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Abstract

Unsupervised pre-training methods utilizing large and diverse datasets have
achieved tremendous success across a range of domains. Recent work has in-
vestigated such unsupervised pre-training methods for model-based reinforcement
learning (MBRL) but is limited to domain-specific or simulated data. In this paper,
we study the problem of pre-training world models with abundant in-the-wild
videos for efficient learning of downstream visual control tasks. However, in-
the-wild videos are complicated with various contextual factors, such as intricate
backgrounds and textured appearance, which precludes a world model from extract-
ing shared world knowledge to generalize better. To tackle this issue, we introduce
Contextualized World Models (ContextWM) that explicitly separate context and
dynamics modeling to overcome the complexity and diversity of in-the-wild videos
and facilitate knowledge transfer between distinct scenes. Specifically, a contextual-
ized extension of the latent dynamics model is elaborately realized by incorporating
a context encoder to retain contextual information and empower the image decoder,
which encourages the latent dynamics model to concentrate on essential temporal
variations. Our experiments show that in-the-wild video pre-training equipped with
ContextWM can significantly improve the sample efficiency of MBRL in various
domains, including robotic manipulation, locomotion, and autonomous driving.
Code is available at this repository: https://github.com/thuml/ContextWM.

1 Introduction

Model-based reinforcement learning (MBRL) holds the promise of sample-efficient learning for
visual control. Typically, a world model [20, 40] is learned to approximate state transitions and control
signals of the environment to generate imaginary trajectories for planning [22] or behavior learning
[71]. In the wake of revolutionary advances in deep learning, world models have been realized as
action-conditional video prediction models [34] or latent dynamics models [22, 21]. However, given
the expressiveness and complexity of deep neural networks, the sample efficiency of MBRL can still
be limited by the failure to learn an accurate and generalizable world model efficiently.

Pre-training and fine-tuning paradigm has been highly successful in computer vision [82, 26] and
natural language processing [57, 13] to fast adapt pre-trained representations for downstream tasks,
while learning tabula rasa is still dominant in MBRL. Recent work has taken the first step towards
pre-training a world model, named Action-free Pre-training from Videos (APV) [68]. However, it
has been conducted by pre-training on domain-specific and carefully simulated video datasets, rather
than abundant in-the-wild video data [17, 18, 30, 83]. Prior attempts of leveraging real-world video
data result in either underfitting for video pre-training or negligible benefits for downstream visual
control tasks [68]. Against this backdrop, we naturally ask the following question:

Can world models pre-trained on diverse in-the-wild videos benefit sample-efficient learning of
downstream visual control tasks?
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Figure 1: Illustration of In-the-wild Pre-training from Videos (IPV). In various domains, we pre-train
world models with in-the-wild videos by action-free video prediction (left) and then fine-tune the
pre-trained one on downstream visual control tasks with model-based reinforcement learning (right).

It opens up a way to utilize the vast amount of videos available on the Internet and thereby fully
release the potential of this methodology by applying it at scale. Large and diverse data spanning
various scenes and tasks can provide world knowledge that is widely generalizable and applicable
to a variety of downstream tasks. For instance, as depicted in Figure 1, world models for robotic
manipulation tasks can probably benefit not only from videos of humans interacting with target
objects in diverse ways but also from motion videos that embody rigorous physical rules. Analogous
to APV [68], we brand our paradigm as In-the-wild Pre-training from Videos (IPV).

However, in-the-wild videos are of inherent high complexity with various factors, such as intricate
backgrounds, appearance, and shapes, as well as complicated dynamics. Coarse and entangled
modeling of context and dynamics can waste a significant amount of model capacity on modeling
low-level visual details of what is there and prevent world models from capturing essential shared
knowledge of what is happening. Biological studies reveal that in natural visual systems, ∼80%
retinal ganglion cells are P-type operating on spatial detail and color, while ∼20% are M-type
operating on temporal changes [28, 44]. Partially inspired by this, we suggest that leveraging IPV
for world models calls for not only appropriate data and model scaling [35] but more essentially,
dedicated design for context and dynamics modeling.

In this paper, we present the Contextualized World Model (ContextWM), a latent dynamics model
with visual observations that explicitly separates context and dynamics modeling to facilitate knowl-
edge transfer of semantically similar dynamics between visually diverse scenes. Concretely, a
contextualized latent dynamics model is derived to learn with variational lower bound [33, 38] and
elaborately realized by incorporating a context encoder to retain contextual information and a parsimo-
nious latent dynamics model to concentrate on essential temporal variations. Moreover, dual reward
predictors are introduced to enable simultaneously enhancing task-relevant representation learning as
well as learning an exploratory behavior. The main contributions of this work are three-fold:

• From a data-centric view, we systematically study the paradigm of pre-training world models
with in-the-wild videos for sample-efficient learning of downstream tasks, which is much
more accessible and thus makes it possible to build a general-purpose world model.

• We propose Contextualized World Models (ContextWM), which explicitly model both the
context and dynamics to handle complicated in-the-wild videos during pre-training and also
encourage task-relevant representation learning when fine-tuning with MBRL.

• Our experiments show that equipped with our ContextWM, in-the-wild video pre-training
can significantly improve the sample efficiency of MBRL on various domains.

2 Related Work
Pre-training in RL. Three categories of pre-training exist in RL: unsupervised online pre-training,
offline pre-training, and visual representation pre-training. The first two are both domain-specific,
which learn initial behaviors, primitive skills, or domain-specific representations by either online
environment interaction [55, 39] or offline demonstrations [41, 3]. Recent work has explored general-
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purpose visual pre-training using in-the-wild datasets [69, 36, 77, 53, 86, 49, 45] to accelerate policy
learning in model-free manners. Plan2Explore [66], as a model-based method, pre-trains its world
model and exploratory policy simultaneously by online interaction. Ye et al. [81] and Xu et al. [78]
build upon EfficientZero [80] and pre-train their world models using offline experience datasets
across Atari games. To the best of our knowledge, APV [68] is the first to pre-train world models
with datasets from different domains, though the datasets are manually simulated demonstrations by
scripted policies across tasks from RLBench [32], which still lacks diversity and scale.

Visual control with in-the-wild videos. While several existing works leverage demonstration
videos for learning visual control [43, 84, 62], rare efforts have been made to utilize off-the-shelf
video datasets from the Internet. Shao et al. [70] and Chen et al. [9] learn reward functions using
videos from the Something-Something dataset [17]. R3M [49] leverages diverse Ego4D dataset [18]
to learn reusable visual representations by time contrastive learning. Other applications with such
videos include video games [7, 6], visual navigation [8], and autonomous driving [88]. We instead
pre-train world models by video prediction on in-the-wild video datasets.

World models for visual RL. World models that explicitly model the state transitions and reward
signals are widely utilized to boost sample efficiency in visual RL. A straightforward method is to
learn an action-conditioned video prediction model [50, 34] to generate imaginary trajectories. Ha
and Schmidhuber [20] propose to first use a variational autoencoder to compress visual observation
into latent vectors and then use a recurrent neural network to predict transition on compressed
representations. Dreamer [22, 21, 23], a series of such latent dynamics models learning via image
reconstruction, have demonstrated their effectiveness for both video games and visual robot control.
There also have been other methods that learn latent representations by contrastive learning [51, 11]
or value prediction [63, 25]. Recent works also use Transformers [75] as visual encoders [67] or
dynamics models [10, 47, 58] that make world models much more scalable and can be complementary
with our effort to pre-train world models with a vast amount of diverse video data.

Concurrent to our work, SWIM [46] also pre-trains a world model from large-scale human videos
and then transfers it to robotic manipulation tasks in the real world. However, it designs a structured
action space via visual affordances to connect human videos with robot tasks, incorporating a strong
inductive bias and thus remarkably limiting the range of pre-training videos and downstream tasks.

3 Background

Problem formulation. We formulate a visual control task as a partially observable Markov decision
process (POMDP), defined as a tuple (O,A, p, r, γ). O is the observation space,A is the action space,
p(ot | o<t, a<t) is the transition dynamics, r(o≤t, a<t) is the reward function, and γ is the discount
factor. The goal of MBRL is to learn an agent π that maximizes the expected cumulative rewards
Ep,π[

∑T
t=1 γ

t−1rt], with a learned world model (p̂, r̂) approximating the unknown environment.
In our pre-training and fine-tuning paradigm, we also have access to an in-the-wild video dataset
D = {(ot)Tt=1} without actions and rewards to pre-train the world model.

Dreamer. Dreamer [21, 23, 24] is a visual model-based RL method where the world model is
formulated as a latent dynamics model [16, 22] with the following four components:

Representation model: zt ∼ qθ(zt | zt−1, at−1, ot) Image decoder: ôt ∼ pθ(ôt | zt)
Transition model: ẑt ∼ pθ(ẑt | zt−1, at−1) Reward predictor: r̂t ∼ pθ (r̂t | zt)

(1)

The representation model, also known as posterior of zt, approximates latent state zt from previous
state zt−1, previous action at−1 and current observation ot, while the transition model, also known
as prior of zt, predicts it directly from zt−1 and at−1. The overall models are jointly learned by
minimizing the negative variational lower bound (ELBO) [33, 38]:

L(θ) .= Eqθ(z1:T |a1:T ,o1:T )
[ T∑
t=1

(
− ln pθ(ot | zt)− ln pθ(rt | zt) (2)

+βz KL [qθ(zt | zt−1, at−1, ot) ∥ pθ(ẑt | zt−1, at−1)]
)]
.

Behavior learning of Dreamer can be conducted by actor-critic learning purely on imaginary latent
trajectories, for which we refer readers to Hafner et al. [21] for details.
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Action-free Pre-training from Videos (APV). To leverage action-free video data, APV [68] first
pre-trains an action-free variant of the latent dynamics model (with representation qθ(zt | zt−1, ot),
transition pθ(ẑt | zt−1) and image decoder pθ(ôt | zt)) as a video prediction model, which drops
action conditions and the reward predictor from Eq. (1) and Eq. (2). When fine-tuned for MBRL,
APV stacks an action-conditional model (with representation qϕ(st | st−1, at−1, zt) and transition
pϕ(ŝt | st−1, at−1)) on top of the action-free one. Action-free dynamics models and image decoders
are initialized with pre-trained weights θ from video pre-training. Furthermore, to utilize pre-trained
representations for better exploration, APV introduces a video-based intrinsic bonus rintt measuring
the diversity of visited trajectories by random projection and nearest neighbors. The overall models
during fine-tuning are optimized by minimizing the following objective:

L(ϕ, θ) .= Eqϕ(s1:T |a1:T ,z1:T ),qθ(z1:T | o1:T )

[ T∑
t=1

(
− ln pθ(ot|st)

image log loss

− ln pϕ(rt + λrintt |st)
reward log loss

(3)

+βz KL [qθ(zt|zt−1, ot) ∥ pθ(ẑt|zt−1)]
action-free KL loss

+βs KL [qϕ(st|st−1, at−1, zt) ∥ pϕ(ŝt|st−1, at−1)]
action-conditional KL loss

)]
.

4 Contextualized World Models

In this section, we present Contextualized World Models (ContextWM), a framework for both action-
free video prediction and visual model-based RL with explicit modeling of context and dynamics from
observations. Our method introduces: (i) a contextualized extension of the latent dynamics model
(see Section 4.1), (ii) a concrete implementation of contextualized latent dynamics models tailored
for visual control (see Section 4.2). We provide the overview and pseudo-code of our ContextWM in
Figure 3 and Appendix A, respectively.

4.1 Contextualized Latent Dynamics Models

⋯

⋯

a1 a2 a3 aT

r1 r2 rTr3

z1 z2 z3 zT

o1 o2 o3 oTc

⋯

⋯

Figure 2: Probabilistic graphical model
of a contextualized latent dynamics
model, assuming time-invariant context
c and time-dependent dynamics zt. Solid
lines show the generative model and dot-
ted lines show variational inference.

While latent dynamics models have been successfully ap-
plied for simple and synthetic scenes, in-the-wild images
and videos are naturalistic and complex. Our intuition is
that there are two groups of information in the sequence
of observations, namely time-invariant context and time-
dependent dynamics [76, 12, 42, 15]. The context encodes
static information about objects and concepts in the scene,
such as texture, shapes, and colors, while the dynamics
encode the temporal transitions of the concepts, such as
positions, layouts, and motions. To overcome the com-
plexity of in-the-wild videos, it is necessary to explicitly
represent the complicated contextual information, thus
shared knowledge with respect to dynamics can be learned
and generalized across distinct scenes.

We thus propose a contextualized extension of latent dy-
namics models [16, 22], extending Eq. (1). As shown in
Figure 2, the probabilistic model generates the observation ot conditioned not only on the current
latent dynamics zt but also on a context variable c that can include rich information (solid lines in
Figure 2), while the variational inference model approximates the posterior of the latent dynamics
zt conditioned on observations ot and previous states zt−1, without referring to the context (dotted
lines in Figure 2). The proposed design allows contextualized image decoders to reconstruct diverse
and complex observations using rich contextual information, expanding their ability beyond the
expressiveness of latent dynamics variables zt. On the other hand, through the variational information
bottleneck [5, 1], latent dynamics variables zt are encouraged to selectively exclude contextual
information and only capture essential temporal variations that are not included in the context c.
Furthermore, the design of context-unaware latent dynamics inference encourages representation and
transition models to learn this temporal information within a high-level semantic space, in contrast to
merely differentiating with the context frame in the low-level visual space, facilitating the acquisition
of representations more transferable and robust to intricate contexts.
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ô1
<latexit sha1_base64="3PlL4wSiIDfPR/dffd1oLx9CZzo=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGCeWCyhNnJbDJkdnaZ6RXCkr/w4kERr/6NN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecJxwP6IDJULBKFrpMesOKZJ40qv2SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m108IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp+6QvNGcox5ZQpoW9lbAh1ZShDaloQ/AWX14mzWrFu6xc3J+Xazd5HAU4hhM4Aw+uoAZ3UIcGMFDwDK/w5hjnxXl3PuatK04+cwR/4Hz+ACpNkJk=</latexit>

ô2
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(b) Action-conditioned fine-tuning with MBRL

Figure 3: Architecture of Contextualized World Models. Building upon the stacked latent model
from APV [68], we empower the image decoder by incorporating a context encoder that operates in
parallel with the latent dynamics model. The context encoder captures rich contextual information
from a randomly selected context frame and enhances the decoder features of each timestep with
a multi-scale cross-attention mechanism that enables flexible information shortcuts across spatial
positions. This design encourages the latent dynamics model to focus only on essential temporal
variations, while also allowing the decoder to reconstruct complex observations more effectively.

As derived in Appendix B, the overall model can be learned with ELBO of conditional log probability
ln pθ(o1:T , r1:T | a1:T , c), without the need to model the complex distribution of contexts p(c):

L(θ) .= Eqθ(z1:T |a1:T ,o1:T )
context-unaware latent inference

[ T∑
t=1

(
− ln pθ(ot | zt, c)

contextualized image loss

− ln pθ(rt | zt) (4)

+βz KL [qθ(zt | zt−1, at−1, ot) ∥ pθ(ẑt | zt−1, at−1)]
)]
.

4.2 Contextualized World Model Architectures

We then introduce a concrete implementation of contextualized latent dynamics models, specifically
tailored for visual control. Our approach builds upon Dreamer [21], which utilizes a Recurrent State
Space Model (RSSM) [22]. To enable action-free pre-training from videos and action-conditioned
fine-tuning for MBRL, we also incorporate the stacked latent model from APV [68] into our design.
Notably, our work distinguishes itself from previous research through the elaborate design of contex-
tualized components and a dual reward predictor structure that enhances task-relevant representation
learning. An overview of the overall architecture is illustrated in Figure 3.

Context formulation. There exist various choices of contextual information to be conditioned
on, including text descriptions, pre-trained representations, semantic maps, or more sophisticated
structured data [59]. As our focus is on end-to-end visual control, we choose the simplest one solely
based on visual observations: we consider the context c as a single frame of observation randomly
sampled from the trajectory segment o1:T : c .

= ot̃, t̃ ∼ Uniform {1, 2, . . . , T}. It is assumed that
contextual information lies equally in each frame, and by randomly selecting a context frame, our
context encoder should learn to be robust to temporal variations.

Multi-scale cross-attention conditioning. Given the context in the form of a frame of the same size
as the reconstruction ôt, a U-Net [60] architecture would be one of the most appropriate choices to
empower a contextualized image decoder pθ(ôt | zt, c), as its multi-scale shortcuts help to propagate
the information directly from context to reconstruction. Moreover, in our case, the image decoder
learns by also conditioning on latent dynamics zt, as shown in Figure 3. While a conventional U-Net
architecture incorporates shortcut features directly by concatenation or summation and thus forces
a spatial alignment between them, temporal variations such as motions or deformations cannot be
neglected in our case. Inspired by recent advances in generative models [59, 4], we augment the
decoder feature X ∈ Rc×h×w with the context feature Z ∈ Rc×h×w by a cross-attention mechanism
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[75], shown as follows (we refer to Appendix C.3 for details):

Flatten: Q = Reshape (X) ∈ Rhw×c, K = V = Reshape (Z) ∈ Rhw×c

Cross-Attention: R = Attention
(
QWQ,KWK , V WV

)
∈ Rhw×c

Residual-Connection: X = ReLU (X +BatchNorm (Reshape (R))) ∈ Rc×h×w.
(5)

Dual reward predictors. For simplicity of behavior learning, we only feed the latent variable st into
the actor π(at|st) and critic v(st), thus introducing no extra computational costs when determining
actions. However, this raises the question of whether the latent variable st contains sufficient task-
relevant information for visual control and avoids taking shortcuts through the U-Net skip connections.
For example, in robotics manipulation tasks, the positions of static target objects may not be captured
by the time-dependent st, but by the time-invariant context c. We remark that reward predictors
pϕ(rt|st) play a crucial role in compelling the latent variable st to encode task-relevant information,
as the reward itself defines the task to be accomplished. Nevertheless, for hard-exploration tasks
such as Meta-world [85], the video-based intrinsic bonus [68] may distort the exact reward regressed
for behavioral learning and constantly drift during the training process [61], making it difficult for
the latent dynamics model to capture task-relevant signals. Therefore, we propose a dual reward
predictor structure comprising a behavioral reward predictor that regresses the exploratory reward
rt + λrintt for behavior learning, and additionally, a representative reward predictor that regresses
the pure reward rt to enhance task-relevant representation learning [31].

Overall objective. The model parameters of ContextWM can be jointly optimized as follows:

LCWM(ϕ, φ, θ) .= Eqϕ(s1:T |a1:T ,z1:T ),qθ(z1:T | o1:T )
context-unaware latent inference

[∑T
t=1

(
− ln pθ(ot|st, c)

contextualized image loss

− ln pϕ(rt + λrintt |st)
behavioral reward loss

−βr ln pφ(rt|st)
representative reward loss

+βz KL [qθ(zt|zt−1, ot) ∥ pθ(ẑt|zt−1)]
action-free KL loss

(6)

+βs KL [qϕ(st|st−1, at−1, zt) ∥ pϕ(ŝt|st−1, at−1)]
action-conditional KL loss

)]
.

When pre-trained from in-the-wild videos, ContextWM can be optimized by minimizing an objective
that drops action-conditioned dynamics and reward predictors from Eq. (6), similar to APV [68]. For
behavior learning, we adopt the actor-critic learning scheme of DreamerV2 [23]. For a complete
description of pre-training and fine-tuning of ContextWM for MBRL, we refer to Appendix A.

5 Experiments

We conduct our experiments on various domains to evaluate In-the-wild Pre-training from Videos
(IPV) with Contextualized World Models (ContextWM), in contrast to plain world models (WM)
used by DreamerV2 and APV 2. Our experiments investigate the following questions:

• Can IPV improve the sample efficiency of MBRL?
• How does ContextWM compare to a plain WM quantitatively and qualitatively?
• What is the contribution of each of the proposed techniques in ContextWM?
• How do videos from different domains or of different amounts affect IPV with ContextWM?

5.1 Experimental Setup

Visual control tasks. As shown in Figure 4, we formulate our experiments on various visual control
domains. Meta-world [85] is a benchmark of 50 distinct robotic manipulation tasks and we use the
same six tasks as APV [68]. DMC Remastered [19] is a challenging extension of the widely used
robotic locomotion benchmark, DeepMind Control Suite [73], by expanding a complicated graphical
variety. We also conduct an autonomous driving task using the CARLA simulator [14], where an
agent needs to drive as far as possible along Town04’s highway without collision in 1000 timesteps.
See Appendix C.2 for details on visual control tasks.

2In our experiments, we rebrand the APV baseline [68] with the new name ‘IPV w/ Plain WM’ to note that it
is pre-trained on In-the-wild data rather than only Action-free data.
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Figure 4: Example image observations of our visual control benchmark tasks: Meta-world, DMCon-
trol Remastered, and CARLA (left to right).

Pre-training datasets. We utilize multiple in-the-wild video datasets which can potentially benefit
visual control. Something-Something-v2 (SSv2) [17] dataset contains 193K videos of people inter-
acting with objects. Human3.6M [30] dataset contains videos of human poses over 3M frames under
4 different viewpoints. YouTube Driving [88] dataset collects 134 real-world driving videos, over
120 hours, with various weather conditions and regions. We also merge the three datasets to construct
an assembled dataset for the purpose of pre-training a general world model. See Figure 1 for example
video frames and Appendix C.1 for details on data preprocessing.

Implementation details. For the newly introduced hyperparameter, we use βr = 1.0 in Eq. (6) for
all tasks. To ensure a sufficient capacity for both plain WM and ContextWM pre-trained on diverse
in-the-wild videos, we implement visual encoders and decoders as 13-layer ResNets [27]. Unless
otherwise specified, we use the same hyperparameters with APV. See Appendix C.3 for more details.

Evaluation protocols. Following Agarwal et al. [2] and APV, we conduct 8 individual runs for
each task and report interquartile mean with bootstrap confidence interval (CI) for individual tasks
and with stratified bootstrap CI for aggregate results.

5.2 Meta-world Experiments

SSv2 pre-trained results. Figure 5a shows the learning curves on six robotic manipulation tasks
from Meta-world. We observe that in-the-wild pre-training on videos from SSv2 dataset consistently
improves the sample efficiency and final performance upon the DreamerV2 baseline. Moreover, our
proposed ContextWM surpasses its plain counterpart in terms of sample efficiency on five of the six
tasks. Notably, the dial-turn task proves challenging, as neither method is able to solve it. These
results demonstrate that our method of separating context and dynamics modeling during pre-training
and fine-tuning can facilitate knowledge transfer from in-the-wild videos to downstream tasks.

Ablation study. We first investigate the contribution of pre-training in our framework and report
the aggregate performance with and without pre-training at the top of Figure 5b. Our results show
that a plain WM seldom benefits from pre-training, indicating that the performance gain of IPV with
plain WM is primarily due to the intrinsic exploration bonus. This supports our motivation that the
complex contexts of in-the-wild videos can hinder knowledge transfer. In contrast, ContextWM
significantly improves its performance with the aid of video pre-training. Additionally, we evaluate
the contribution of the proposed techniques in ContextWM, as shown at the bottom of Figure 5b.
We experiment with replacing the cross-attention mechanism (Eq. (5)) with simple concatenation
or removing the dual reward predictor structure. Our results demonstrate that all these techniques
contribute to the performance of ContextWM, as both variants outperform the plain WM.

Effects of dataset size. To investigate the effects of pre-training dataset size, we subsample 1.5k
and 15k videos from SSv2 dataset to pre-train ContextWM. Figure 7a illustrates the performance
of ContextWM with varying pre-training dataset sizes. We find that pre-training with only a small
subset of in-the-wild videos can almost match the performance of pre-training with the full data. This
is probably because, despite the diversity of contexts, SSv2 dataset still lacks diversity in dynamics
patterns as there are only 174 classes of human-object interaction scenarios, which can be learned by
proper models with only a small amount of data. It would be interesting for future work to explore
whether there is a favorable scaling property w.r.t. pre-training dataset size when pre-training with
more sophisticated video datasets with our in-the-wild video pre-training paradigm.

Effects of dataset domain. In Figure 7b, we assess pre-training on various video datasets, including
RLBench [32] videos curated by APV [68] and our assembled data of three in-the-wild datasets. We
observe that while pre-training always helps, pre-training from a more similar domain, RLBench,
outperforms that from SSv2. Nevertheless, simulated videos lack diversity and scale and make it
difficult to learn world models that are broadly applicable. Fortunately, in-the-wild video pre-training
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Figure 5: Meta-world results. (a) Learning curves with in-the-wild pre-training on SSv2 dataset, as
measured on the success rate, aggregated across eight runs. (b) Performance of ContextWM and
plain WM with or without pre-training (top) and performance of ContextWM and its variants that
replace the cross-attention mechanism with naive concatenation or remove the dual reward predictor
structure (bottom). We report aggregate results across a total of 48 runs over six tasks.

can continuously improve its performance with a more diverse assembled dataset, suggesting a
promising scalable alternative for domain-specific pre-training.

5.3 DMControl Remastered Experiments

In the top row of Figure 6a, we present the learning curves of IPV from SSv2 dataset and DreamerV2
on the DMC Remastered locomotion tasks. Remarkably, we observe that pre-training with the SSv2
dataset can significantly enhance the performance of ContextWM, even with a large domain gap
between pre-training and fine-tuning. This finding suggests that ContextWM effectively transfers
shared knowledge of separately modeling context and dynamics. In contrast, a plain WM also benefits
from pre-training, but it still struggles to solve certain tasks, such as hopper stand. These results also
suggest that our ContextWM could be a valuable practice for situations where visual generalization is
critical, as ContextWM trained from scratch also presents a competitive performance in Figure 6b.

Effects of dataset domain. Figure 7b demonstrates the performance of pre-training on human
motion videos from the Human3.6M dataset. However, we observe a negative transfer, as pre-training
from Human3.6M leads to inferior performance compared to training from scratch. We argue that the
Human3.6M dataset is collected in the laboratory environment, rather than truly in-the-wild. These
results support our motivation that pre-training data lacking in diversity can hardly help learn world
models that are generally beneficial. Additionally, we experiment with pre-training on the assembled
data of three video datasets but find no significant improvement over SSv2 pre-training.

5.4 CARLA Experiments

The bottom row of Figure 6a displays the learning curves of IPV from the SSv2 dataset and Dream-
erV2 on the CARLA driving task under different weather and sunlight conditions. Similar to the
DMC Remastered tasks, we find that MBRL benefits from pre-training on the SSv2 dataset, despite
a significant domain gap. We observe that in almost all weather conditions, IPV with ContextWM
learns faster than plain WM at the early stages of training and can also outperform plain WM in
terms of the final performance. Minor superiority of ContextWM over plain WM also suggests that
in autonomous driving scenarios, a single frame may not contain sufficient contextual information,
and more sophisticated formulations of contextual information may further enhance performance.

Effects of dataset domain. We then assess the performance of ContextWM on CARLA by pre-
training it from alternative domains. As shown in Figure 7b, we observe that pre-training from
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(a) Learning curves (b) Effects of pre-training

Figure 6: DMC Remastered (top) and CARLA (bottom) results. (a) Learning curves with pre-training
on SSv2 dataset, as measured on the episode return, aggregated across eight runs. (b) Performance of
ContextWM and plain WM with or without pre-training, aggregated across 24 runs over three tasks.
Episode returns of each task in CARLA are normalized to comparable ranges.
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Figure 7: Analysis on pre-training datasets. We report aggregated results over tasks. (a) Performance
of ContextWM on Meta-world tasks, with varying pre-training dataset sizes. (b) Performance of
ContextWM with pre-training on videos from various domains.

the YouTube Driving dataset or a combination of three in-the-wild datasets can both improve upon
learning from scratch. However, neither can significantly surpass the performance achieved by
pre-training from SSv2, despite a narrower domain gap between YouTube Driving and CARLA. We
conjecture that this could be attributed to the higher complexity of the YouTube Driving dataset in
comparison to SSv2. It would be promising to explore the potential of scaling ContextWM further to
capture valuable knowledge from more complex videos.

5.5 Qualitative Analysis

Video prediction. We visually investigate the future frames predicted by a plain WM and Contex-
tWM on SSv2 in Figure 8a. We find that our model effectively captures the shape and motion of
the object, while the plain one fails. Moreover, we also observe that cross-attentions in our model
(Eq. (5)) successfully attend to varying spatial positions of the context to facilitate the reconstruction
of visual details. This shows our model works with better modeling of context and dynamics.

Video representations. We sample video clips of length 25 with two distinct labels (push something
from right to left and from left to right) and visualize the averaged model states of the sampled videos
using t-SNE [74] in Figure 8b. Note that we do not utilize any labels of the videos in pre-training.
Video representations of plain WM may entangle with extra contextual information and thus are not
sufficiently discriminative to object motions. However, ContextWM which separately models context
and dynamics can provide representations well distributed according to different directions of motion.
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Figure 8: Qualitative analysis. (a) Future frames predicted on SSv2. Predictions from our model
well capture the shape and motion of the water cup. Moreover, our context cross-attentions from
the left upper corner (red box) of different frames successfully attend to varying spatial positions of
the context frame. (b) t-SNE visualization of average pooled representations of SSv2 videos with
two distinct labels, from a pre-trained plain WM and ContextWM, respectively. (c) Compositional
decoding analysis on the DMCR domain, where fine-tuned ContextWM is able to combine the new
context with dynamics information from the original trajectory.

Compisitional decoding. We conduct a compositional decoding analysis by sampling a random
frame from another trajectory to replace the original context and leaving dynamics the same. As
shown in Figure 8c, ContextWM correctly combines the new context with the original dynamics
information. These results show that our model, fine-tuned on the DMCR domain, has successfully
learned disentangled representations of contexts and dynamics. In contrast, the plain WM suffers
from learning entangled representations and thus makes poor predictions about the transitions.

6 Discussion

This paper presents Contextualized World Models (ContextWM), a framework for both action-free
video prediction and visual model-based RL. We apply ContextWM to the paradigm of In-the-wild
Pre-training from Videos (IPV), followed by fine-tuning on downstream tasks to boost learning
efficiency. Experiments demonstrate the effectiveness of our method in solving a variety of visual
control tasks from Meta-world, DMC Remastered, and CARLA. Our work highlights not only the
benefits of leveraging abundant in-the-wild videos but also the importance of innovative world model
design that facilitates knowledge transfer and scalable learning.

Limitations and future work. One limitation of our current method is that a randomly selected
single frame may not sufficiently capture complete contextual information of scenes in real-world
applications, such as autonomous driving. Consequently, selecting and incorporating multiple
context frames as well as multimodal information [59] for better context modeling need further
investigation. Our work is also limited by medium-scale sizes in terms of both world models and
pre-training data, which hinders learning more broadly applicable knowledge. An important direction
is to systematically examine the scalability of our method by leveraging scalable architectures like
Transformers [47, 67] and massive-scale video datasets [18, 48]. Lastly, our work focuses on pre-
training world models via generative objectives, which utilize the model capacity inefficiently on
image reconstruction to overcome intricate contexts. Exploring alternative pre-training objectives,
such as contrastive learning [51, 11] or self-prediction [65, 80], could further release the potential of
IPV by eliminating heavy components on context modeling and focusing on dynamics modeling.
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A Pseudocode

For clarity, we first elaborate on the optimization objective for contextualized world models during
action-free pre-training, which drops action-conditioned dynamics and reward predictors from the
fine-tuning objective (Eq. (6)):

LCWM-pt(θ) .= Eqθ(z1:T | o1:T )
context-unaware latent inference

[∑T
t=1

(
− ln pθ(ot|zt, c)

contextualized image loss

(7)

+βz KL [qθ(zt|zt−1, ot) ∥ pθ(ẑt|zt−1)]
action-free KL loss

)]
.

For behavior learning, we adopt the same actor-critic learning scheme based purely on imaginary
latent trajectories ŝτ , âτ , r̂τ with horizon H , as DreamerV2 [21, 23]. The critic vξ(s) is learned by
regressing the λ-target [72, 64]:

Lcritic(ξ) .= Epϕ,πψ

[
t+H∑
τ=t

1

2

(
vξ(ŝτ )− sg(V λτ )

)2]
, (8)

V λτ
.
= r̂τ + γ

{
(1− λ)vξ(ŝτ+1) + λV λτ+1 if τ < t+H

vξ(ŝτ+1) if τ = t+H,
(9)

where sg is a stop gradient function. And the actor πψ(a|s) is learned by maximizing the imagined
return by back-propagating the gradients through the learned world model, with an entropy regularizer:

Lactor(ψ) .= Epϕ,πψ

[
t+H∑
τ=t

(
−V λτ − ηH [πψ(aτ |ŝτ )]

)]
, (10)

Overall, a complete description of pre-training and fine-tuning of ContextWM for MBRL is presented
in Algorithm 1.

B Derivations

The variational bound for contextualized latent dynamics models p(o1:T , r1:T | a1:T , c) and a
variational posterior q(z1:T | a1:T , o1:T ) follows from importance weighting and Jensen’s Inequality
as shown 3,

ln p(o, r|a, c) ≥ Eq(z|a,o)
[
ln
p(o, r, z|a, c)
q(z|a, o)

]
= Eq(z|a,o) [ln p(o, r|z, a, c)]− KL [q(z|a, o)∥p(z|a)]

= Eq(z|a,o)

[
T∑
t=1

ln p(ot|zt, c) + ln p(rt|zt)

]
− KL [q(z|a, o)∥p(z|a)] ,

where

KL [q(z|a, o)∥p(z|a)] =
∫
z

q(z|a, o) ln
T∏
t=1

q(zt|zt−1, at−1, ot)

p(zt|zt−1, at−1)
dz

=

T∑
t=1

[ ∫
z1:t−1

dz1:t−1 q(z1:t−1|o, a)
∫
zt

dzt q(zt|zt−1, at−1, ot) ln
q(zt|zt−1, at−1, ot)

p(zt|zt−1, at−1)∫
zt+1:T

dzt+1:T q(zt+1:T |a, o)
]

=

T∑
t=1

Eq(zt−1|a,o)KL [q(zt|zt−1, at−1, ot)∥p(zt|zt−1, at−1)] .

3For brevity, we denote z1:T , a1:T , o1:T , r1:T as z, a, o, r, respectively.

16



Algorithm 1 Contextualized World Models with In-the-wild Pre-training from Videos

1: // Action-free pre-training with in-the-wild videos
2: Initialize parameters θ of action-free dynamics model, image encoder, and decoder randomly
3: Load in-the-wild video dataset D
4: for each training step do
5: // WORLD MODEL PRE-TRAINING
6: Sample random minibatch {o1:T } ∼ D
7: Get context c← ot̃, t̃ ∼ Uniform {1, T}
8: Update world model by minimizing LCWM-pt(θ) in Eq. (7)
9: end for

10: // Action-conditioned fine-tuning with MBRL
11: Load pre-trained parameters θ of action-free dynamics model, image encoder, and decoder
12: Initialize parameters ϕ, φ of action-conditioned dynamics model and reward predictors randomly
13: Initialize parameters ψ, ξ of actor πψ(a|s) and critic vξ(s)
14: Initialize replay buffer B with random seed episodes
15: for each timestep t do
16: // COLLECT TRANSITIONS
17: Get representation zt ∼ qθ(zt|zt−1, at−1, ot), st ∼ qϕ(st|st−1, at−1, zt)
18: Get action at ∼ πψ(at|st)
19: Add transition {(ot, at, rt)} to replay buffer B
20: // WORLD MODEL FINE-TUNING
21: Sample random minibatch {(o1:T , a1:T , r1:T )} ∼ B
22: Get context c← ot̃, t̃ ∼ Uniform {1, T}
23: Update world model by minimizing LCWM(ϕ, φ, θ) in Eq. (6)

24: // BEHAVIOR LEARNING
25: Imagine future rollouts {ŝτ , âτ , r̂τ + λr̂intτ } using world model and actor
26: Update actor and critic by minimizing objectives in Eq. (8) and Eq. (10)
27: end for

Overall, we have a lower bound on the log-likelihood of the data:

ln p(o, r|a, c) ≥ Eq(z|a,o)

[
T∑
t=1

(
ln p(ot|zt, c) + ln p(rt|zt)− KL [q(zt|zt−1, at−1, ot)∥p(zt|zt−1, at−1)]

)]
.

We can also calculate that the tightness of the bound is KL [q(z|a, o)∥p(z|a, o, r, c)].

C Experimental Details

C.1 Data Preprocessing

We use three common video datasets for in-the-wild video pre-training. All inputs are resized to
64×64 pixels.

Something-Something-v2. The Something-Something-v2 dataset4 [17] shows footage of humans
interacting with common everyday objects. We use all videos in the training set but filter out videos
less than 25 frames long, resulting in a total of 162K videos for pre-training.

Human3.6M. The Human3.6M dataset5 [30] contains videos of various activities performed by 11
human subjects. We use the particular dataset processed by Pavlakos et al. [56], which includes a
total of 840 videos with 210 scenarios and 4 different viewpoints for each scenario. Each video has
around 500 frames. To make sure the images used for pre-training better fit our downstream tasks,
we place the subject at the center of each frame by cutting a bounding box calculated from the 3D
joint positions provided by the dataset. In addition, a padding of 200 pixels is performed around

4https://developer.qualcomm.com/software/ai-datasets/something-something
5http://vision.imar.ro/human3.6m/description.php
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the bounding box so that the subject is properly positioned. The image clipped using the padded
bounding box is then resized to 64×64 pixels.

YouTube Driving. The YouTube Driving dataset6 [88] consists of real-world driving videos with
different road and weather conditions. As videos in this dataset usually have a short opening, the first
100 frames of each video are skipped. The original video is downsampled 5 times. We employ all
134 videos in our pre-training process, with each video containing roughly 10000 to 20000 frames.

Assembled Dataset. We compose the three datasets mentioned above into an assembled dataset.
On each sample, we uniformly choose a dataset from the three choices and sample videos from that
dataset accordingly.

C.2 Benchmark Environments

Meta-world. Meta-world [85] is a benchmark of 50 distinct robotic manipulation tasks. Following
APV [68], we use a subset of six tasks, namely Lever Pull, Drawer Open, Door Lock, Button Press
Topdown Wall, Reach, and Dial Turn. In all tasks, the episode length is 500 steps without any action
repeat. The action dimension is 4, and the reward ranges from 0 to 10. All methods are trained over
250K environment steps, which is consistent with the setting of APV [68].

DMC Remastered. The DMC Remastered (DMCR) Suite [19] is a variant of the DeepMind
Control Suite [73] with randomly generated graphics emphasizing visual diversity. On initialization
of each episode for both training and evaluation, the environment makes a random sample for 7
factors affecting visual conditions, including floor texture, background, robot body color, target
color, reflectance, camera position, and lighting. Our agents are trained and evaluated on three tasks:
Cheetah Run, Hopper Stand, and Walker Run. All variation factors are used except camera position
in the Hopper Stand task, where we find it too difficult for the agent to learn when the camera is
randomly positioned and rotated. Following the common setup of DeepMind Control Suite [21, 79],
we set the episode length to 1000 steps with an action repeat of 2, and the reward ranges from 0 to 1.
All methods are trained over 1M environment steps.

CARLA. CARLA [14] is an autonomous driving simulator. We conduct a task using a similar
setting as Zhang et al. [87], where the agent’s goal is to progress along a highway in 1000 time-steps
and avoid collision with 20 other vehicles moving along. The maximum episode length is set to
1000 without action repeat. Possible reasons to end an episode early include deviation from the
planned route, driving off the road, and being stuck in traffic due to collisions. Each action in the
CARLA environment is made up of a steering dimension and an accelerating dimension (or braking
for negative acceleration). In addition to the reward function in Zhang et al., we add a lane-keeping
reward to prevent our agent from driving on the shoulder. Our reward function is as follows:

rt = vTegoûh ·∆t · |center| − λ1 · impluse− λ2 · |steer|

The first term represents the effective distance traveled on the highway, where vego is the velocity
vector projected onto the highway’s unit vector ûh, multiplied by a discretized time-step ∆t =
0.05 and a lane-keeping term |center| to penalize driving on the shoulder. The impulse term
represents collisions during driving, while the steer ∈ [−1, 1] term prevents excessive steering. The
hyperparameters λ1 and λ2 are set to 10−3 and 1, respectively. The central camera of the agent,
observed as 64 × 64 pixels, is used as our observation. We use three different weather and sunlight
conditions offered by CARLA for training and evaluation: ClearNoon, WetSunset, and dynamic
weather. In the dynamic weather setting, a random weather and sunlight condition is sampled at the
start of each episode and changes realistically during the episode. To aggregate per-weather scores,
we normalize raw episode returns of each weather to comparable ranges. Namely, we linearly rescale
episode returns from [−400, 1200] under ClearNoon, [−400, 800] under WetSunset, and [−400, 600]
under dynamic weather to a unified range of [0, 1]. All methods are trained over 150K environment
steps.

6https://github.com/metadriverse/ACO
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stage name output size image encoder

conv_in 32×32 3×3, 48, stride 2

stage1 16×16

[
3×3, 48
3×3, 48

]
×2

average pool 2×2, stride 2

stage2 8×8

[
3×3, 96
3×3, 96

]
×2

average pool 2×2, stride 2

stage3 4×4

[
3×3, 192
3×3, 192

]
×2

average pool 2×2, stride 2

Table 1: Architecture for image encoders in world models. Building residual blocks [27] are shown
in brackets, with the number of blocks stacked. Numbers inside each bracket indicate the kernel size
and output channel number of the corresponding building block, e.g. 3×3, 192 means one of the
convolutions in the block uses a 3×3 kernel and the number of output channels is 192. We use Batch
Normalization [29] and ReLU activation function.

C.3 Model Details

Overall model. We adopt the stack latent model introduced by APV [68] and extend it into a
Contextualized World Model (ContextWM) with the following components:

Action-free{
Representation model: zt ∼ qθ(zt | zt−1, ot)

Transition model: ẑt ∼ pθ(ẑt | zt−1)

Action-conditional{
Representation model: st ∼ qϕ(st | st−1, at−1, zt)

Transition model: ŝt ∼ pϕ(ŝt | st−1, at−1)

Dual reward predictors{
Representative reward predictor: r̂t ∼ pφ(r̂t | st)
Behavioral reward predictor: r̂t + λr̂intt ∼ pϕ(r̂t + λr̂intt | st)
Contextualized image decoder: ôt ∼ pθ(ôt | st, c). (11)

Specifically, the action-free representation model utilizes a ResNet-style image encoder to process
observation input ot. Moreover, the contextualized image decoder also incorporates a similar context
encoder to extract contextual information from the context frame c and augment the decoder features
with a cross-attention mechanism. We elaborate on the details below.

Image encoders and decoder. To ensure a sufficient capacity for both plain WM and ContextWM
pre-trained on diverse in-the-wild videos, we implement image encoders and decoders as 13-layer
ResNets [27]. For the sake of simplicity, we only show the architecture of the image encoder in
Table 1, as the architecture of the context encoder is exactly the same, and the architecture of the
image decoder is symmetric to the encoders. In the decoder, we use nearest-neighbor upsampling for
unpooling layers. The outputs of the last residual block of two stages in the context encoder (stage2
and stage3) before average pooling (thus in the shape of 16× 16 and 8× 8 respectively) are passed
to the corresponding residual block of the image decoder and used to augment the incoming decoder
features with cross-attention.

Context cross-attention. The input features X ∈ Rc×h×w of residual blocks in the image decoder
are augmented with shortcut features Z ∈ Rc×h×w of the same shape from the context encoder, by a
cross-attention mechanism as Eq. (5). Here we elaborate on the details. After Z is flattened into a
sequence of tokens ∈ Rhw×c, to mitigate the quadratic complexity of cross-attention, we random
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mask 75% of the tokens, resulting tokens of the length ⌊ 14hw⌋. Moreover, we use learned position
embedding ∈ Rhw×c initialized with zeros for both Q and K,V , respectively.

Context augmentation. We randomly sample a frame of observation from the trajectory segment
as the input to the context encoder. To prevent the image decoder from taking a shortcut by trivially
copying the context frame and thus impeding the training process, we apply random Cutout [89]
as image augmentation on the context frame for all Meta-world tasks (except drawer open), as
Meta-World observations have a static background and a fixed camera position. Note that we do not
utilize any augmentation for DMCR and CARLA tasks. Our comparison with plain WM is fair since
we do not introduce any augmentation into the image encoder of the latent dynamics models, thus the
agent determines its actions solely based on the original observation.

Latent dynamics model. The stacked latent model from APV [68] is adopted to enable action-free
pre-training and action-conditioned fine-tuning, where both the action-free and action-conditioned
models are built upon the discrete latent dynamics model introduced in DreamerV2 [23], where the
latent state consists of a deterministic part and a discrete stochastic part. Inputs to the latent dynamics
model are representations from the image encoder. Following APV [68], we use 1024 as the hidden
size of dense layers and the deterministic model state dimension.

Reward predictors, actor, and critic. Both of the dual reward predictors, as well as actor and
critic, are all implemented as 4-layer MLPs with the hidden size 400 and ELU activation function,
following DreamerV2 [23] and APV [68].

C.4 Hyperparameters

For the newly introduced hyperparameter, we use βr = 1.0 for all tasks. We set βz = 1.0 for
pre-training, and βz = 0.0, βs = 1.0 for fine-tuning, following APV [68]. Despite we adopt a deeper
architecture for both image encoders and decoders, we find that hyperparameters are relatively robust
to architectures, and the new deeper architecture under the same hyperparameters can match or even
slightly improve the performance originally reported by APV. Thus, we use the same hyperparameters
with APV. For completeness, we report important hyperparameters in Table 2.

C.5 Qualitative Analysis Details

We explain the visualization scheme for Figure 8. For video prediction in Figure 8a, we sample a
video clip of length 25 and let the model observe the first 15 frames and then predict the future 10
frames open-loop by the latent dynamics model. The context frame is selected as the last of the
observed 15 frames. To visualize context attention, we compute the cross-attention weight across
the 16× 16 feature maps without random masking and plot a heatmap of the weights averaged over
attention heads and over attention targets of a small region (for example, 3×3) on the decoder feature
map. For video representations in Figure 8b, we sample video clips of length 25 and compute the
averaged model states avg(z1:T ) of dimension 2048 for each video clip, which are then visualized by
t-SNE [74].

C.6 Computational Resources

We implement all the methods based on PyTorch [54] and train with automatic mixed precision. In
terms of parameter counts, ContextWM consists of 26M and 47M parameters for video pre-training
and MBRL, respectively, while a plain WM consists of 24M and 44M parameters. In terms of
training time, it takes ∼37 hours for pre-training of ContextWM over 600K iterations, and fine-
tuning of ContextWM with MBRL requires ∼24 hours for each run of Meta-world experiments
over 250K environment steps, ∼23 hours for each run of DMC Remastered experiments over 1M
environment steps and ∼16 hours for each run of CARLA experiments over 150K environment steps,
respectively. Although ContextWM introduces new components of the model, we find it does not
significantly impact the training time, since the context encoder only needs to operate on one frame
of observations, and the cross-attention between features also accounts for a relatively small amount
of computation. In terms of memory usage, Meta-world experiments require ∼18GB GPU memory,
and DMC Remastered and CARLA experiments require ∼7GB GPU memory, thus the experiments
can be done using typical 24GB and 12GB GPUs, respectively.
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Table 2: Hyperparameters in our experiments. We use the same hyperparameters as APV [68].

Hyperparameter Value

Pre-training
from Videos

Image size 64× 64× 3
Image preprocess Linearly rescale from [0, 255] to [−0.5, 0.5]
Video segment length T 25
KL weight βz 1.0
Optimizer Adam [37]
Learning rate 3× 10−4

Batch size 16
Training iterations 6× 105 for SSv2 / Human / YouTubeDriving

1.2× 106 for Assembled dataset

Fine-tuning
with MBRL

Observation size 64× 64× 3
Observation preprocess Linearly rescale from [0, 255] to [−0.5, 0.5]
Trajectory segment length T 50
Random exploration 5000 environment steps for Meta-world

1000 environment steps for DMCR and CARLA
Replay buffer capacity 106

Training frequency Every 5 environment steps
Action-free KL weight βz 0.0
Action-conditional KL weight βs 1.0
Representative reward predictor weight βr 1.0
Intrinsic reward weight λ 1.0 for Meta-world

0.1 for DMCR and CARLA
Imagination horizon H 15
Discount γ 0.99
λ-target discount 0.95
Entropy regularization η 1× 10−4

Batch size 50 for Meta-world
16 for DMCR and CARLA

World model optimizer Adam
World model learning rate 3× 10−4

Actor optimizer Adam
Actor learning rate 8× 10−5

Critic optimizer Adam
Critic learning rate 8× 10−5

Evaluation episodes 10 for Meta-world and DMCR
5 for CARLA

D Additional Experimental Results

D.1 Comparison with Additional Baselines

We compare our approach with a state-of-the-art model-free RL method DrQ-v2 [79] and a model-
based RL method Iso-Dream [52]. We adapt their official implementations78 to all the tasks in our
experiments and present the results in Figure 9. As shown, our method consistently outperforms state-
of-the-art baselines, which demonstrates the merit of pre-training from in-the-wild videos. Model-free
methods such as DrQ-v2 have been shown to perform worse than model-based methods [68, 79],
and our results are consistent with this. We also remark that our method differs from Iso-Dream
[52] since we separate modeling of context and dynamics at the semantic level while Iso-Dream
isolates controllable and noncontrollable parts at the pixel level. Thus, contextual information such as
body color has to be modeled by the dynamics branch in Iso-dream, which probably results in worse
decoupling of context and dynamics as well as inferior performance for challenging tasks. Moreover,
compared to Iso-Dream, our model makes a simpler adjustment to Dreamer architecture.

7https://github.com/facebookresearch/drqv2
8https://github.com/panmt/Iso-Dream
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(b) Meta-world
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(c) DMC Remastered
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Figure 9: Comparison with additional baselines, DrQ-v2 [79] and Iso-Dream [52]. (a) Aggregate
performance of different methods across all tasks on each domain. (b)(c)(d) Learning curves of
different methods on each task from Meta-world, DMC Remastered, and CARLA, respectively. We
report aggregate results across eight runs for each task.
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Figure 10: Learning curves of IPV with ContextWM on Meta-world manipulation tasks when only
the pre-trained parameters of the visual encoders and decoder are transferred, i.e., without transferring
dynamics knowledge obtained by pre-training (denoted by Enc / Dec Only). We report success rates,
aggregated across eight runs for each task.

D.2 Effects of Dynamics Knowledge

To investigate the importance of dynamics knowledge captured by pre-trained ContextWM, we
report the performance of IPV with ContextWM when only the pre-trained parameters of the visual
encoders and decoder are transferred. Figure 10 indicates that only transferring visual encoders and
decoder performs worse on four of six tasks. These results align with the observation of APV [68]
and highlight that pre-trained world models are capable to capture essential dynamics knowledge
beyond learning visual representations solely [49, 53], further boosting visual control learning.

E Additional Discussions

Particularly strong performance gains on DMCR tasks. Our method obtains considerable
performance gains on DMCR tasks. The main reason is that DMCR is a purposefully designed
benchmark, which measures visual generalization and requires the agent to extract task-relevant
information as well as ignore visual distractors [19]. As demonstrated in Figure 8c, our ContextWM
has the advantage of separately modeling contexts (task-irrelevant in DMCR) and dynamics (task-
relevant in DMCR), which avoids wasting the capacity of dynamics models in modeling low-level
visual details. Furthermore, pre-training with in-the-wild videos enables our models to eliminate
diverse distractors and capture shared motions, which is essential for visual generalization in RL. In
contrast, a plain WM needs to model complicated contexts and dynamics in an entangled manner,
which adds difficulty to dynamics learning and behavior learning on these features. We also emphasize
that, motivated by separating contexts and enhancing temporal dynamics modeling, our proposed IPV
w/ ContextWM is a general-purpose framework and, as shown in our experiments, can obtain adequate
performance gains on various benchmarks that have more complicated entangling of contexts and
dynamics beyond DMCR.

Discussion with Transformer-based world models. While a cross-attention mechanism is lever-
aged for context information conditioning, we still use an RNN-based latent dynamics model from
Dreamer [21] to model history observations. More powerful sequential backbones such as Transform-
ers are orthogonal to our primary technical contribution of explicit context modeling and conditioning.
Nevertheless, exploring Transformer-based world models [10, 47, 58] is valuable, not only because
of its favorable scalability but also of its flexibility to incorporate pre-training on action-free videos
by simply changing conditioning variables and to condition the contextualized decoder in a more
native way. Overall, the combination of our pre-training framework with a Transformer architecture
holds great potential, and we will delve deeper into this aspect in future work.
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F Additional Visualizations

Video prediction. We present additional showcases of video prediction by plain WM and Contex-
tWM, respectively, on three video datasets, in Figure 11. On the challenging Something-Something-v2
and YouTube Driving datasets, our model provides better prediction quality in comparison to a plain
WM and well captures dynamics information (e.g., how objects are moving) with concentrated
cross-attention. However, on the Human3.6M dataset, although our model better predicts human
motions, we find its context cross-attention is relatively divergent. This result supports our conjecture
that our model pre-trained on the Human3.6M dataset lacking in diversity may suffer from overfitting,
which results in insufficient modeling of context and dynamics as well as inferior performance when
fine-tuned with MBRL.
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Figure 11: Future frames predicted by plain WM and ContextWM, respectively, on three in-the-wild
video datasets. We also visualize context attention weight from a target region of prediction (red box)
to the context frame. We refer to Appendix C.5 for details.
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Video representation. We present in Figure 12 additional t-SNE visualization similar to Figure 8.
Our ContextWM learns well-distributed representations that clearly separate motion directions while
plain WM fails.

Compositional decoding. Figure 13 includes additional compositional decoding analysis on the
DMCR Walker Run task.

Figure 12: Additional t-SNE visualization of average pooled representations of SSv2 videos with two
distinct labels, from a pre-trained plain WM and ContextWM, respectively.
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Figure 13: Additional compositional decoding analysis on the DMCR Walker Run task.

G Broader Impact

Advancements in world models and training them with in-the-wild videos can raise concerns about the
generation of deepfakes, realistic synthetic videos that mimic real events or individuals. Additionally,
advancements in MBRL can also increase automation in domains like robotic manipulation and
autonomous driving, bringing efficiency and safety benefits but also leading to job displacement and
socioeconomic consequences. However, it is important to note that as the field is still in its early
stages of development and our model is only a research prototype, the aforementioned negative social
impacts are not expected to manifest in the short term.
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