [78, 47], but they can be brittle and require expensive tweaking of the
threshold or weight for different tasks, and their performance gain is still inconsistent.

In this work, we first analyze the quality of pseudo-labels with or without domain shift to delve
deeper into the difficulty of standard self-training in UDA. On popular benchmark datasets, when
the source and target are the same, our analysis indicates that the pseudo-label distribution is almost
identical to the ground-truth distribution. However, with distributional shift, their discrepancy can be
very large with examples of several classes mostly misclassified into other classes. We also study
the difficulty of selecting correct pseudo-labels with popular criteria under domain shift. Although
entropy and confidence are reasonable selection criteria for correct pseudo-labels without domain
shift, the domain shift makes their accuracy decrease sharply.

Our analysis shows that domain shift makes pseudo-labels unreliable and that self-training on selected
target instances with accurate pseudo-labels is less successful. Thereby, more principled improvement
of standard self-training should be tailored to UDA and address the domain shift explicitly. In this
work, we propose Cycle Self-Training (CST), a principled self-training approach to UDA, which
overcomes the limitations of standard self-training (see Figure 1). Different from previous works to
select target pseudo-labels with hard-to-tweak protocols, CST learns to generalize the pseudo-labels
across domains. Specifically, CST cycles between the use of target pseudo-labels to train a target
classifier, and the update of shared representations to make the target classifier perform well on the
source data. In contrast to the standard Gibbs entropy that makes the target predictions over-confident,
we propose a confidence-friendly uncertainty measure based on the Tsallis entropy in information
theory, which adaptively minimizes the uncertainty without manually tuning or setting thresholds.
Our method is simple and generally applicable to vision and language tasks with various backbones.

We empirically evaluate our method on a series of standard UDA benchmarks. Results indicate that
CST outperforms previous state-of-the-art methods in 21 out of 25 tasks for object recognition and
sentiment classification. Theoretically, we prove that the minimizer of CST objective is endowed with
general guarantees of target performance. We also study hard cases on specific distributions, showing
that CST recovers target ground-truths while both feature adaptation and standard self-training fail.

2 Preliminaries

We study unsupervised domain adaptation (UDA). Consider a source distribution P and a target
distribution Q over the input-label space X × Y . We have access to ns labeled i.i.d. samples
P̂ = {xsi , ysi }

ns
i=1 from P and nt unlabeled i.i.d. samples Q̂ = {xti}

nt
i=1 from Q. The model f

comprises a feature extractor hφ parametrized by φ and a head (linear classifier) gθ parametrized by θ,
i.e. fθ,φ(x) = gθ(hφ(x)). The loss function is `(·, ·). Denote by LP (θ, φ) := E(x,y)∼P `(fθ,φ(x), y)

the expected error on P . Similarly, we use LP̂ (θ, φ) to denote the empirical error on dataset P̂ .

We discuss two mainstream UDA methods and their formulations: feature adaptation and self-training.

Feature Adaptation trains the model f on the source dataset P̂ , and simultaneously matches the
source and target distributions in the representation space Z = h(X):

min
θ,φ

LP̂ (θ, φ) + d(h]P̂ , h]Q̂). (1)

2

Figure 2: Analysis of pseudo-labels under domain shift on VisDA-2017. Left: Pseudo-label distributions
with and without domain shift. Middle: Changes of pseudo-label distributions throughout training. Right:
Quality of pseudo-labels under different pseudo-label selection criteria.

Here, h]P̂ denotes the pushforward distribution of P̂ , and d(·, ·) is some distribution distance. For
instance, Long et al. [34] used maximum mean discrepancy dMMD, and Ganin et al. [22] approximated
theH∆H-distance dH∆H [7] with adversarial training. Despite its pervasiveness, recent works have
shown the intrinsic limitations of feature adaptation under real-world situations [6, 74, 33, 32, 29].

Self-Training is considered a promising alternative to feature adaptation. In this work we mainly
focus on pseudo-labeling [31, 30]. Stemming from semi-supervised learning, standard self-training
trains a source model fs on the source dataset P̂ : minθs,φs

LP̂ (θs, φs). The target pseudo-labels are
then generated by fs on the target dataset Q̂. To leverage unlabeled target data, self-training trains the
model on the source and target datasets together with source ground-truths and target pseudo-labels:

min
θ,φ

LP̂ (θ, φ) + Ex∼Q̂`(fθ,φ(x), arg max
i
{fθs,φs(x)[i]}). (2)

Self-training also uses label-sharpening as a standard protocol [31, 57]. Another popular variant
of pseudo-labeling is the teacher-student model [4, 61], which iteratively improves the quality of
pseudo-labels via alternatively replacing θs and φs with θ and φ of the previous iteration.

2.1 Limitations of Standard Self-Training
Standard self-training with pseudo-labels uses unlabeled data efficiently for semi-supervised learn-
ing [31, 39, 57]. Here we carry out exploratory studies on the popular VisDA-2017 [45] dataset using
ResNet-50 backbones. We find that domain shift makes the pseudo-labels biased towards several
classes and thereby unreliable in UDA. See Appendix C.1 for details and results on more datasets.

Pseudo-label distributions with or without domain shift. We resample the original VisDA-2017 to
simulate different relationship between source and target domains: 1) i.i.d., 2) covariate shift, and 3)
label shift. We train the model on the three variants of source dataset and use it to generate target
pseudo-labels. We show the distributions of target ground-truths and pseudo-labels in Figure 2 (Left).
When the source and target distributions are identical, the distribution of pseudo-labels is almost
the same as ground-truths, indicating the reliability of pseudo-labels. In contrast, when exposed to
label shift or covariate shift, the distribution of pseudo-labels is significantly different from target
ground-truths. Note that classes 2, 7, 8 and 12 appear rarely in the target pseudo-labels in the covariate
shift setting, indicating that the pseudo-labels are biased towards several classes due to domain shift.
Self-training with these pseudo-labels is risky since it may lead to misalignment of distributions and
misclassify many examples of classes 2, 7, 8 and 12.

Change of pseudo-label distributions throughout training. To further study the change of pseudo-
labels in standard self-training, we compute the total variation (TV) distance between target ground-
truths and target pseudo-labels: dTV(c, c′) = 1

2

∑
i ‖ci − c′i‖, where ci is the ratio of class i. We plot

its change during training in Figure 2 (Middle). Although the error rate of pseudo-labels continues
to decrease, dTV remains almost unchanged at 0.26 throughout training. Note that dTV is the lower
bound of the error rate of the pseudo-labels (shown in Appendix C.1). If dTV converges to 0.26, then
the accuracy of pseudo-labels is upper-bounded by 0.74. This indicates that the important denoising
ability [66] of pseudo-labels in standard self-training is hindered by domain shift.

Difficulty of selecting reliable pseudo-labels under domain shift. To mitigate the negative effect of
false pseudo-labels, recent works proposed to select correct pseudo-labels based on thresholding the
entropy or confidence criteria [35, 21, 37, 57]. However, it remains unclear whether these strategies
are still effective under domain shift. Here we compare the quality of pseudo-labels selected by

3

different strategies with or without domain shift. For each strategy, we compute False Positive Rate
and True Positive Rate for different thresholds and plot its ROC curve in Figure 2 (Right). When the
source and target distributions are identical, both entropy and confidence are reasonable strategies for
selecting correct pseudo-labels (AUC=0.89). However, when the target pseudo-labels are generated
by the source model, the quality of pseudo-labels decreases sharply under domain shift (AUC=0.78).

3 Approach
We present Cycle Self-Training (CST) to improve pseudo-labels under domain shift. An overview of
our method is given in Figure 1. Cycle Self-Training iterates between a forward step and a reverse
step to make self-trained classifiers generalize well on both target and source domains.

3.1 Cycle Self-Training
Forward Step. Similar to standard self-training, we have a source classifier θs trained on top of the
shared representations φ on the labeled source domain, and use it to generate target pseudo-labels as

y′ = arg max
i
{fθs,φ(x)[i]}, (3)

for each x in the target dataset Q̂. Traditional self-training methods use confidence thresholding or
reweighting to select reliable pseudo-labels. For example, Sohn et al. [57] select pseudo-labels with
softmax value and Long et al. [37] add entropy reweighting to rely on examples with more confidence
prediction. However, the output of deep networks is usually miscalibrated [25], and is not necessarily
related to the ground-truth confidence even on the same distribution. In domain adaptation, as shown
in Section 2.1, the discrepancy between the source and target domains makes pseudo-labels even
more unreliable, and the performance of commonly used selection strategies is also unsatisfactory.
Another drawback is the expensive tweaking in order to find the optimal confidence threshold for
new tasks. To better apply self-training to domain adaptation, we expect that the model can gradually
refine the pseudo-labels by itself without the cumbersome selection or thresholding.

Reverse Step. We design a complementary step with the following insights to improve self-training.
Intuitively, the labels on the source domain contain both useful information that can transfer to the
target domain and harmful information that can make pseudo-labels incorrect. Similarly, reliable
pseudo-labels on the target domain can transfer to the source domain in turn, while models trained
with incorrect pseudo-labels on the target domain cannot transfer to the source domain. In this sense,
if we explicitly train the model to make target pseudo-labels informative of the source domain, we
can gradually make the pseudo-labels more accurate and learn to generalize to the target domain.

Specifically, with the pseudo-labels y′ generated by the source classifier θs at hand as in equation 3,
we train a target head θ̂t(φ) on top of the representation φ with pseudo-labels on the target domain Q̂,

θ̂t(φ) = arg min
θ

Ex∼Q̂`(fθ,φ(x), y′). (4)

We wish to make the target pseudo-labels informative of the source domain and gradually refine them.
To this end, we update the shared feature extractor φ to predict accurately on the source domain and
jointly enforce the target classifier θ̂t(φ) to perform well on the source domain. This naturally leads
to the objective of Cycle Self-Training:

minimize
θs,φ

LCycle(θs, φ) := LP̂ (θs, φ) + LP̂ (θ̂t(φ), φ). (5)

Bi-level Optimization. The objective in equation 5 relies on the solution θ̂t(φ) to the objective in
equation 4. Thus, CST formulates a bi-level optimization problem. In the inner loop we generate
target pseudo-labels with the source classifier (equation 3), and train a target classifier with target
pseudo-labels (equation 4). After each inner loop, we update the feature extractor φ for one step in
the outer loop (equation 5), and start a new inner loop again. However, since the inner loop of the
optimization in equation 4 only involves the light-weight linear head θt, we propose to calculate the
analytical form of θ̂t(φ) and directly back-propagate to the feature extractor φ instead of calculating
the second-order derivatives as in MAML [18]. The resulting framework is as fast as training two
heads jointly. Also note that the solution θ̂t(φ) relies on θs implicitly through y′. However, both
standard self-training and our implementation use label sharpening, making y′ not differentiable.
Thus we follow vanilla self-training and do not consider the gradient of θ̂t(φ) w.r.t. y′ in the outer loop
optimization. We defer the derivation and implementation of bi-level optimization to Appendix B.2.

4

3.2 Tsallis Entropy Minimization
Gibbs entropy is widely used by existing semi-supervised learning methods to regularize the model
output and minimize the uncertainty of predictions on unlabeled data [24]. In this work, we generalize
Gibbs entropy to Tsallis entropy [62] in information theory. Suppose the softmax output of a model
is y ∈ RK , then the α-Tsallis entropy is defined as

Sα(y) =
1

α− 1

(
1−

∑
yα[i]

)
, (6)

where α > 0 is the entropic-index. Note that limα→1 Sα(y) =
∑
i−y[i]log(y[i]) which exactly

recovers the Gibbs entropy. When α = 2, Sα(y) becomes the Gini impurity 1−
∑
i y

2
[i].

We propose to control the uncertainty of target pseudo-labels based on Tsallis entropy minimization:

LQ̂,Tsallis,α(θ, φ) := Ex∼Q̂Sα(fθ,φ(x)). (9)

Figure 3: Tsallis entropy vs. entropic-index α.

Figure 3 shows the change of Tsallis entropy with differ-
ent entropic-indices α for binary problems. Intuitively,
smaller α exerts more penalization on uncertain pre-
dictions and larger α allows several scores yi’s to be
similar. This is critical in self-training since an overly
small α (as in Gibbs entropy) will make the incorrect di-
mension of pseudo-labels close to 1 and have no chance
to be corrected throughout training. In Section 5.4, we
further verify this property with experiments.

An important improvement of the Tsallis entropy over Gibbs entropy is that it can choose the suitable
measure of uncertainty for different systems to avoid over-confidence caused by overly penalizing
the uncertain pseudo-labels. To automatically find the suitable α, we adopt a similar strategy as
Section 3.1. The intuition is that if we use the suitable entropic-index α to train the source classifier
θs,α, the target pseudo-labels generated by θs,α will contain desirable knowledge of the source dataset,
i.e. a target classifier θt,α trained with these pseudo-labels will perform well on the source domain.
Therefore, we semi-supervisedly train a classifier θ̂s,α on the source domain with the α-Tsallis entropy
regularizationLQ̂,Tsallis,α on the target domain as: θ̂s,α = arg minθ LP̂ (θ, φ)+LQ̂,Tsallis,α(θ, φ), from

which we obtain the target pseudo-labels. Then we train another head θ̂t,α with target pseudo-labels.
We automatically find α by minimizing the loss of θ̂t,α on the source data:

α̂ = arg min
α∈[1,2]

LP̂ (θ̂t,α, φ) (10)

To solve equation 10, we discretize the feasible region [1, 2] of α and use discrete optimization to
lower computational cost. We also update α at the start of each epoch, since we found more frequent

Algorithm 1 Cycle Self-Training (CST)

1: Input: source dataset P̂ and target dataset Q̂.
2: for epoch = 0 to MaxEpoch do
3: Select α̂ as equation 10 at the start of each epoch.
4: for t = 0 to MaxIter do
5: Forward Step
6: Generate pseudo-labels on the target domain with φ and θs: y′ = arg maxi{fθs,φ(x)[i]}.
7: Reverse Step
8: Train a target head θ̂t(φ) with target pseudo-labels y′ on the feature extractor φ:

θ̂t(φ) = arg min
θ

Ex∼Q̂`(fθ,φ(x), y′).

9: Update the feature extractor φ and the source head θs to make θ̂t(φ) perform well on the
source dataset and minimize the α̂-Tsallis entropy on the target dataset:

φ← φ− η∇φ[LP̂ (θs, φ) + LP̂ (θ̂t(φ), φ) + LQ̂,Tsallis,α̂(θs, φ)]. (7)

θs ← θs − η∇θs [LP̂ (θs, φ) + LQ̂,Tsallis,α̂(θs, φ)]. (8)10: end for
11: end for

5

update leads to no performance gain. Details are deferred to Appendix B.3. Finally, with the optimal
α̂ found, we add the α̂-Tsallis entropy minimization term LQ̂,Tsallis,α̂ to the overall objective:

minimize
θs,φ

LCycle(θs, φ) + LQ̂,Tsallis,α̂(θs, φ). (11)

In summary, Algorithm 1 depicts the complete training procedure of Cycle Self-Training (CST).

4 Theoretical Analysis
We analyze the properties of CST theoretically. First, we prove that the minimizer of the CST loss
LCST(fs, ft) will lead to small target loss ErrQ(fs) under a simple but realistic expansion assumption.
Then, we further demonstrate a concrete instantiation where cycle self-training provably recovers the
target ground truth, but both feature adaptation and standard self-training fail. Due to space limit, we
state the main results here and defer all proof details to Appendix A.

4.1 CST Provably Works under the Expansion Assumption

We start from a K-way classification model, f : X → [0, 1]K ∈ F and f̃(x) := arg maxi f(x)[i]

denotes the prediction. Denote by Pi the conditional distribution of P given y = i. Assume the
supports of Pi and Pj are disjoint for i 6= j. The definition is similar for Qi. We further Assume
P (y = i) = Q(y = i). For any x ∈ X , N (x) is defined as the neighboring set of x with a proper
metric d(·, ·), N (x) = {x′ : d(x, x′) ≤ ξ}. N (A) := ∪x∈AN (x). Denote the expected error on the
target domain by ErrQ(f) := E(x,y)∼QI(f̃(x) 6= y).

We study the CST algorithm under the expansion assumption of the mixture distribution [66, 11].
Intuitively, this assumption indicates that the conditional distributions Pi and Qi are closely located
and regularly shaped, enabling knowledge transfer from the source domain to the target domain.
Definition 1 ((q, ε)-constant expansion [66]). We say P and Q satisfy (q, ε)-constant expansion for
some constant q, ε ∈ (0, 1), if for any set A ∈ X and any i ∈ [K] with 1

2 > P 1
2 (Pi+Qi)(A) > q, we

have P 1
2 (Pi+Qi)(N (A)\A) > min{ε, P 1

2 (Pi+Qi)(A)}.

Based on this expansion assumption, we consider a robustness-constrained version of CST. Later
we will show that the robustness is closely related to the uncertainty. Denote by fs the source
model and ft the model trained on the target with pseudo-labels. Let R(ft) := P 1

2 (P+Q)({x : ∃x′ ∈
N (x), f̃t(x) 6= f̃t(x

′)}) represent the robustness [66] of ft on P andQ. Suppose E(x,y)∼QI(f̃s(x) 6=
f̃t(x)) ≤ c and R(ft) ≤ ρ. The following theorem states that when fs and ft behave similarly on
the target domain Q and ft is robust to local changes in input, the minimizer of the cycle source error
ErrP (ft) will guarantee low error of fs on the target domain Q.

Theorem 1. Suppose Definition 1 holds for P and Q. For any fs, ft satisfying E(x,y)∼QI(f̃s(x) 6=
f̃t(x)) ≤ c and R(ft) ≤ ρ, the expected error of fs on the target domain Q is bounded,

ErrQ(fs) ≤ ErrP (ft) + c+ 2q +
ρ

min{ε, q}
. (12)

To further relate the expected error with the CST training objective and obtain finite-sample guar-
antee, we use the multi-class margin loss: lγ(f(x), y) := ψγ(−M(f(x), y)), whereM(v, y) =
v[y] − maxy′ 6=y v[y′] and ψγ is the ramp function. We then extend the margin loss: M(v) =
maxy(v[y] − maxy′ 6=y v[y′]) (The difference between the largest and the second largest scores in
v), and lγ(ft(x), fs(x)) := ψγ(−M(ft(x), f̃s(x))). Further suppose f[i] is Lf -Lipschitz w.r.t. the
metric d(·, ·) and τ := 1 − 2Lfξmin{ε, q} > 0. Consider the following training objective for
CST, denoted by LCST(fs, ft), where LP̂ ,γ(ft) := E(x,y)∼P̂ lγ(ft(x), y) corresponds to the cycle
source loss in equation 5, LQ̂,γ(ft, fs) := E(x,y)∼Q̂lγ(ft(x), fs(x)) is consistent with the target loss
in equation 4, andM(ft(x)) is closely related to the uncertainty of predictions in equation 11.

minLCST(fs, ft) := LP̂ ,γ(ft) + LQ̂,γ(ft, fs) +
1− E(x,y)∼ 1

2 (P̂+Q̂)M(ft(x))

τ
. (13)

The following theorem shows that the minimizer of the training objective LCST(fs, ft) guarantees
low population error of fs on the target domain Q.

6

Theorem 2. R̂(F|P̂) denotes the empirical Rademacher complexity of function class F on dataset
P̂ . For any solution of equation 13 and γ > 0, with probability larger than 1− δ,

ErrQ(fs) ≤ LCST(fs, ft) + 2q +
4K

γ

[
R̂(F|P̂) + R̂(F̃ × F|Q̂)

]
+

2

τ

[
R̂(F|P̂) + R̂(F|Q̂)

]
+ ζ,

where ζ = O
(√

log(1/δ)/ns +
√

log(1/δ)/nt

)
is a low-order term. F̃ × F refers to the function

class {x→ f(x)[f̃ ′(x)] : f, f ′ ∈ F}.

Main insights. Theorem 2 justifies CST under the expansion assumption. The generalization error
of the classifier fs on the target domain is bounded with the CST loss objective LCST(fs, ft), the
intrinsic property of the data distribution q, and the complexity of the function classes. In our
algorithm, LCST(fs, ft) is minimized by the neural networks and q is a constant. The complexity of
the function class can be controlled with proper regularization.

4.2 Hard Case for Feature Adaptation and Standard Self-Training

To gain more insight, we study UDA in a quadratic neural network fθ,φ(x) = θ>(φ>x)�2, where �
is element-wise power. In UDA, the source can have multiple solutions but we aim to learn the one
working on the target [34]. We design the underlying distributions p and q in Table 6 to reflect this.
Consider the following P and Q. x[1] and x[2] are sampled i.i.d. from distribution p on P , and from

Table 1: The design of p and q.
Distribution −1 +1 0

Source p 0.05 0.05 0.90
Target q 0.25 0.25 0.50

q on Q. For i ∈ [3, d], x[i] = σix[2] on P and x[i] = σix[1] on Q.
σi ∈ {±1} are i.i.d. and uniform. We also assume realizability:
y = x2

[1] − x
2
[2] for both source and target. Note that y = x2

[1] − x
2
[i]

for all i ∈ [2, d] are solutions to P but only y = x2
[1] − x

2
[2] works on

Q. We visualize this specialized setting in Figure 4.

(a) (b) (c) (d)

Figure 4: The hard case where d = 3. Green dots for y = 1, red dots for y = 0, and blue dots for y = −1.
The grey curve is the classification boundary of different features. The good feature x2[1] − x2[2] works on the
target domain (shown in (a) and (c)), whereas the spurious feature x2[1] − x2[3] only works on the source domain
(shown in (b) and (d)). In Section 4.2, we show that feature adaptation and standard self-training learn x2[1]−x2[3],
while CST learns x2[1] − x2[2].

To make the features more tractable, we study the norm-constrained version of the algorithms (details
are deferred to Section A.3.2). We compare the features learned by feature adaptation, standard self-
training, and CST. Intuitively, feature adaptation fails because the ideal target solution y = x2

[1]−x
2
[2]

has larger distance in the feature space than other spurious solutions y = x2
[1] − x

2
[i]. Standard self-

training also fails since it will choose randomly among all solutions. In comparison, CST can recover
the ground truth, because it can distinguish the spurious solution resulting in bad pseudo-labels. A
classifier trained with those pseudo-labels cannot work on the source domain in turn. This intuition is
rigorously justified in the following two theorems.
Theorem 3. For ε ∈ (0, 0.5), the following statements hold for feature adaptation and self-training:

• For failure rate ξ > 0, and target dataset size nt > Θ(log 1
ξ), with probability at least 1− ξ over

the sampling of target data, the solution (θ̂FA, φ̂FA) found by feature adaptation satisfies

ErrQ(θ̂FA, φ̂FA) ≥ ε. (14)

• With probability at least 1− 1
d−1 , the solution (θ̂ST, φ̂ST) of standard self-training satisfies

ErrQ(θ̂ST, φ̂ST) ≥ ε. (15)

7

Theorem 4. For failure rate ξ > 0, and target dataset size nt > Θ(log 1
ξ), with probability at least

1− ξ, the solution of CST (φ̂CST, θ̂CST) recovers the ground truth of the target dataset:

ErrQ(θ̂CST, φ̂CST) = 0. (16)

5 Experiments
We test the performance of the proposed method on both vision and language datasets. Cycle Self-
Training (CST) consistently outperforms state-of-the-art feature adaptation and self-training methods.
Code is available at https://github.com/Liuhong99/CST.

5.1 Setup
Datasets. We experiment on visual object recognition and linguistic sentiment classification tasks:
Office-Home [64] has 65 classes from four kinds of environment with large domain gap: Artistic (Ar),
Clip Art (Cl), Product (Pr), and Real-World (Rw); VisDA-2017 [45] is a large-scale UDA dataset
with two domains named Synthetic and Real. The datasets consist of over 200k images from 12
categories of objects; Amazon Review [10] is a linguistic sentiment classification dataset of product
reviews in four products: Books (B), DVDs (D), Electronics (E), and Kitchen (K).

Implementation. We use ResNet-50 [26] (pretrained on ImageNet [53]) as feature extractors
for vision tasks, and BERT [16] for linguistic tasks. On VisDA-2017, we also provide results of
ResNet-101 to include more baselines. We use cross-entropy loss for classification on the source
domain. When training the target head θ̂t and updating the feature extractor with CST, we use
squared loss to get the analytical solution of θ̂t directly and avoid calculating second order derivatives
as meta-learning [18]. Details on adapting squared loss to multi-class classification are deferred
to Appendix B. We adopt SGD with initial learning rate η0 = 2e − 3 for image classification
and η0 = 5e − 4 for sentiment classification. Following standard protocol in [26], we decay the
learning rate by 0.1 each 50 epochs until 150 epochs. We run all the tasks 3 times and report mean
and deviation in top-1 accuracy. For VisDA-2017, we report the mean class accuracy. Following
Theorem 2, we also enhance CST with sharpness-aware regularization [19] (CST+SAM), which help
regularize the Lipschitzness of the function class. Due to space limit, we report mean accuracies in
Tables 2 and 3 and defer standard deviation to Appendix C.

5.2 Baselines

We compare with two lines of works in domain adaptation: feature adaptation and self-training. We
also compare with more complex state-of-the-arts and create stronger baselines by combining feature
adaptation and self-training.

Feature Adaptation: DANN [22], MCD [54], CDAN [37] (which improves DANN with pseudo-
label conditioning), MDD [73] (which improves previous domain adaptation with margin theory),
Implicit Alignment (IA) [28] (which improves MDD to deal with label shift).

Self-Training. We include VAT [40], MixMatch [8] and FixMatch [57] in the semi-supervised
learning literature as self-training methods. We also compare with self-training methods for UDA:
CBST [77], which considers class imbalance in standard self-training, and KLD [78], which improves
CBST with label regularization. However, these methods involve tricks specified for convolutional
networks. Thus, in sentiment classification tasks where we use BERT backbones, we compare with
other consistency regularization baselines: VAT [40], VAT+Entropy Minimization.

Feature Adaptation + Self-Training. DIRT-T [56] combines DANN, VAT, and entropy minimization.
We also create more powerful baselines: CDAN+VAT+Entropy and MDD+Fixmatch.

Other SOTA. AFN [69] boosts transferability by large norm. STAR [38] aligns domains with stochas-
tic classifiers. SENTRY [48] selects confident examples with a committee of random augmentations.

5.3 Results
Results on 12 pairs of Office-Home tasks are shown in Table 2. When domain shift is large, standard
self-training methods such as VAT and FixMatch suffer from the decay in pseudo-label quality. CST
outperforms feature adaptation and self-training methods significantly in 9 out of 12 tasks. Note that
CST does not involve manually setting confidence threshold or reweighting.

8

https://github.com/Liuhong99/CST

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).
Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg.

DANN [22] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [37] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+VAT+Entropy 52.2 71.5 76.4 61.1 70.3 67.8 59.5 54.4 78.6 73.2 59.0 82.7 67.3
FixMatch [57] 51.8 74.2 80.1 63.5 73.8 61.3 64.7 51.4 80.0 73.3 56.8 81.7 67.7
MDD [73] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MDD+IA [28] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
SENTRY [48] 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2

CST 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0

Table 3: Accuracy (%) on Multi-Domain Sentiment Dataset for domain adaptation with BERT.
Method B-D B-E B-K D-B D-E D-K E-B E-D E-K K-B K-D K-E Avg.

Source-only 89.7 88.4 90.9 90.1 88.5 90.2 86.9 88.5 91.5 87.6 87.3 91.2 89.2
DANN [22] 90.2 89.5 90.9 91.0 90.6 90.2 87.1 87.5 92.8 87.8 87.6 93.2 89.9
VAT [40] 90.6 91.0 91.7 90.8 90.8 92.0 87.2 86.9 92.6 86.9 87.7 92.9 90.1
VAT+Entropy 90.4 91.3 91.5 91.0 91.1 92.4 87.5 86.3 92.4 86.5 87.5 93.1 90.1
MDD [73] 90.4 90.4 91.8 90.2 90.9 91.0 87.5 86.3 92.5 89.0 87.9 92.1 90.0

CST 91.5 92.9 92.6 91.9 92.6 93.5 90.2 89.4 93.8 87.9 88.3 93.5 91.5

Table 4 shows the results on VisDA-2017. CST surpasses state-of-the-arts with ResNet-50 and ResNet-
101 backbones. We also combine feature adaptation and self-training (DIRT-T, CDAN+VAT+entropy
and MDD+FixMatch) to test if feature adaptation alleviates the negative effect of domain shift in
standard self-training. Results indicate that CST is a better solution than simple combination.

While most traditional self-training methods include techniques specified for ConvNets such as
Mixup [72], CST is a universal method and can directly work on sentiment classification by simply
replacing the head and training objective of BERT [16]. In Table 3, most feature adaptation baselines
improve over source only marginally, but CST outperforms all baselines on most tasks significantly.

5.4 Analysis
Table 5: Ablation on VisDA-2017.

Method Accuracy ↑ dTV ↓
FixMatch [57] 74.5 ± 0.2 0.22
Fixmatch+Tsallis 76.3 ± 0.8 0.15
CST w/o Tsallis 72.0 ± 0.4 0.16
CST+Entropy 76.2 ± 0.6 0.20

CST 79.9 ± 0.5 0.12

Ablation Study. We study the role of each part of CST
in self-training. CST w/o Tsallis removes the Tsallis en-
tropy LTsallis,α. CST+Entropy replaces the Tsallis entropy
with standard entropy. FixMatch+Tsallis adds LTsallis,α to
standard self-training. Observations are shown in Table 5.
CST+Entropy performs 3.7% worse than CST, indicating
that Tsallis entropy is a better regularization for pseudo-
labels than standard entropy. CST performs 5.4% better
than FixMatch, indicating that CST is better adapted to domain shift than standard self-training. While
FixMatch+Tsallis outperforms FixMatch, it is still 3.6% behind CST, with much larger total variation
distance dTV between pseudo-labels and ground-truths, indicating that CST makes pseudo-labels
more reliable than standard self-training under domain shift.

Quality of Pseudo-labels. We visualize the error of pseudo-labels during training on VisDA-2017 in
Figure 5 (Left). The error of target classifier θt on the source domain decreases quickly in training,
when both the error of pseudo-labels (error of θs on Q) and the total variation (TV) distance between
pseudo-labels and ground-truths continue to decay, indicating that CST gradually refines pseudo-
labels. This forms a clear contrast to standard self-training as visualized in Figure 2 (Middle), where
the distance dTV remains nearly unchanged throughout training.

Comparison of Gibbs entropy and Tsallis entropy. We compare the pseudo-labels learned with
standard Gibbs entropy and Tsallis entropy on Ar→Cl with ResNet-50 at epoch 40. We compute
the difference between the largest and the second largest softmax scores of each target example and
plot the histogram in Figure 5 (Right). Gibbs entropy makes the largest softmax output close to 1,
indicating over-confidence. In this case, if the prediction is wrong, it can be hard to correct it using
self-training. In contrast, Tsallis entropy allows the largest and the second largest scores to be similar.

9

Table 4: Mean Class Accuracy (%) for unsupervised domain adaptation on VisDA-2017.

Method ResNet-50 ResNet-101 Method ResNet-50 ResNet-101

DANN [22] 69.3 79.5 CBST [77] – 76.4 ± 0.9
VAT [40] 68.0 ± 0.3 73.4 ± 0.5 KLD [78] – 78.1 ± 0.2
DIRT-T [56] 68.2 ± 0.3 77.2 ± 0.5 MDD [73] 74.6 81.6 ± 0.3
MCD [54] 69.2 77.7 AFN [69] – 76.1
CDAN [37] 70.0 80.1 MDD+IA [28] 75.8 –
CDAN+VAT+Entropy 76.5 ± 0.5 80.4 ± 0.7 MDD+FixMatch 77.8 ± 0.3 82.4 ± 0.4
MixMatch 69.3 ± 0.4 77.0 ± 0.5 STAR [38] – 82.7
FixMatch [57] 74.5 ± 0.2 79.5 ± 0.3 SENTRY [48] 76.7 –

CST 79.9 ± 0.5 84.8 ± 0.6 CST+SAM 80.6 ± 0.5 86.5 ± 0.7

Epochs

Figure 5: Analysis. Left: Error of pseudo-labels and reverse pseudo-labels. The error of target classifier θt
on the source domain decreases, indicating the quality of pseudo-labels is refined. Right: Histograms of the
difference between the largest and the second largest softmax scores. Tsallis entropy avoids over-confidence.

6 Related Work
Self-Training. Self-training is a mainstream technique for semi-supervised learning [13]. In this
work, we focus on pseudo-labeling [52, 31, 2], which uses unlabeled data by training on pseudo-labels
generated by a source model. Other lines of work study consistency regularization [4, 51, 55, 40].
Recent works demonstrate the power of such methods [67, 57, 23]. Equipped with proper training
techniques, these methods can achieve comparable results as standard training that uses much more
labeled examples [17]. Zoph et al. [76] compare self-training to pre-training and joint training. Vu
et al. [65], Mukherjee & Awadallah [42] show that task-level self-training works well in few-shot
learning. These methods are tailored to semi-supervised learning or general representation learning
and do not take domain shift into consideration explicitly. Wei et al. [66], Frei et al. [20] provide the
first nice theoretical analysis of self-training based on the expansion assumption.

Domain Adaptation. Inspired by the generalization error bound of Ben-David et al. [7], Long et al.
[34], Zellinger et al. [71] minimize distance measures between source and target distributions to learn
domain-invariant features. Ganin et al. [22] (DANN) proposed to approximate the domain distance
by adversarial learning. Follow-up works proposed various improvement upon DANN [63, 54, 37,
73, 28]. Popular as they are, failure cases exist in situation like label shift [74, 32], shift in support of
domains [29], and large discrepancy between source and target [33]. Another line of works try to
address domain adaptation with self-training. Shu et al. [56] improves DANN with VAT and entropy
minimization. French et al. [21], Zou et al. [78], Li et al. [32] incorporated various semi-supervised
learning techniques to boost domain adaptation performance. Kumar et al. [30], Chen et al. [15] and
Cai et al. [11] showed self-training provably works in domain adaptation under certain assumptions.

7 Conclusion
We propose cycle self-training in place of standard self-training to explicitly address the distribution
shift in domain adaptation. We show that our method provably works under the expansion assumption
and demonstrate hard cases for feature adaptation and standard self-training. Self-training (or pseudo-
labeling) is only one line of works in the semi-supervised learning literature. Future work can delve
into the behaviors of other semi-supervised learning techniques including consistency regularization
and data augmentation under distribution shift, and exploit them extensively for domain adaptation.

Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants 62022050
and 62021002, Beijing Nova Program under Grant Z201100006820041, China’s Ministry of Industry
and Information Technology, the MOE Innovation Plan and the BNRist Innovation Fund.

10

References
[1] Albadawy, E. A., Saha, A., and Mazurowski, M. A. Deep learning for segmentation of brain

tumors: Impact of cross-institutional training and testing. Medical Physics, 45(3), 2018.

[2] Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and McGuinness, K. Pseudo-labeling and
confirmation bias in deep semi-supervised learning. CoRR, abs/1908.02983, 2019.

[3] Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. On exact computation
with an infinitely wide neural net. In NeurIPS, pp. 8141–8150. 2019.

[4] Bachman, P., Alsharif, O., and Precup, D. Learning with pseudo-ensembles. In NeurIPS,
volume 27, pp. 3365–3373, 2014.

[5] Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and
structural results. JMLR, 3(Nov):463–482, 2002.

[6] Ben-David, S. and Urner, R. On the hardness of domain adaptation and the utility of unlabeled
target samples. In ALT, pp. 139–153, 2012.

[7] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. A theory
of learning from different domains. Machine Learning, 79(1-2):151–175, 2010.

[8] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Raffel, C. Mixmatch: A
holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249, 2019.

[9] Bertinetto, L., Henriques, J. F., Torr, P., and Vedaldi, A. Meta-learning with differentiable
closed-form solvers. In ICLR, 2019.

[10] Blitzer, J., Dredze, M., and Pereira, F. Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In ACL, pp. 440–447, 2007.

[11] Cai, T., Gao, R., Lee, J. D., and Lei, Q. A theory of label propagation for subpopulation shift,
2021.

[12] Carlini, N. Poisoning the unlabeled dataset of semi-supervised learning, 2021.

[13] Chapelle, O., Schölkopf, B., and Zien, A. Semi-supervised learning. MIT press Cambridge,
2006.

[14] Chen, C., Xie, W., Huang, W., Rong, Y., Ding, X., Huang, Y., Xu, T., and Huang, J. Progressive
feature alignment for unsupervised domain adaptation. In CVPR, pp. 627–636, 2019.

[15] Chen, Y., Wei, C., Kumar, A., and Ma, T. Self-training avoids using spurious features under
domain shift. In NeurIPS, pp. 21061–21071, 2020.

[16] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, pp. 4171–4186, 2019.

[17] Du, J., Grave, E., Gunel, B., Chaudhary, V., Celebi, O., Auli, M., Stoyanov, V., and Conneau,
A. Self-training improves pre-training for natural language understanding. In NAACL, pp.
5408–5418, 2021.

[18] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, pp. 1126–1135, 2017.

[19] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-aware minimization for
efficiently improving generalization. In ICLR, 2021.

[20] Frei, S., Zou, D., Chen, Z., and Gu, Q. Self-training converts weak learners to strong learners in
mixture models. arXiv preprint arXiv:2106.13805, 2021.

[21] French, G., Mackiewicz, M., and Fisher, M. Self-ensembling for visual domain adaptation. In
ICLR, 2018.

11

[22] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Marchand, M., and Lempitsky,
V. Domain-adversarial training of neural networks. JMLR, 17(1):2096–2030, 2016.

[23] Ghiasi, G., Zoph, B., Cubuk, E. D., Le, Q. V., and Lin, T.-Y. Multi-task self-training for learning
general representations. In ICCV, pp. 8856–8865, 2021.

[24] Grandvalet, Y. and Bengio, Y. Semi-supervised learning by entropy minimization. In NeurIPS,
pp. 529–536, 2004.

[25] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks.
In ICML, pp. 1321–1330, 2017.

[26] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR,
pp. 770–778, 2016.

[27] Hoffman, J., Tzeng, E., Park, T., Zhu, J., Isola, P., Saenko, K., Efros, A. A., and Darrell, T.
Cycada: Cycle-consistent adversarial domain adaptation. In ICML, pp. 1994–2003, 2018.

[28] Jiang, X., Lao, Q., Matwin, S., and Havaei, M. Implicit class-conditioned domain alignment for
unsupervised domain adaptation. In ICML, pp. 4816–4827, 2020.

[29] Johansson, F. D., Sontag, D., and Ranganath, R. Support and invertibility in domain-invariant
representations. In AISTATS, pp. 527–536, 2019.

[30] Kumar, A., Ma, T., and Liang, P. Understanding self-training for gradual domain adaptation. In
ICML, pp. 5468–5479, 2020.

[31] Lee, D.-H. Pseudo-label : The simple and efficient semi-supervised learning method for deep
neural networks. ICML Workshop: Challenges in Representation Learning (WREPL), 2013.

[32] Li, B., Wang, Y., Che, T., Zhang, S., Zhao, S., Xu, P., Zhou, W., Bengio, Y., and Keutzer, K.
Rethinking distributional matching based domain adaptation. ArXiv, abs/2006.13352, 2020.

[33] Liu, H., Long, M., Wang, J., and Jordan, M. Transferable adversarial training: A general
approach to adapting deep classifiers. In ICML, volume 97, pp. 4013–4022, 2019.

[34] Long, M., Cao, Y., Wang, J., and Jordan, M. I. Learning transferable features with deep
adaptation networks. In ICML, pp. 97–105, 2015.

[35] Long, M., Zhu, H., Wang, J., and Jordan, M. I. Unsupervised domain adaptation with residual
transfer networks. In NeurIPS, pp. 136–144, 2016.

[36] Long, M., Zhu, H., Wang, J., and Jordan, M. I. Deep transfer learning with joint adaptation
networks. In ICML, pp. 2208–2217, 2017.

[37] Long, M., Cao, Z., Wang, J., and Jordan, M. I. Conditional adversarial domain adaptation. In
NeurIPS, pp. 1640–1650. 2018.

[38] Lu, Z., Yang, Y., Zhu, X., Liu, C., Song, Y.-Z., and Xiang, T. Stochastic classifiers for
unsupervised domain adaptation. In CVPR, pp. 9111–9120, 2020.

[39] Mey, A. and Loog, M. A soft-labeled self-training approach. In ICPR, 2016.

[40] Miyato, T., Maeda, S., Ishii, S., and Koyama, M. Virtual adversarial training: A regularization
method for supervised and semi-supervised learning. TPAMI, 2018.

[41] Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press,
2018.

[42] Mukherjee, S. and Awadallah, A. Uncertainty-aware self-training for few-shot text classification.
In NeurIPS, volume 33, pp. 21199–21212, 2020.

[43] Pan, S. J. and Yang, Q. A survey on transfer learning. TKDE, 22(10):1345–1359, 2010.

12

[44] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, volume 32, pp. 8026–8037, 2019.

[45] Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., and Saenko, K. Visda: The visual
domain adaptation challenge. CoRR, abs/1710.06924, 2017.

[46] Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang, B. Moment matching for
multi-source domain adaptation. In ICCV, pp. 1406–1415, 2019.

[47] Prabhu, V., Khare, S., Kartik, D., and Hoffman, J. Sentry: Selective entropy optimization via
committee consistency for unsupervised domain adaptation, 2020.

[48] Prabhu, V., Khare, S., Kartik, D., and Hoffman, J. Sentry: Selective entropy optimization via
committee consistency for unsupervised domain adaptation. In ICCV, pp. 8558–8567, October
2021.

[49] Qu, X., Zou, Z., Cheng, Y., Yang, Y., and Zhou, P. Adversarial category alignment network for
cross-domain sentiment classification. In NAACL, 2019.

[50] Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset Shift in
Machine Learning. The MIT Press, 2009.

[51] Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. Semi-supervised learning
with ladder networks. In NeurIPS, volume 28, pp. 3546–3554, 2015.

[52] Rosenberg, C., Hebert, M., and Schneiderman, H. Semi-supervised self-training of object
detection models. In WACV, volume 1, pp. 29–36, 2005.

[53] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 115(3):211–252, 2015.

[54] Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Maximum classifier discrepancy for
unsupervised domain adaptation. In CVPR, pp. 3723–3732, 2018.

[55] Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regularization with stochastic transformations
and perturbations for deep semi-supervised learning. In NeurIPS, volume 29, pp. 1163–1171,
2016.

[56] Shu, R., Bui, H., Narui, H., and Ermon, S. A DIRT-t approach to unsupervised domain
adaptation. In ICLR, 2018.

[57] Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., Cubuk, E. D., Kurakin,
A., and Li, C.-L. Fixmatch: Simplifying semi-supervised learning with consistency and
confidence. In NeurIPS, 2020.

[58] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.
Intriguing properties of neural networks. In ICLR, 2014.

[59] Talagrand, M. Upper and lower bounds for stochastic processes: modern methods and classical
problems, volume 60. Springer Science & Business Media, 2014.

[60] Tan, S., Peng, X., and Saenko, K. Class-imbalanced domain adaptation: An empirical odyssey.
In ECCV Workshop, 2020.

[61] Tarvainen, A. and Valpola, H. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. In NeurIPS, volume 30, pp.
1195–1204, 2017.

[62] Tsallis, C. Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics,
52(1-2):479–487, 1988.

13

[63] Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adversarial discriminative domain adaptation.
In CVPR, pp. 7167–7176, 2017.

[64] Venkateswara, H., Eusebio, J., Chakraborty, S., and Panchanathan, S. Deep hashing network for
unsupervised domain adaptation. In CVPR, pp. 5018–5027, 2017.

[65] Vu, T., Luong, M.-T., Le, Q. V., Simon, G., and Iyyer, M. Strata: Self-training with task
augmentation for better few-shot learning. arXiv preprint arXiv:2109.06270, 2021.

[66] Wei, C., Shen, K., Yining, C., and Ma, T. Theoretical analysis of self-training with deep
networks on unlabeled data. In ICLR, 2021.

[67] Xie, Q., Luong, M. T., Hovy, E., and Le, Q. V. Self-training with noisy student improves
imagenet classification. In CVPR, 2020.

[68] Xie, S. M., Kumar, A., Jones, R., Khani, F., Ma, T., and Liang, P. In-n-out: Pre-training and
self-training using auxiliary information for out-of-distribution robustness. In ICLR, 2021.

[69] Xu, R., Li, G., Yang, J., and Lin, L. Larger norm more transferable: An adaptive feature norm
approach for unsupervised domain adaptation. In ICCV, 2019.

[70] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural
networks? In NeurIPS, pp. 3320–3328. 2014.

[71] Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., and Saminger-Platz, S. Central
moment discrepancy (CMD) for domain-invariant representation learning. In ICLR, 2017.

[72] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

[73] Zhang, Y., Liu, T., Long, M., and Jordan, M. Bridging theory and algorithm for domain
adaptation. In ICML, pp. 7404–7413, 2019.

[74] Zhao, H., Combes, R. T. D., Zhang, K., and Gordon, G. On learning invariant representations
for domain adaptation. In ICML, volume 97, pp. 7523–7532, 2019.

[75] Ziser, Y. and Reichart, R. Pivot based language modeling for improved neural domain adaptation.
In NAACL, pp. 1241–1251, 2018.

[76] Zoph, B., Ghiasi, G., Lin, T.-Y., Cui, Y., Liu, H., Cubuk, E. D., and Le, Q. Rethinking
pre-training and self-training. In NeurIPS, volume 33, pp. 3833–3845, 2020.

[77] Zou, Y., Yu, Z., Vijaya Kumar, B. V. K., and Wang, J. Unsupervised domain adaptation for
semantic segmentation via class-balanced self-training. In ECCV, pp. 297–313, 2018.

[78] Zou, Y., Yu, Z., Liu, X., Kumar, B. V., and Wang, J. Confidence regularized self-training. In
ICCV, October 2019.

14

A Details in Section 4

A.1 Proof of Theorem 1

In Section 4.1, we study CST theoretically. In Theorem 1, we show that when the population error of
the target classifier ft on the source domain P is low and ft is locally consistent, the source classifier
fs is guaranteed to perform well on the target domain Q. We further show that the consistency
(robustness) is guaranteed by the confidence of the model (Lemma 3). Finally, we show in Theorem 2
that the minimizer of an objective function consistent with the CST objective in Section 3.1 leads to
small target loss of the source classifier ErrQ(fs).

We first review the assumptions made in Section 4.1 in order to prove Theorem 1. Consider a K-way
classification problem. f : X → [0, 1]K ∈ F and f̃(x) := arg maxi f(x)[i]. We first state the
properties of source and target distributions P and Q. Assume the source and target distributions
are composed of K sub-populations, each corresponding to one class, and the sub-populations of
different classes have disjoint support. This indicates that a ground truth labeling function exists,
which is a common assumption as in [7, 66, 11]. We also assume for simplicity of presentation that
P (y = i) = Q(y = i). Note that our techniques can be directly applied to the case where P (y=i)

Q(y=i) is
bounded as in [11].

Assumption 1. Denote by Pi andQi the conditional distribution of P andQ given y = i. We assume
that: (1) P (y = i) = Q(y = i), and (2) the supports of Pi and Pj are disjoint for i 6= j.

Our analysis relies on the expansion assumption [66, 11], which intuitively states that the data
distribution has good continuity within each class. Therefore, the subset in the support of a class will
connect to its neighborhood, enabling knowledge transfer between domains. Wei et al. [66] justifies
this assumption on real-world datasets with BigGAN.

Assumption 2 ((q, ε)-constant expansion [66]). For any x ∈ X ,N (x) is defined as the neighboring
set of x, N (x) = {x′ : d(x, x′) ≤ ξ}, where d is a proper metric. N (A) := ∪x∈AN (x). We say P
and Q satisfy (q, ε)-constant expansion for some constants q, ε ∈ (0, 1), if for any set A ∈ X and any
i ∈ [K] with 1

2 > P 1
2 (Pi+Qi)(A) > q, we have P 1

2 (Pi+Qi)(N (A)\A) > min{ε, P 1
2 (Pi+Qi)(A)}.

Based on this expansion assumption, we consider a robustness-constrained version of CST for now.
In Theorem 2, we will show that the population robustness loss is closely related to the uncertainty of
of CST. Denote by fs the source model and ft the model trained on the target with pseudo-labels.
Let R(ft) := P 1

2 (P+Q)({x : ∃x′ ∈ N (x), f̃t(x) 6= f̃t(x
′)}) represent the robustness [66] of ft on

P and Q. Suppose E(x,y)∼QI(f̃s(x) 6= f̃t(x)) ≤ c and R(ft) ≤ ρ. Theorem 1 states that when fs
and ft behave similarly on Q (ft fits the pseudo-labels generated by fs on the target domain) and ft
is robust to local changes in input, the minimizer of the cycle source error ErrP (ft) will guarantee
low error on the target domain Q.

Theorem 1. Suppose Assumption 1 and Assumption 2 hold for P and Q. For any fs, ft satisfying
E(x,y)∼QI(f̃s(x) 6= f̃t(x)) ≤ c and R(ft) ≤ ρ, the expected error of fs on the target domain Q is
bounded,

ErrQ(fs) ≤ ErrP (ft) + c+ 2q + ρ / min{ε, q}. (17)

We now turn to the proof of Theorem 1. We want to show the error of ft on the source domain P is
close to the error of fs on the target domain Q. We first show that when the robustness error R(ft) is
controlled, the error of ft on the source and the target will be close. This is done by analyzing the
error on each sub-population Pi and Qi separately. Then we use the fact that the losses of fs and ft
are also close when their disagreement on the target domain is controlled to obtain the final result.

Lemma 1 (Robustness on sub-populations). Divide [K] into S1 and S2, where for every i ∈
S1, E(x,y)∼ 1

2 (Pi+Qi)I(∃x
′ ∈ N (x), f̃t(x) 6= f̃t(x

′)}) < min{ε, q}, and for every i ∈ S2,

E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)}) ≥ min{ε, q}. Under the condition of Theorem 1,

we have ∑
i∈S1

P (y = i) ≥ 1− ρ

min{ε, q}
. (18)

15

Proof of Lemma 1. Suppose
∑
i∈S1

P (y = i) < 1 − ρ
min{ε,q} . Then we have

∑
i∈S2

P (y = i) >
ρ

min{ε,q} , which implies

E(x,y)∼ 1
2 (P+Q)I(∃x′ ∈ N (x), f̃t(x) 6= f̃t(x

′)})

=
∑
i∈[K]

E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})P (y = i)

≥
∑
i∈S2

E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})P (y = i)

> min{ε, q}
∑
i∈S2

P (y = i)

= ρ.

Since we have R(ft) = E(x,y)∼ 1
2 (P+Q)I(∃x′ ∈ N (x), f̃t(x) 6= f̃t(x

′)}) < ρ, this forms a contra-
diction.

We have established that for a large proportion of the sub-populations, the robustness is guaranteed.
The next lemma shows that for each sub-population where the robustness is guaranteed, ErrPi(ft)
and ErrQi(ft) is close to each other by invoking the expansion assumption [66].
Lemma 2 (Accuracy propagates on robust sub-populations). Under the condition of Theorem 1, if the
sub-populations Pi and Qi satisfy E(x,y)∼ 1

2 (Pi+Qi)I(∃x
′ ∈ N (x), f̃t(x) 6= f̃t(x

′)}) < min{ε, q},
we have

|ErrPi
(ft)− ErrQi

(ft)| ≤ 2q. (19)

Proof of Lemma 2. We claim that either Err 1
2 (Pi+Qi)(ft) ≤ q or Err 1

2 (Pi+Qi)(ft) ≥ 1 − q. On
the one hand, if 1

2 > Err 1
2 (Pi+Qi)(ft) > q, by the (q, ε)-expansion property (Definition 1),

P 1
2 (Pi+Qi)(N ({x : f̃t(x) 6= i})\{x : f̃t(x) 6= i}) > min{ε, q}. Note that in N ({x : f̃t(x) 6=

i})\{x : f̃t(x) 6= i}, f̃t(x) = i. Thus, for x in the set N ({x : f̃t(x) 6= i})\{x : f̃t(x) 6= i}, there
exists x′ ∈ N (x), f̃t(x′) 6= f̃t(x) = i.

R(ft) = E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})

≥ E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})I(x ∈ N ({x : f̃t(x) 6= i})\{x : f̃t(x) 6= i})

= P 1
2 (Pi+Qi)(N ({x : f̃t(x) 6= i})\{x : f̃t(x) 6= i})

> min{ε, q},

which contradicts the condition that R(ft) < min{ε, q}.
On the other hand, if 1

2 ≤ Err 1
2 (Pi+Qi)(ft) < 1− q, the argument is similar. By the (q, ε)-expansion

property (Definition 1), P 1
2 (Pi+Qi)(N ({x : f̃t(x) = i})\{x : f̃t(x) = i}) > min{ε, q}. Note that

in N ({x : f̃t(x) = i})\{x : f̃t(x) = i}, f̃t(x) 6= i. Thus, for x in the set N ({x : f̃t(x) = i})\{x :

f̃t(x) = i}, there exists x′ ∈ N (x), i = f̃t(x
′) 6= f̃t(x).

R(ft) = E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})

≥ E(x,y)∼ 1
2 (Pi+Qi)I(∃x

′ ∈ N (x), f̃t(x) 6= f̃t(x
′)})I(x ∈ N ({x : f̃t(x) = i})\{x : f̃t(x) = i})

= P 1
2 (Pi+Qi)(N ({x : f̃t(x) = i})\{x : f̃t(x) = i})

> min{ε, q},

which also contradicts the condition that R(ft) < min{ε, q}.
Note that Err 1

2 (Pi+Qi)(ft) = 1
2 ErrPi

(ft) + 1
2 ErrQi

(ft). Also we have ErrPi
(ft) ∈ [0, 1]. In

consequence, we have either ErrPi
(ft),ErrQi

(ft) ∈ [0, 2q] or ErrPi
(ft),ErrQi

(ft) ∈ [1 − 2q, 1],
which completes the proof.

16

With Lemma 1 and Lemma 2 at hand, we can prove Theorem 1 by putting the analysis on each
sub-population together.

Proof of Theorem 1.

ErrQ(ft) =
∑
i∈[K]

ErrQi
(ft)P (y = i)

≤
∑
i∈[S1]

ErrQi
(ft)P (y = i) +

∑
i∈[S2]

P (y = i)

≤
∑
i∈[S1]

(ErrPi
(ft) + 2q)P (y = i) +

∑
i∈[S2]

P (y = i)

≤ ErrP (ft) + 2q +
ρ

min{ε, q}
,

where the second inequality holds due to Lemma 2, and the last holds due to Lemma 1. Also note
that ErrQ(fs) ≤ ErrQ(ft) + E(x,y)∼QI(arg max[i] fs(x)[i] 6= arg max[i] ft(x)[i]) by the triangle
inequality. Adding these two equations results in Theorem 1.

A.2 Proof of Theorem 2

To obtain finite-sample guarantee, we need additional assumptions on the function class F .
Assumption 3. The function classF satisfies the following properties: (1)F is closed to permutations
of coordinates, (2) 0 ∈ F , and (3) each coordinate of f is Lf -Lipschitz w.r.t. d(·, ·).

This assumption is also standard since common models for multi-class classification are symmetric
for each class. Setting all the weight parameters of neural networks to 0 will result in 0 output.

We review the definition of terms in Theorem 2. The ramp function ψγ : R→ [0, 1] is defined as:

ψγ(x) =

 1, x ≤ 0
1− x

γ , 0 < x ≤ γ
0, x > γ

(20)

The margin function is defined as M(v, y) = v[y] − maxy′ 6=y v[y′] and M(v) = maxy{v[y] −
maxy′ 6=y v[y′]}. For multi-class classification problems,M(v) is closely related to the confidence,
since it is equal to the difference between the largest and the second largest scores. The multi-class
margin loss is composed of ψγ(x) andM: lγ(f(x), y) := ψγ(−M(f(x), y)). Denote by LP̂ ,γ(ft)

the empirical margin loss of ft on the source dataset P̂ , LP̂ ,γ(ft) = E(x,y)∼P̂ lγ(ft(x), y). To
measure the inconsistency of fs and ft, we extend the multi-class margin loss as lγ(fs(x), ft(x)) :=

ψγ(−M(fs(x), f̃t(x))). Denote by LP̂ ,γ(ft, fs) the empirical margin inconsistency loss of ft and

fs on the source dataset P̂ , LP̂ ,γ(ft, fs) = E(x,y)∼P̂ lγ(ft(x), fs(x)).

Consider minimizing the following objective:

minLCST(fs, ft) := LP̂ ,γ(ft)︸ ︷︷ ︸
Cycle Loss

+LP̂ ,γ(ft, fs)︸ ︷︷ ︸
Target Loss

+ 1−E
(x,y)∼ 1

2
(P̂+Q̂)

M(ft(x))/τ︸ ︷︷ ︸
Uncertainty Loss

. (21)

Note that LP̂ ,γ(ft) is the loss of ft on the source dataset (the cycle loss), and LP̂ ,γ(ft, fs) is the
training error of ft on the target dataset. M(ft(x)) equals the difference between the largest and the
second largest scores of ft(x), indicating the confidence of ft. Thus, 1− E(x,y)∼ 1

2 (P̂+Q̂)M(ft(x))

is the uncertainty of ft on the source and target datasets.

The following theorem shows that the minimizer of the training objective LCST(fs, ft) guarantees
low population error of fs on the target domain Q.
Theorem 2. Under the condition of Theorem 1 and Assumption 3. For any solution of equation 13
and γ > 0, with probability larger than 1− δ,

ErrQ(fs) ≤ LCST(fs, ft) + 2q +
4K

γ

[
R̂(F|P̂) + R̂(F̃ × F|Q̂)

]
+

2

τ

[
R̂(F|P̂) + R̂(F|Q̂)

]
+ ζ,

17

where ζ = O
(√

log(1/δ)/ns +
√

log(1/δ)/nt

)
is a low-order term. F̃ × F refers to the function

class {x → f(x)[f̃ ′(x)] : f, f ′ ∈ F}. R̂(F|P̂) denotes the empirical Rademacher complexity of

function class F on dataset P̂ .

We provide the function classes used in the proof. For a function class f ∈ F : Rd → [0, 1]K ,
F[i] denotes each coordinate of F : F[i] = {x → f(x)[i] : f ∈ F}. We also need other function
classes based on F[i]. ∪F[i] denotes the union of F[i]: ∪F[i] = ∪i∈[K]F[i]. maxi F[i] is composed
of the maximum coordinate of f ∈ F for all x: maxi F[i] = {x → maxi f[i](x) : f ∈ F}.
maxi′ 6=F̃ F[i′] denotes the function class composed of the second largest coordinate of f ∈ F
for all x: maxi′ 6=F̃ F[i′] = {x → maxi6=f̃(x) f[i](x) : f ∈ F}, which we require to study

the finite sample properties of the confidence loss M(f(x)). F̃ × F denotes the function class
{x → ff̃ ′(x)(x) : f, f ′ ∈ F}. The Rademacher complexity of F[i] on set S = {xj}nj=1 of

size n is: R̂(F[i]|S) = 1
nEσj supf∈F

∑n
j=1 σjf(xj)[i]. The Rademacher complexity of ∪F[i] is

R̂(∪F[i]|S) = 1
nEσj

supf∈F,i∈[K]

∑n
j=1 σjf(xj)[i]. The Rademacher complexity of maxi F[i] is

R̂(maxi F[i]|S) = 1
nEσj

supf∈F,i∈[K]

∑n
j=1 σj maxi f(xj)[i]. We further denote by R̂(F|S) the

sum of the Rademacher complexity of each F[i], R̂(F|S) =
∑K
i=1 R̂(F[i]|S).

To prove Theorem 2, we first observe the relationship between the confidence objective
E(x,y)∼ 1

2 (P̂+Q̂)M(ft(x)) and the robustness constraint R(ft) := P 1
2 (P+Q)({x : ∃x′ ∈

N (x),max[i] ft(x) 6= max[i] ft(x
′)}) in Theorem 1. In fact, as shown in Lemma 3, when the

output of the model is confident on the source and target dataset, i.e. E(x,y)∼ 1
2 (P̂+Q̂)M(ft(x)) is

large, the model is also robust to the change in input.

Lemma 3 (Confidence guarantees robustness). Under the conditions of Theorem 2, we have

R(ft) ≤
1− E(x,y)∼ 1

2 (P+Q)M(ft(x))

1− 2Lfξ
. (22)

Proof of Lemma 3. We first note that when maxy{ft(x)[y] − maxy′ 6=y ft(x)[y′]} > 2Lfξ, the
arg maxi ft(x)[i] will not change in the neighborhood N (x) since f[i] is Lf -Lipschitz for all i.
Suppose y∗ = arg maxy ft(x)[y]. For all y′ 6= y∗ and x′ ∈ N (x),

ft(x
′)[y∗] − ft(x′)[y′] > ft(x)[y∗] − Lfd(x, x′)− (ft(x

′)[y′] + Lfd(x, x′)) (23)

≥ max
y
{ft(x)[y] −max

y′ 6=y
ft(x)[y′]} − 2Lfd(x, x′) (24)

≥ 0. (25)

Therefore, we have

R(ft) ≤ 1− P 1
2 (P+Q) (M(ft(x)) > 2Lfξ) (26)

≤
1− E(x,y)∼ 1

2 (P+Q)M(ft(x))

1− 2Lfξ
, (27)

where the second inequality holds because f[i] ∈ [0, 1], andM(f(x)) ∈ [0, 1].

To obtain finite sample guarantee, we aim to show that each term in equation 13 is close to its
population version. We first present Lemma 4, the classical result for multi-class classification.

Lemma 4 (Lemma 3.1 of [41]). Suppose f ∈ F and γ > 0, with probability at least 1− δ over the
sampling of P̂ , the following holds for all f ∈ F simultaneously,

ErrP (f) ≤ LP̂ ,γ(f) +
4K

γ
R̂(∪F[i]|P̂) +O

(√
log(1/δ) / ns

)
. (28)

We then extend Lemma 4 to study the finite sample properties of LQ̂,γ(ft, fs) and EM(ft(x)).

18

Lemma 5. Suppose f ∈ F and γ > 0, with probability at least 1− δ over the sampling of P̂ , the
following holds for all f ∈ F simultaneously,

E(x,y)∼PM(f(x)) ≤ E(x,y)∼P̂M(f(x)) + 4R̂(F|P̂) +O
(√

log(1/δ) / ns

)
. (29)

Proof of Lemma 5. By standard Rademacher complexity bound (Theorem 7 of Bartlett & Mendelson
[5]), we have

E(x,y)∼PM(f(x)) ≤ E(x,y)∼P̂M(f(x)) + 2R̂(M◦F|P̂) +O
(√

log(1/δ) / ns

)
. (30)

Thus it remains to show R̂(M◦F|P̂) ≤ 2R̂(F|P̂). In fact,

R̂(M◦F|P̂) =
1

ns
Eσ sup

f∈F

ns∑
i=1

σi max
y
{f(xi)[y] −max

y′ 6=y
f(xi)[y′]}

=
1

ns
Eσ sup

f∈F

ns∑
i=1

σi(max
y

f(xi)[y] − max
y′ 6=f̃(xi)

f(xi)[y′])

≤ 1

ns
Eσ sup

f∈F

ns∑
i=1

σi max
y

f(xi)[y] +
1

ns
Eσ sup

f∈F

ns∑
i=1

σi max
y′ 6=f̃(xi)

f(x)[y′]

= R̂(max
i
F[i]|P̂) + R̂(max

i′ 6=F̃
F[i′]|P̂).

As will be shown in Lemma 7, both R̂(maxi F[i]|P̂) and R̂(maxi′ 6=F̃ F[i′]|P̂) are smaller than

R̂(F|P̂), which completes the proof.

Lemma 6. Suppose fs, ft ∈ F and γ > 0, with probability at least 1− δ over the sampling of Q̂,
the following holds for all fs, ft ∈ F simultaneously,

E(x,y)∼QI(ft(x) 6= fs(x)) ≤ LQ̂,γ(ft, fs) +
2K

γ
R̂(F̃ × F|Q̂) +O

(√
log(1/δ) / nt

)
. (31)

Proof of Lemma 6. By the definition of multi-class margin loss, we have E(x,y)∼QI(ft(x) 6=
fs(x)) ≤ LQ,γ(ft, fs). Denote by G the set of {x → (−M(ft(x), fs(x))) : ft, fs ∈ F}. By
standard Rademacher complexity bound, we have,

LQ,γ(ft, fs) ≤ LQ̂,γ(ft, fs) + 2R̂(ψγ ◦ G|Q̂) +O
(√

log(1/δ) / nt

)
.

By Talagrand contraction Lemma [59], R̂(ψγ ◦ G|Q̂) ≤ 1
γ R̂(G|Q̂). Thus, it remains to show

R̂(G|Q̂) ≤ KR̂(F̃ × F|Q̂). We have

R̂(G|Q̂) =
1

nt
Eσi sup

fs,ft

nt∑
i=1

σiM(ft(xi), f̃s(xi))

=
1

nt
Eσi

sup
fs,ft

nt∑
i=1

σi

(
ft(xi)[f̃s(xi)]

− max
y′ 6=f̃s(xi)

ft(xi)[y′]

)

≤ 1

nt
Eσi

sup
fs,ft

nt∑
i=1

σift(xi)[f̃s(xi)]
+

1

nt
Eσi

sup
fs,ft

nt∑
i=1

σi max
y′ 6=f̃s(xi)

ft(xi)[y′]

= R̂(F̃ × F|Q̂) +
1

nt
Eσi

sup
fs,ft

nt∑
i=1

σi max
y′ 6=f̃s(xi)

ft(xi)[y′].

It remains to show 1
nt
Eσi supfs,ft

∑nt

i=1 σi maxy′ 6=f̃s(xi)
ft(xi)[y′] ≤ (K − 1)R̂(F̃ × F|Q̂), which

is done by noting the closure of F under the permutation of coordinates. Consider the permutation
υ : RK → RK : υ(v)[i] = v[i−1] for i ∈ [2, 3, · · ·K] and υ(v)[1] = v[K].

1

nt
Eσi

sup
fs,ft

nt∑
i=1

σi max
y′ 6=f̃s(xi)

ft(xi)[y′] =
1

nt
Eσi

sup
fs,ft

nt∑
i=1

σi max
k∈[K−1]

υkft(xi)[f̃s(xi)]
.

19

We have υF ⊂ F by the closure of F . Thus, F̃ × υF ⊂ F̃ × F . By Lemma 7, the
Rademacher complexity of maximum of function classes is bounded with their sum, so we have
1
nt
Eσi

supfs,ft
∑nt

i=1 σi maxk∈[K−1] υ
kft(xi)[f̃s(xi)]

≤ (K − 1)R̂(F̃ × F|Q̂).

The next lemma shows the relationship between function classes. We establish the Rademacher
complexity bounds of ∪F[i], maxi F[i], and maxi′ 6=F̃ F[i′]. We show that the Rademacher complexity

of these function classes can be bounded with R̂(F|S) =
∑K
i=1 R̂(F[i]|S).

Lemma 7. Suppose maxi F[i] = {maxi f[i] : f ∈ F}, ∪F[i] = {f[i] : f ∈ F , i ∈ [K]}, and
maxi′ 6=F̃ F[i′] = maxi′ 6=F̃ F[i′]|P̂ = {x→ maxi6=f̃(x) f[i](x) : f ∈ F}.

R̂(∪F[i]|S) ≤ R̂(F|S), R̂(max
i
F[i]|S) ≤ R̂(F|S) and R̂(max

i′ 6=F̃
F[i′]|S) ≤ R̂(F|S). (32)

Proof of Lemma 7. Consider the K = 2 case. Then we can repeat the arguments for K − 1 times to
get the final results.

For the first inequality, consider F ′[i] := F[i] ∪ −F[i] = {x→ ±f(x) : f ∈ F[i]}. Then we have

R̂(F[1] ∪ F[2]|S) =
1

n
Eσj

sup
f[i]∈F[1]∪F[2]

n∑
j=1

σjf[i](xj) (33)

=
1

n
Eσj

sup
f ′
[i]
∈F ′

[1]
∪F ′

[2]

n∑
j=1

∣∣∣σjf ′[i](xj)∣∣∣ (34)

≤ 1

n
Eσj sup

f ′
[i]
∈F ′

[1]

n∑
j=1

∣∣∣σjf ′[i](xj)∣∣∣+
1

n
Eσj sup

f ′
[i]
∈F ′

[2]

n∑
j=1

∣∣∣σjf ′[i](xj)∣∣∣ (35)

=
1

n
Eσj sup

f[i]∈F[1]

n∑
j=1

σjf[i](xj) +
1

n
Eσj sup

f[i]∈F[2]

n∑
j=1

σjf[i](xj) (36)

= R̂(F[1]|S) + R̂(F[2]|S), (37)

where equation equation 34 and equation 36 hold by the definition of F[i].

For the second inequality, note that max{x, y} = x+y
2 + |x−y|2 . Then we apply Talagrand contraction

lemma for the absolute value (| · | is 1-Lipschitz),

R̂(max
i
F[i]|S) =

1

n
Eσj sup

f[1]∈F[1],f[2]∈F[2]

n∑
j=1

σj

(
f[1](xj) + f[2](xj)

2
+
|f[1](xj)− f[2](xj)|

2

)
≤ 1

2
R̂(F[1]|S) +

1

2
R̂(F[2]|S) +

1

2
R̂(|F[1] −F[2]||S)

≤ 1

2
R̂(F[1]|S) +

1

2
R̂(F[2]|S) +

1

2
R̂(F[1] −F[2]|S)

≤ R̂(F[1]|S) + R̂(F[2]|S).

For the third inequality, observe that the second largest of the set {x, y, z} can be expressed as
max{min{x, y},min{max{x, y}, z}}. Following argument similar to the second inequality gives
the proof.

Now equipped with the lemmas above, we are ready to prove Theorem 2.

Proof of Theorem 2. By Lemmas 4, 5, and 6, we have the following inequalities hold with probability
larger than 1− δ

3 ,

ErrP (f) ≤ LP̂ ,γ(f) +
4K

γ
R̂(∪F[i]|P̂) +O

(√
log(1/δ) / ns

)
. (38)

20

E(x,y)∼ 1
2 (P+Q)M(f(x)) ≤ E(x,y)∼ 1

2 (P̂+Q̂)M(f(x)) + 2R̂(F|P̂) + 2R̂(F|Q̂) (39)

+O
(√

log(1/δ) / ns +
√

log(1/δ) / nt

)
.

E(x,y)∼QI(ft(x) 6= fs(x)) ≤ LQ̂,γ(ft, fs) +
2K

γ
R̂(F̃ × F|Q̂) +O

(√
log(1/δ) / nt

)
. (40)

We also have the following due to Lemma 3,

R(ft) ≤
1− E(x,y)∼ 1

2 (P+Q)M(ft(x))

1− 2Lfξ
. (41)

We use equation 39 and equation 40 as conditions. Plugging equation 38, equation 39, equation 40,
and equation 41 into Theorem 1 and applying a union bound complete the proof of Theorem 2.

A.3 Details in Section 4.2

We instantiate the domain adaptation setting in a quadratic neural network that allows us to compare
various properties of the related algorithms. For a specific data distribution, we prove that (1) cycle
self-training recovers target ground truth, and (2) both feature adaptation and standard self-training
fail on the same distribution.

A.3.1 Setup

We study a quadratic neural network composed of a feature extractor φ ∈ Rd×m and a head θ ∈ Rm.
fθ,φ(x) = gθ(hφ(x)), where gθ(z) = θ>z and hφ(x) = (φ>x)� (φ>x), � is element-wise product.
In training, we use the squared loss `(f(x), y) = (f(x)− y)2. In testing, we map f(x) to the nearest
point in the output space: f̃(x) := arg miny∈{−1,0,1} |y − f(x)|. Denote the expected error by
ErrQ(θ, φ) := E(x,y)∼QI(f̃θ,φ(x) 6= y).

Structural Covariate Shift and Label Shift. In domain adaptation, the source domain can have
multiple solutions but we aim to learn the solution which works on the target domain [34]. Recent
works also pointed out the source and the target label distributions are often different in real-world
applications [74]. Following these properties, we design the underlying distributions p and q as
shown in Table 6 to allow both structural covariate shift and label shift.

Table 6: Comparison of the design of the source and target.

Distribution −1 +1 0

Source p 0.05 0.05 0.90
Target q 0.25 0.25 0.50

We study the following source distribution P . x[1] and x[2] are sampled i.i.d. from distribution p, and
for i ∈ [3, d], x[i] = σi × x[2]. σi ∈ {±1} uniformly. In the target domain, x[1] and x[2] are sampled
i.i.d. from distribution q, and for i ∈ [3, d], x[i] = σi × x[1]. σi ∈ {±1} uniformly. We also assume
realizability: y = x2

[1] − x
2
[2] for both source and target. For simplicity, we assume access to infinite

i.i.d. examples of P (ns = ∞) and nt i.i.d. examples of Q. Therefore, the empirical loss and the
population loss on the source domain are the same LP = LP̂ .

Note that since x2
[i] = x2

[2] for all i ∈ [3, d] in the source domain, y = x2
[1] − x

2
[i] for all i ∈ [2, d] are

solutions to the source domain but only y = x2
[1] − x

2
[2] works on the target domain. We visualize the

setting when d = 3 in Figure 4.

A.3.2 Algorithms

We compare the baseline algorithms (feature adaptation and self-training) in Section 2 with the
proposed CST. We study the norm-constrained versions of these algorithms.

21

Feature Adaptation chooses the source solution minimizing the distance between source and target
feature distributions. We use total variation (TV) distance [7]: dTV(h]P̂ , h]Q̂) = supE⊂Z |h]P̂ (E)−
h]Q̂(E)|.

θ̂FA, φ̂FA = arg min
θ̂s,φ̂s

dTV(h]P̂ , h]Q̂), (42)

s.t. θ̂s, φ̂s = arg min
θ,φ

‖θ‖22 + ‖φ‖2F , s.t. LP (θ, φ) = 0.

Standard Self-Training first trains a source model,

θ̂s, φ̂s = arg min
θ,φ

‖θ‖22 + ‖φ‖2F , s.t. LP (θ, φ) = 0. (43)

Then it trains the model on the source and target datasets jointly with source ground-truths and target
pseudo-labels,

θ̂ST, φ̂ST = arg min
θ,φ

‖θ‖22 + ‖φ‖2F , (44)

s.t. LP (θ, φ) + Ex∼Q̂`(fθ,φ(x), fθ̂s,φ̂s
(x)) = 0.

Cycle Self-Training. Following Section 3.1, we train the source head θs, and then train another head
θ̂t(φ) on the target dataset Q̂ with pseudo-labels generated by θs:

θ̂t(φ) = arg min
θ
‖θ‖22, s.t. Ex∈Q̂`(fθ,φ(x), fθs,φ(x)) = 0.

Finally we update the feature extractor φ to enforce consistent predictions of θ̂t(φ) and θs on the
source dataset:

θ̂CST, φ̂CST = arg min
θs,φ

‖θs‖22 + ‖φ‖2F , (45)

s.t. LP (θs, φ) + Ex∈P `(gθs(hφ(x)), gθ̂t(φ)(hφ(x))) = 0.

The following theorems show that both feature adaptation and standard self-training fail. The intuition
is that the ideal solution that works on both source and target y = x2

[1] − x
2
[2] has larger distance dTV

in the feature space than other solutions y = x2
[1] − x

2
[i], so feature adaptation will not prefer the ideal

solution. Standard self-training also fails because it will choose randomly among y = x2
[1] − x

2
[i].

Theorem 3. For any ε ∈ (0, 0.5), the following statements are true for feature adaptation and
standard self-training:
• For any failure rate ξ > 0, and target dataset of size nt > Θ(log 1

ξ), with probability at least 1− ξ
over the sampling of target data, the source solution θ̂FA, φ̂FA found by feature adaptation fails on
the target domain:

ErrQ(θ̂FA, φ̂FA) ≥ ε. (46)

• With probability at least 1− 1
d−1 over the training the source solution, the solution (θ̂ST, φ̂ST) of

standard self-training satisfies

ErrQ(θ̂ST, φ̂ST) ≥ ε. (47)

In comparison, we show that CST can recover the ground truth with high probability.
Theorem 4. For any failure rate ξ > 0, and target dataset of size nt > Θ(log 1

ξ), with probability at

least 1− ξ over the sampling of target data, the feature extractor φ̂CST found by CST and the head
θ̂CST recovers the ground truth of the target dataset:

ErrQ(θ̂CST, φ̂CST) = 0. (48)

Intuitively, CST successfully learns the transferable feature x2
[1] − x2

[2] because it enforces the

generalization of the head θ̂t(φ) on the source data.

22

A.4 Proof of Theorem 3

We first describe the insights of the proof. As shown in Lemma 8, every source solution can be
categorized into d− 1 classes according to the coordinate l of the learned weight φ. Among those
d − 1 classes, only l = 2 works on the target domain and l ∈ {3, · · · d} do not work on the target.
We then show that in feature adaptation, l ∈ {3, · · · d} results in smaller distance between source and
target feature distributions as a result of Lemma 9, thus feature adaptation will choose l ∈ {3, · · · d}.
On the other hand, standard self-training with randomly select l in the possible d− 1 choices, but
only l = 2 works.
Lemma 8. Under the condition of Section 4, any solution θ, φ to the Source Only problem

min
θ,φ
‖θ‖22 + ‖φ‖2F , s.t. LP (θ, φ) = 0. (49)

must have the following form: ∃i, j ∈ {2, 3, · · ·m}, l ∈ {2, 3, · · · d}, φi = 2
1
6 e1, φj = 2

1
6 el, φk =

0 for k 6= i, j, and θi = θj = 2−
1
3 , θk = 0 for k 6= i, j.

Proof of Lemma 8. Define the symmetric matrix A =
∑m
i=1 θiφiφ

>
i , then the networks can be

represented by A: fθ,φ(x) = x>Ax. We show that Aij = 0 for i 6= j if fθ,φ recovers source ground
truth.

First, for i, j > 1, let x1 = 1, x2 = 1 − 2ei − 2ej , x3 = 1 − 2ei, and x4 = 1 − 2ej , where
{ei} are the standard bases. Since the source ground truth y = x2

[1] − x
2
[2], and x[k] = ±1x[2] for

k ∈ {3, 4, · · · d}, y1 = y2 = y3 = y4.

y1 + y2 + y3 − y4 =x>1 Ax1 + x>2 Ax2 − x>3 Ax3 − x>4 Ax4 (50)

=21>A1 + 4Aii + 4Ajj − 41>Aei − 41>Aej + 8Aij (51)

− (1>A1 + 4Aii + 4Ajj − 41>Aei − 41>Aej) (52)
=8Aij = 0. (53)

We then show A1,j = 0 for j ∈ {2, 3, · · · d} using the fact that y1 = y4.

y1 − y4 =x>1 Ax1 − x>4 Ax4 (54)

=1>A1− (1>A1− 41>Aej + 4Ajj) (55)

=41>Aej − 4Ajj (56)
=0. (57)

From equation 53 we know Aij = 0 if i 6= 1. Then we also have A1j = Aj1 = 0. Therefore we
can write y in the following form: y = x>Ax =

∑d
i=1Aiix

2
[i] We also have the source ground

truth y = x2
[1] − x2

[2], and x[k] = ±1x[2] for k ∈ {3, 4, · · · d}. Then A must satisfy A11 = 1,∑d
i=2Aii = −1, and all other entries of A equals to 0.

We have found the form of source ground truth matrix A. It suffices to show that the minimal norm
solution of θ and φ subject to the form of A must be in the form of Lemma 8.

‖θ‖22 + ‖φ‖2F =

m∑
i

θ2
i +

1

2
‖φi‖22 +

1

2
‖φi‖22 (58)

≥
m∑
i

3 · 2 2
3

(
|θi|‖φi‖22

) 2
3 (59)

≥3 · 2 2
3

(∑
i:θi>0

θi‖φi‖22

) 2
3

+ 3 · 2 2
3

 ∑
i:θi≤0

−θi‖φi‖22

 2
3

(60)

=3 · 2 2
3

(∑
i:Aii>0

Aii

) 2
3

+ 3 · 2 2
3

 ∑
i:Aii≤0

−Aii

 2
3

= 3 · 2 5
3 . (61)

23

The first inequality holds due to AM-GM inequality, where it takes equality iff θ2
i = 1

2‖φi‖
2
2 for all

i. The second inequality holds due to Jensen inequality. The situation where both inequality take
equality is exactly the form of Lemma 8.

Lemma 9. Suppose Q̂ = {xti}
nt
i=1 are i.i.d. samples from target distribution Q, then with high

probability, E(x,y)∼Q̂I(x[l] = 0) is close to 0.5:

P
(∣∣∣E(x,y)∼Q̂I(x[l] = 0)− 0.5

∣∣∣ > t
)
≤ e−2ntt

2

(62)

Proof of Lemma 9. Since each coordinate of x follows q, I(x[l] = 0)−0.5 is a sub-Gaussian variable
with σ = 0.5. We then apply standard Hoeffding’s inequality to complete the proof.

Proof of Theorem 3. We have the conclusion of Lemma 8. For simplicity we suppose without loss
of generality that the source solution has the following form: ∃ l ∈ {2, 3, · · · d}, φ1 = 2

1
6 e1, φ2 =

2
1
6 el, φk = 0 for k ∈ {3, · · ·m}, and θ1 = θ2 = 2−

1
3 , θk = 0 for k ∈ {3, · · ·m}. Then these

solutions can be categorized into two classes: (1) When l = 2, the source solution also works on the
target, i.e. LQ(θ, φ) = 0. (2) When l ∈ {3, · · · d}, the source solution does not work on the target,

ErrQ(θ, φ) = 1− E(x,y)∼QI(fθ,φ(x) = y) (63)

= 1− E(x,y)∼QI(x2
[l] = x2

[2]) (64)

= 1− E(x,y)∼QI(x[l] = 0 and x[2] = 0)− E(x,y)∼QI(x[l] 6= 0 and x[2] 6= 0) (65)

= 0.5 (66)

To prove that feature adaptation learns the solution that does not work on the target domain, we show
that with high probability, the solution belonging to situation (1) has larger total variation between
source and target feature distributions h]P and h]Q̂. In fact, the distributions of h]P are the same for
solutions in situation (1) and situation (2):

E(x,y)∼P (hφ(x) = (z1, z2)) =

0.81, (z1, z2) = 2

1
3 (0, 0)

0.09, (z1, z2) = 2
1
3 (0, 1)

0.09, (z1, z2) = 2
1
3 (1, 0)

0.01, (z1, z2) = 2
1
3 (1, 1)

For the target dataset, the distribution of features is different for solutions from situation (1) and
situation (2). When l = 2, denote by h1]Q̂ the feature distribution.

E(x,y)∼Q̂ (hφ(x) = (z1, z2)) =

E2

(x,y)∼Q̂
I(x[l] = 0), (z1, z2) = 2

1
3 (0, 0)

E(x,y)∼Q̂I(x[l] = 0)E(x,y)∼Q̂I(x[l] 6= 0), (z1, z2) = 2
1
3 (0, 1)

E(x,y)∼Q̂I(x[l] = 0)E(x,y)∼Q̂I(x[l] 6= 0), (z1, z2) = 2
1
3 (1, 0)

E2
(x,y)∼Q̂

I(x[l] 6= 0), (z1, z2) = 2
1
3 (1, 1)

When l ∈ {3, · · · d}, denote by h2]Q̂ the feature distribution. since x[l] = x[1] in the target domain,
(z1, z2) can only be 2

1
3 (0, 0) or 2

1
3 (1, 1),

E(x,y)∼Q̂ (hφ(x) = (z1, z2)) =

{
E(x,y)∼Q̂I(x[l] = 0), (z1, z2) = 2

1
3 (0, 0)

E(x,y)∼Q̂I(x[l] 6= 0), (z1, z2) = 2
1
3 (1, 1)

We then instantiate Lemma 9 with t = 0.14: With probability at least 1− δ, 0.36 < E(x,y)∼Q̂I(x[l] =

0) < 0.64 for any nt ≥ Clog
(

1
δ

)
, where C > 26 is a constant. Finally, we show that

dTV(h]P, h2]Q̂) < dTV(h]P, h1]Q̂) as long as 0.36 < E(x,y)∼Q̂I(x[l] = 0) < 0.64 to prove that

24

feature adaptation will select solutions in situation (2).

dTV(h]P, h1]Q̂) =
1

2

∣∣∣E2
(x,y)∼Q̂I(x[l] = 0)− 0.81

∣∣∣+
1

2

∣∣∣E2
(x,y)∼Q̂I(x[l] 6= 0)− 0.01

∣∣∣ (67)

+
∣∣∣E(x,y)∼Q̂I(x[l] = 0)E(x,y)∼Q̂I(x[l] 6= 0)− 0.09

∣∣∣ (68)

=0.81− E2
(x,y)∼Q̂I(x[l] = 0) (69)

>0.9− E(x,y)∼Q̂I(x[l] = 0) (70)

=
1

2

∣∣∣E(x,y)∼Q̂I(x[l] = 0)− 0.81
∣∣∣+

1

2

∣∣∣E(x,y)∼Q̂I(x[l] 6= 0)− 0.01
∣∣∣ (71)

=dTV(h]P, h2]Q̂), (72)

when 0.36 < E(x,y)∼Q̂I(x[l] = 0) < 0.64, which completes the proof of feature adaptation.

In standard self-training, when training the source solution, the probability of l equalling each value
in {2, 3, · · · d} is the same, but only l = 2 is the solution working on the source domain. Then when
training on the source ground truth and target pseudo-labels, the model will make l unchanged. Thus
the probability of recovering the target ground truth is only 1

d−1 .

A.5 Proof of Theorem 4

Similar to the proof of Theorem 3, we use the conclusion of Lemma 8 to show that l = 2 indicates the
source solution that works on the target domain, while the solutions corresponding to l ∈ {3, · · · d}
will have large error on the target domain. Then we show that only l = 2 makes the training objective
of cycle self-training LCST = 0. This is due to the fact that l = 2 will make the spans of source and
target features identical, while l ∈ {3, · · · d} makes the spans of source and target features different
and thus θ̂t(φ) 6= θs.

Proof of Theorem 4. We still use Lemma 8. To prove that cycle self-training recovers the target
ground truth, it suffices to show that Ex∈P `(gθs(hφ(x)), gθ̂t(φ)(hφ(x))) = 0 when l = 2, and
Ex∈P `(gθs(hφ(x)), gθ̂t(φ)(hφ(x))) 6= 0 when l ∈ {3, · · · d}.

When l ∈ {3, · · · d}, since x2
[1] = x2

[l] in the target domain, the target pseudo-labels are all 0. Then we

solve the problem θ̂t(φ) = arg minθ ‖θ‖22, s.t. Ex∈Q̂`(fθs,φ(x), fθ,φ(x)) to get the target classifier

θ̂t(φ). Since we want the target solution with minimal norm, θ̂t(φ) = 0, and we can calculate LCST
as follows:

Ex∈P `(gθs(hφ(x)), gθ̂t(φ)(hφ(x))) = E(x,y)∼P (y − fθ̂t(φ),φ(x))2 = E(x,y)∼P y
2 = 0.18. (73)

When l = 2, we show that 2
1
3 e1 + 2

1
3 e2, 2

1
3 e1, 2

1
3 e2 and 0 all appear in the target feature set

with high probability. The probability that the target feature set does not contain each one in
2

1
3 e1 + 2

1
3 e2, 2

1
3 e1, 2

1
3 e2 and 0 equals to

(
3
4

)nt . Therefore with a union bound we can show that
2

1
3 e1 +2

1
3 e2, 2

1
3 e1, 2

1
3 e2 and 0 all appear in the target feature set with probability at least 1−4

(
3
4

)nt .
In this case, θ̂t(φ) = arg minθ ‖θ‖22, s.t. Ex∈Q̂`(fθs,φ(x), fθ,φ(x)) results in θ̂t(φ) = θs, which
means if nt > Θ(log 1

ξ), with probability at least 1− ξ over the sampling of target data,

LCST = Ex∈P `(gθs(hφ(x)), gθ̂t(φ)(hφ(x))) = 0. (74)

25

B Implementation Details

We use PyTorch [44] and run each experiment with 2080Ti GPUs. CBST, KLD, and IA results are
from their original papers. We use the highest results in the literature for DANN, MCD, CDAN, and
MDD. VAT, FixMatch, MixMatch and DIRT-T are adapted to our datasets from the official code. We
adopt the pre-trained ResNet models provided in torchvision. For BERT implementation, we use the
official checkpoint and PyTorch code from https://github.com/huggingface/transformers.

B.1 Dataset Details

OfficeHome [64] https://www.hemanthdv.org/officeHomeDataset.html is an object recog-
nition dataset which contains images from 4 domains. It has about 15500 images organized into 65
categories. The dataset was collected using a python web-crawler that crawled through several search
engines and online image directories. The authors provided a Fair Use Notice on their website.

VisDA-2017 [45] https://github.com/VisionLearningGroup/taskcv-2017-public/
tree/master/classification uses synthetic object images rendered from CAD models as the
training domain and real object images cropped from the COCO dataset as the validation domain.
The authors provided a Term of Use on the website.

DomainNet [46] http://ai.bu.edu/M3SDA/#dataset contains images from clipart, infograph,
painting, real, and sketch domains collected by searching a category name combined with a domain
name from searching engines. The authors provided a Fair Use Notice on their website.

Amazon Review [10] https://www.cs.jhu.edu/~mdredze/datasets/sentiment/ contains
product reviews taken from Amazon.com from many product types (domains). Some domains (books
and dvds) have hundreds of thousands of reviews. Others (musical instruments) have only a few
hundred. Reviews contain star ratings (1 to 5 stars) that can be converted into binary labels if needed.

B.2 Bi-level Optimization

In Section 3.1, we highlight that the optimization of CST involves bi-level optimization. In the inner
loop (equation 4), we train the target classifier θt(φ) on top of the shared representations φ, thus
θt(φ) is a function of φ. Moreover, the target classifier θt(φ) is trained with target pseudo-labels
y′, which are the sharpened version of the outputs of the source classifier θs on top of the shared
representations φ. In this sense, θt(φ) relies on θs and φ through y′ implicitly, too. In the outer loop
(equation 5), we update the shared representations φ and the source classifier θs to make both the
source classifier θs and the target classifier θt(φ) perform well on the source domain. Since θt(φ)
relies on φ and θs, the objective of equation 5 is a bi-level optimization problem. We can derive the
gradient of the loss w.r.t. φ and θs as follows:

∇φ[LP̂ (θs, φ) + LP̂ (θ̂t(φ), φ)] (75)

=∇φLP̂ (θs, φ) +
∂LP̂ (θ̂t(φ), φ)

∂φ
+
∂LP̂ (θ̂t(φ), φ)

∂θ̂t(φ)

dθ̂t(φ)

dφ

=∇φLP̂ (θs, φ) +
∂LP̂ (θ̂t(φ), φ)

∂φ
+
∂LP̂ (θ̂t(φ), φ)

∂θ̂t(φ)

[
∂θ̂t(φ)

∂φ
+
∂θ̂t(φ)

∂y′
∂y′

∂φ

]
.

∇θs [LP̂ (θs, φ) + LP̂ (θ̂t(φ), φ)] = ∇θsLP̂ (θs, φ) +
∂LP̂ (θ̂t(φ), φ)

∂θ̂t(φ)

∂θ̂t(φ)

∂y′
∂y′

∂θs
. (76)

However, following the standard practice in self-training, we use label-sharpening to obtain target
pseudo-labels y′, i.e. y′ = arg maxi{fθs,φ(x)[i]}. Thus, y′ is not differentiable w.r.t. θs and φ. We
treat the gradient of y′ w.r.t. θs and φ as 0 in equation 75 and equation 76, making optimization easier.
This modification leads to exactly equation 7 and equation 8 in Algorithm 1 together with the Tsallis
entropy loss.

Speeding up bi-level optimization with MSE loss. Standard methods of bi-level optimization back-
propagate through the inner loop algorithm, which requires computing the second-order derivative
(Hessian-vector products) and can be unstable. We propose to use MSE loss instead of cross entropy

26

https://github.com/huggingface/transformers
https://www.hemanthdv.org/officeHomeDataset.html
https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/classification
https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/classification
http://ai.bu.edu/M3SDA/#dataset
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

in the inner loop when training the head θ̂(φ) to calculate the analytical solution with least square and
directly back-propagate to the outer loop without calculating second-order derivatives. The framework
is as fast as training the two heads jointly. To adopt MSE loss in multi-class classification, we use
the one-hot embedding as the output and train a multi-variate regressor following the protocol of
Arora et al. [3]. We calculate the least square solution of θt(φ) based on one minibatch following the
protocol of Bertinetto et al. [9]. We also provide results of varying batchsize to verify the performance
of this approximation in Table 7. Results indicate that the performance of CST is stable in a wide
range of batchsizes.

Table 7: Accuracy (%) on VisDA-2017 with ResNet-50

Method Accuracy

CST (batchzize 32) 79.9 ± 0.6
CST (batchzize 64) 79.9 ± 0.5
CST (batchzize 128) 79.6 ± 0.4
CST (batchzize 256) 79.0 ± 0.6

B.3 Selection of α

We can also update α with gradient methods auto-differentiation tools as we treat φ. However,
since α has only one parameter but many other parameters (θs,α and θt,α) rely on it, using gradient
methods is costly. To ease the computational cost, we choose to discretize the feasible region of
α ∈ [1, 2] with α ∈ {1.0, 1.1, · · · 1.9, 2.0}, and train θs,α with each α ∈ {1.0, 1.1, · · · 1.9, 2.0} to
generate pseudo-labels and train θ̂t,α on pseudo-labels corresponding to each value of α. Then
we select the α ∈ {1.0, 1.1, · · · 1.9, 2.0} with best performance on the source dataset following
equation 10. We also update α at the start of each epoch, since we found more frequent update leads
to no performance gain. Since we only need to select α once at the start of each epoch, the resulting
additional computational cost only relates to training the linear head on the source and target datasets
for additional 11 times per epoch, which is negligible compared to training the backbone.

We plot the change of α throughout training in Figure 6. α converges to smaller value at the end of
training, indicating that the penalization on uncertainty is increasing. Also note that α tends decrease
slower for “heuristically distant” source and target domains. This corroborates the intuition that we
need to penalize uncertain predictions mildly especially when the domain gap is large.

Figure 6: Change of α during training.

Difference between θs and θs,α. We use θs to update the feature extractor φ and test on the
target domain after training. θs,α is only used to search the optimal α, and the gradient does not
back-propagate to φ.

C Additional Experiment Details

C.1 Additional Details of Section 2.1

In Figure 2 (Left), we use VisDA-2017 with 12 classes. To simulate the i.i.d., covariate shift and label
shift setup, we resample the original Synthetic (source) and Real (target) datasets. In the i.i.d. setting,

27

the labeled dataset consists of 1000 random samples per class from Real, and the unlabeled dataset
consists of 1000 random samples (no overlapping with the labeled dataset) per class from Real. In the
covariate shift setting, the labeled dataset consists of 1000 random samples per class from Synthetic,
and the unlabeled dataset consists of 1000 random samples per class from Real. In the label shift
setting, the number of examples is [1800, 1440, 1152, 922, 737, 590, 472, 377, 302, 240, 193, 154]
for each class of the labeled dataset and 1000 for each class of the unlabeled dataset, with both
labeled and unlabeled datasets sampled randomly from Real. We train the model on labeled data until
convergence to generate pseudo-labels for the unlabeled data. Then we calculate the ratio of classes
in pseudo-labels and ground truth.

In Figure 2 (Middle), we also visualize the change of pseudo-label accuracy and the distance dTV
throughout standard self-training on original Synthetic and Real datasets. Here standard self-training
refers to equation 2 with label-sharpening.

In both Figure 2 (Right) and this subsection, confidence refers to the maximum soft-max output
value, and entropy is defined as

∑
i−yilog(yi). We change the confidence threshold from 0 to 1 and

entropy threshold from 0 to log(numclasses). Then we plot the point (False Positive Rate, True
Positive Rate) in the plane.

In Section 2.1, we measure the quality of pseudo-labels with the total variation between pseudo-label
distribution and ground-truth distribution. We show this quantity is upper-bounded by the accuracy
of pseudo-labels. Intuitively, when the pseudo-label distribution and ground-truth distribution are the
same, the output can still be incorrect. (e.g., in a binary problem, P (Y = 1) = P (Y = 0) = 0.5,
and Ŷ ∼ uniform[0, 1] but is independent of X .) Recall that dTV(Y, Ŷ) = supE⊂[C]|P (Y ∈
E) − P (Ŷ ∈ E)|. Suppose the supremum is reached by Ê. Without loss of generality, assume
P (Y = c) > P (Ŷ = c) for all c ∈ Ê. Then P (Y = c) ≤ P (Ŷ = c) for all c /∈ Ê.

P (Y 6= Ŷ) =

C∑
c=1

P (Y = c, Ŷ 6= c)

=
∑
c∈Ê

P (Y = c, Ŷ 6= c) +
∑
c/∈Ê

P (Y = c, Ŷ 6= c)

≥
∑
c∈Ê

P (Y = c)− P (Ŷ = c)

=dTV(Y, Ŷ).

In the equality, we use P (Y = c) > P (Ŷ = c) when c ∈ Ê, so P (Y = c, Ŷ 6= c) ≥ P (Y =

c)− P (Ŷ = c) if c ∈ Ê. Also note that P (Y = c, Ŷ 6= c) ≥ 0 if c /∈ Ê.

In this subsection, we provide additional results of Section 2.1. We visualize the distributions
of pseudo-labels and ground-truth with ResNet-50 backbones on Art→Clipart, Product→Art,
Clipart→Real World, Art→Real World and Real World→Product tasks (without resampling) in
Figures 7, 8, 9, 10, and 11 respectively. We also visualize the ROC curve of pseudo-label selection
with confidence threshold. Results on Art→Clipart, Product→Art, Clipart→Real World, Art→Real
World and Real World→Product are similar to VisDA-2017. When the pseudo-labels are generated
from models trained on different distributions, they can become especially unreliable in that examples
of several classes are almost misclassified into other classes. Domain shift also makes the selection
of correct pseudo-labels more difficult than standard semi-supervised learning.

28

Figure 7: Analysis of pseudo-labels under domain shift on Art→Clipart. Left: Comparison
of pseudo-label distributions with and without domain shift. Right: Comparison of pseudo-label
selection with and without domain shift.

Figure 8: Analysis of pseudo-labels under domain shift on Product→Art. Left: Comparison
of pseudo-label distributions with and without domain shift. Right: Comparison of pseudo-label
selection with and without domain shift.

Figure 9: Analysis of pseudo-labels under domain shift on Clipart→Real World. Left: Compari-
son of pseudo-label distributions with and without domain shift. Right: Comparison of pseudo-label
selection with and without domain shift.

Figure 10: Analysis of pseudo-labels under domain shift on Art→Real World. Left: Comparison
of pseudo-label distributions with and without domain shift. Right: Comparison of pseudo-label
selection with and without domain shift.

Figure 11: Analysis of pseudo-labels under domain shift on Real World→Product. Left: Compar-
ison of pseudo-label distributions with and without domain shift. Right: Comparison of pseudo-label
selection with and without domain shift.

29

C.2 Results on digit datasets

We provide results on the digit datasets to test the performance of the proposed method without using
pre-training. We use DTN architecture following Long et al. [37]. Results in Table 8 indicate that
CST achieve comparable performance to state-of-the-art.

Table 8: Accuracy (%) on digits datasets with DTN

Method MNIST→USPS SVHN→MNIST

CDAN 95.6 ± 0.2 96.9 ± 0.2
RWOT (CVPR 2020) 98.5 ± 0.2 97.5 ± 0.2

CST 98.5 ± 0.2 98.2 ± 0.2

C.3 Results on DomainNet

We test the performance of the proposed method on the 40-class DomainNet [46] subset following
the protocol of Tan et al. [60]. Results in Table 9 indicate that CST outperforms MDD by a large
margin.

Table 9: Accuracy (%) on DomainNet for unsupervised domain adaptation (ResNet-50).
Method R-C R-P R-S C-R C-P C-S P-R P-C P-S S-R S-C S-P Avg.

DANN [22] 63.4 73.6 72.6 86.5 65.7 70.6 86.9 73.2 70.2 85.7 75.2 70.0 74.5
COAL [60] 73.9 75.4 70.5 89.6 70.0 71.3 89.8 68.0 70.5 88.0 73.2 70.5 75.9
MDD [73] 77.6 75.7 74.2 89.5 74.2 75.6 90.2 76.0 74.6 86.7 72.9 73.2 78.4

CST 83.9 78.1 77.5 90.9 76.4 79.7 90.8 82.5 76.5 90.0 82.8 74.4 82.0

C.4 Standard deviations of Tables

We visualize the performance of CST and best baselines in Table 3 with standard deviations. Results
indicate that the improvement of CST over previous methods is significant.

Figure 12: Visualization of standard deviations of CST and baselines. CST outperforms baselines
significantly on all tasks except K→B.

30

D Limitations of CST and Future Directions

CST overcomes the drawbacks of standard pseudo-labeling in domain adaptation by dealing with
the domain discrepancy explicitly with the cycle loss. However, pseudo-labeling is only one main
direction of semi-supervised learning. Consistency regularization [40] and self-ensembling [4]
are also important paradigms in semi-supervised learning. How to apply them to the setting with
distribution shift and achieve consistent performance gain is still an open question. More recently,
Carlini [12] investigated the effect of adversarial unlabeled data poisoning to self-training. Future
works can extend CST to this setting and extend consistency regularization as a potential way of
defense.

E Broader Impact

This work studies and improves self-training in the unsupervised domain adaptation setting. When
deployed in real-world applications, distribution shift between labeled and unlabeled data can come
in various ways. Although the quality of labeled datasets can be monitored, enabling the mitigation
of bias in pre-processing, bias in unlabeled datasets can be intractable. Self-training with biased
unlabeled data is highly risky since it may potentially amplify the biased models predictions. This
work explores how to mitigate the effect of dataset bias in unlabeled data, and can potentially promote
fair self-training systems.

31

	Introduction
	Preliminaries
	Limitations of Standard Self-Training

	Approach
	Cycle Self-Training
	Tsallis Entropy Minimization

	Theoretical Analysis
	CST Provably Works under the Expansion Assumption
	Hard Case for Feature Adaptation and Standard Self-Training

	Experiments
	Setup
	Baselines
	Results
	Analysis

	Related Work
	Conclusion
	Details in Section 4
	Proof of Theorem 1
	Proof of Theorem 2
	Details in Section 4.2
	Setup
	Algorithms

	Proof of Theorem 3
	Proof of Theorem 4

	Implementation Details
	Dataset Details
	Bi-level Optimization
	Selection of

	Additional Experiment Details
	Additional Details of Section 2.1
	Results on digit datasets
	Results on DomainNet
	Standard deviations of Tables

	Limitations of CST and Future Directions
	Broader Impact

