Composite Correlation Quantization for Efficient Multimodal Retrieval

Mingsheng Long1, Yue Cao1, Jianmin Wang1, and Philip S. Yu1,2

1School of Software
Tsinghua University

2Department of Computer Science
University of Illinois, Chicago

ACM Conference on Research and Development in Information Retrieval, SIGIR 2016
Outline

1. Introduction
 - Problem
 - Effectiveness and Efficiency
 - Previous Work

2. Composite Correlation Quantization
 - Multimodal Correlation
 - Composite Quantization
 - Optimization Framework

3. Evaluation
 - Results
 - Discussion

4. Summary
Multimodal Understanding

- How to utilize multimodal data to understand our real world?
 - Isomorphic space: integration, fusion, correlation, transfer, ...
Multimodal Retrieval

- Nearest Neighbor (NN) similarity retrieval across modalities
 - Database: $\mathcal{X}^{\text{img}} = \{x_1^{\text{img}}, \ldots, x_N^{\text{img}}\}$ and Query: q^{txt}
 - Cross-modal NN: $\text{NN} \left(q^{\text{txt}} \right) = \min_{x^{\text{img}} \in \mathcal{X}^{\text{img}}} d \left(x^{\text{img}}, q^{\text{txt}} \right)$

Figure: Cross-modal retrieval: similarity retrieval across media modalities.

(a) $I \rightarrow T$ (Image Query on Text DB)
(b) $T \rightarrow I$ (Text Query on Image DB)

Precision: 0.625
Multimodal Embedding

Multimodal embedding reduces cross-modal heterogeneity gap

- **Coupling**: $\min \sum_{i=1}^{N} d(z_{i}^{\text{img}}, z_{i}^{\text{txt}}) \rightarrow$ more flexible
- **Fusion**: $z_{i} = f(z_{i}^{\text{img}}, z_{i}^{\text{txt}}) \rightarrow$ tighter relationship

“A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop”
Indexing and Hashing

- Approximate Nearest Neighbor (ANN) Search
 - Exact Nearest Neighbor Search: linear scan $O(NP)$
 - Efficient, acceptable accuracy, practical solutions

- Reduce the number of distance computations: $O(N'P)$, $N' \ll N$
 - Indexing: tree, neighborhood graph, inverted index, ...

- Reduce the cost of each distance computation: $O(NP')$, $P' \ll P$
 - Hashing: Locality-Sensitive Hashing, Spectral Hashing, ...
 - Produce a few distinct distances (curse of dimensionality)
 - Limited ability and flexibility of distance approximation

- Quantization: Vector Quantization (VQ), Iterative Quantization (ITQ), Product Quantization (PQ), Composite Quantization (CQ)
 - K-means: Impossible for medium and long codes (large K)
Multimodal Hashing

Previous work: separate pipeline for Multimodal Embedding and Binary Encoding → large information loss, unbalanced encoding
Problem Definition

Definition (Composite Correlation Quantization, CCQ)

Given an image set \(\{x_n^1\}_{n=1}^{N_1} \in \mathbb{R}^{P_1} \) and a text set \(\{x_n^2\}_{n=1}^{N_2} \in \mathbb{R}^{P_2} \), learn two correlation mappings \(f^1 : \mathbb{R}^{P_1} \mapsto \mathbb{R}^D \) and \(f^2 : \mathbb{R}^{P_2} \mapsto \mathbb{R}^D \) that transform images and texts into a \(D \)-dimensional isomorphic latent space, and jointly learn two composite quantizers \(q^1 : \mathbb{R}^D \mapsto \{0, 1\}^H \) and \(q^2 : \mathbb{R}^D \mapsto \{0, 1\}^H \) that quantize latent embeddings into compact \(H \)-bits binary codes.
A Latent Semantic Analysis (LSA) optimization framework

\[x_n^v \approx R^v C^v b_n^v, \]

where \(R^v \) is correlation-maximal mapping, \(C^v \) is similarity-preserving codebook, \(b_n^v \) is compact binary code

- Multimodal Embedding: Correlation Mapping & Code Fusion
- Composite Quantization: Isomorphic Space (shared codebook)

A “simple and reliable” approach to efficient multimodal retrieval
Multimodal Correlation

- Paired data matrices: \(X^1 = [x^1_1, \ldots, x^1_N], X^2 = [x^2_1, \ldots, x^2_N] \)
- Fusion representation matrix: \(Z = [z_1, \ldots, z_N] \)
- Transformation matrices: \(R^1, R^2 \), which transform \(X \) into \(Z \)

\[
\min_{R^1, R^2, Z} \lambda_1 \left\| R^1^T X^1 - Z \right\|_F^2 + \lambda_2 \left\| R^2^T X^2 - Z \right\|_F^2
\]

(1)
This problem is **ill-posed**, which cannot be solved successfully.

\[
\min_{R^1, R^2, Z} \lambda_1 \left\| R^1 X^1 - Z \right\|_F^2 + \lambda_2 \left\| R^2 X^2 - Z \right\|_F^2
\]

\[
Z = \frac{\lambda_1 R^1 X^1 + \lambda_2 R^2 X^2}{\lambda_1 + \lambda_2}
\]

\[
R^1 = \left(X^1 X^{1T} \right)^{-1} X^1 Z^T
\]

\[
R^2 = \left(X^2 X^{2T} \right)^{-1} X^2 Z^T
\]
Multimodal Correlation

Add the covariance maximization with orthogonal constraints

\[
\begin{align*}
\min_{R^1, R^2, Z} & \quad \lambda_1 \left(\left\| R^1^T X^1 - Z \right\|_F^2 + \left\| R^1_\perp^T X^1 \right\|_F^2 \right) \\
& \quad + \lambda_2 \left(\left\| R^2^T X^2 - Z \right\|_F^2 + \left\| R^2_\perp^T X^2 \right\|_F^2 \right) \\
\min_{R^1, R^2, Z} & \quad \lambda_1 \left\| X^1 - R^1 Z \right\|_F^2 + \lambda_2 \left\| X^2 - R^2 Z \right\|_F^2
\end{align*}
\]
Composite Quantization

- Learn M codebooks: $C = [C_1, \ldots, C_M]$, each codebook has K codewords $C_m = [c_{m1}, \ldots, c_{mk}]$ (cluster centroids of K-means)
- Each z_i is approximated by the addition of M codewords
- One per codebook, each selected by the binary assignment b_{mi}
- Code representation: $i_1i_2\ldots i_M$, where $i_m = \text{nz}(b_{mi})$
- Code length: $M \log_2 K$ (1-of-K encoding)

$$z \approx \hat{z} = C_1b_1 + C_2b_2 + \ldots + C_Mb_M$$
$$= c_{1i_1} + c_{2i_2} + \ldots + c_{Mi_M}$$

$C_1 = [c_{11}, \ldots, c_{1K}]$ $C_2 = [c_{21}, \ldots, c_{2K}]$ \ldots $C_M = [c_{M1}, \ldots, c_{MK}]$
Composite Quantization

- Learn M codebooks: $C = [C_1, \ldots, C_M]$, each codebook has K codewords $C_m = [c_{m1}, \ldots, c_{mK}]$ (cluster centroids of K-means)
- Binary code matrices: $B = [B_1; \ldots; B_M], B_m = [b_{m1}; \ldots; b_{mN}]$
- Control binary codes quality by quantization error minimization

$$
\min_{Z, C, B} \left\| Z - \sum_{m=1}^{M} C_m B_m \right\|_F^2 = \sum_{i=1}^{N} \left\| z_i - \sum_{m=1}^{M} C_m b_{mi} \right\|_2^2 \quad (8)
$$

"A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop"
Composite Correlation Quantization

- Pro 1: Joint optimization: correlation, covariance & quantization
- Pro 2: Semi-Paired Data Quantization through the δ function
- Pro 3: Shared codebook & coding enables multimodal retrieval
- Pro 4: Easy configurations $H = M \log_2 K$, $D = \min(V, H)$

$$\min_{R^v, C, B^v} \sum_{v=1}^{V} \sum_{n=1}^{N_v} \lambda_v \left\| x_n^v - R^v \sum_{m=1}^{M} C_m \delta (b_{mn}^v) \right\|_2^2$$

s.t. $R^v^T R^v = I_{D \times D}$, $R^v \in \mathbb{R}^{P_v \times D}$

$$\| \delta (b_{mn}^v) \|_0 = 1, \delta (b_{mn}^v) \in \{0, 1\}^K$$

$$\delta (b_{mn}^v) = \begin{cases} b_{mn}, & n = 1 \ldots N_0 \\ b_{mn}^v, & \text{otherwise} \end{cases}$$

$v = 1 \ldots V$, $m = 1 \ldots M$, $n = 1 \ldots N_v$
Approximate Distance Computation

- Asymmetric Quantizer Distance: \(\| q^\tilde{v} - x_n^v \|_2^2 \approx \text{AQD} \left(q^\tilde{v}, x_n^v \right) \)

\[
\text{AQD} \left(q^\tilde{v}, x_n^v \right) = \left\| q^\tilde{v} - R^\tilde{v} \sum_{m=1}^{M} C_mb_{mn}^v \right\|_2^2 \\
= -2 \sum_{m=1}^{M} \langle \tilde{q}^\tilde{v}, C_mb_{mn}^v \rangle + \left\| \sum_{m=1}^{M} C_mb_{mn}^v \right\|_2^2 \\
+ \left\| \tilde{q}^\tilde{v} \right\|_2^2 + \left\| R_{\perp}^\tilde{v} q^\tilde{v} \right\|_2^2
\] (10)

- Query-specific distance lookup table: Store the distances from all \(M \times K \) codebook elements in \(C = [C_1, \ldots, C_M] \) to query \(q^\tilde{v} \)

- \(O(M) \) additions for term 1, \(O(M^2) \) or \(O(1) \) additions for term 2

- Alternative: Cosine Distance \(\cos \left(q^\tilde{v}, x_n^v \right) = \sum_{m=1}^{M} \langle \tilde{q}^\tilde{v}, C_mb_{mn}^v \rangle \)
Approximation Error Analysis

Theorem (Approximation Error Bound)

The error of approximating Euclidean distance with AQD is bounded by

\[|d(\tilde{q}^v, \tilde{x}_n^v) - d(\tilde{q}^v, \hat{x}_n^v)| \leq \left\| x_n^v - R^v \sum_{m=1}^{M} C_m b_{mn}^v \right\|_2. \]

(11)

From triangle inequality, \(|d(\tilde{q}^v, \tilde{x}_n^v) - d(\tilde{q}^v, \hat{x}_n^v)| \leq d(\tilde{x}_n^v, \hat{x}_n^v) \). Then

\[
d^2(\tilde{x}_n^v, \hat{x}_n^v) = \left\| R^{vT} x_n^v - \sum_{m=1}^{M} C_m b_{mn}^v \right\|_2^2 \\
\leq \left\| R^{vT} x_n^v - \sum_{m=1}^{M} C_m b_{mn}^v \right\|_2^2 + \left\| R_{\perp}^{vT} x_n^v \right\|_2^2 \]

(12)

\[
= \left\| x_n^v - R^v \sum_{m=1}^{M} C_m b_{mn}^v \right\|_2^2,
\]

Quantize by max cross-modal correlation & within-modal covariance.
Experiment Setup

- **Datasets:** NUS-WIDE, Wiki, and Flickr1M
- **Tasks:** $I \rightarrow I$, $T \rightarrow T$, $I \rightarrow T$, $T \rightarrow I$, $I \rightarrow IT$, and $T \rightarrow IT$
- **Methods:**
 - **Unsupervised hashing:** CVH, IMH
 - **Deep hashing:** CorrAE + Sign
 - **Supervised hashing:** CMSSH, SCM, QCH
- **Metrics:** MAP@R, Precision-Recall, Precision@R, Efficiency

Table: The Statistics of Three Multimodal Benchmark Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NUS-WIDE</th>
<th>Wiki</th>
<th>Flickr1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Set</td>
<td>195,834</td>
<td>2,866</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Query Set</td>
<td>2,000</td>
<td>693</td>
<td>1,000</td>
</tr>
<tr>
<td>Database</td>
<td>193,834</td>
<td>2,173</td>
<td>24,000</td>
</tr>
<tr>
<td>Training Set</td>
<td>10,000</td>
<td>2,173</td>
<td>975,000</td>
</tr>
</tbody>
</table>
Evaluation

Search Pipeline

- Query q_0
of different modality from the database
- Transformed query q
 common space
- Multiple codebooks C
- Distance lookup table
 between query and codebook elements
- Code of database vector x
- Distance between q and x
- Output nearest vectors

Repeated for N
database vectors

Indexing for candidate pruning

leave out for future work

M. Long et al. (Tsinghua University) Composite Correlation Quantization ACM SIGIR 2016 19 / 28
MAP Results

- CCQ significantly outperforms unsupervised hashing methods (CVH, IMH) and deep hashing methods (CorrAE), and generally outperforms supervised hashing methods (CMSSH, SCM, QCH).

<table>
<thead>
<tr>
<th>Task</th>
<th>Method</th>
<th>NUS-WIDE</th>
<th>Wiki</th>
<th>Flickr1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I → T</td>
<td>CorrAE (deep)</td>
<td>0.4699</td>
<td>0.2033</td>
<td>0.6357</td>
</tr>
<tr>
<td>I → T</td>
<td>QCH (supervised)</td>
<td>0.5050</td>
<td>0.2368</td>
<td>0.6685</td>
</tr>
<tr>
<td></td>
<td>CCQ (ours)</td>
<td>0.5165</td>
<td>0.2371</td>
<td>0.7183</td>
</tr>
<tr>
<td>I → IT</td>
<td>CCQ (ours)</td>
<td>0.5414</td>
<td>0.2529</td>
<td>0.6989</td>
</tr>
<tr>
<td>T → I</td>
<td>CorrAE (deep)</td>
<td>0.4634</td>
<td>0.3478</td>
<td>0.6247</td>
</tr>
<tr>
<td>T → I</td>
<td>QCH (supervised)</td>
<td>0.5389</td>
<td>0.4411</td>
<td>0.6485</td>
</tr>
<tr>
<td></td>
<td>CCQ (ours)</td>
<td>0.5413</td>
<td>0.4222</td>
<td>0.7165</td>
</tr>
<tr>
<td>I → IT</td>
<td>CCQ (ours)</td>
<td>0.7131</td>
<td>0.6394</td>
<td>0.7190</td>
</tr>
</tbody>
</table>
NUS-WIDE

- **Asymmetric difficulty:** $T \rightarrow T \leq T \rightarrow I \leq I \rightarrow T \leq I \rightarrow I$; If the image modality is high quality \rightarrow unsupervised hashing is good.

Figure: Precision-recall curves on NUS-WIDE cross-modal tasks @ 32 bits.
The low quality of the image modality leads to low cross-modal retrieval performance, which fits supervised hashing methods.

Figure: Precision-recall curves on Wiki cross-modal tasks @ 32 bits.
In the presence of big data, there is strong motivation to learn accurate models from large-scale dataset (big model capacity).

Figure: Precision-recall curves on Flickr1M cross-modal tasks @ 32 bits.
Semi-Paired Data Quantization

- Training with semi-paired data helps as paired data is limited; semi-supervised learning is helpful for partial-modal big data.

Figure: MAP of CCQ by varying the numbers of paired points for training.
Quantization Loss and Query Efficiency

- MAP loss due to binarization/quantization is controlled by CCQ;
 Query processing efficiency is compared to the state of the arts.

(a) MAP Loss

(b) Search Efficiency

Figure: MAP loss by quantization and average search time for each query.
Scalable Training Complexity

- Scales linearly to large samples; large-scale implementation via mini-batch paradigm (load fraction of data each time) is trivial.

Figure: Training time and memory costs on complete Flickr1M dataset.
Cross-Modal Tradeoff Sensitivity

- Stable sensitivity is important for unsupervised cross-modal retrieval, as model selection via cross-validation is impossible.

Figure: Stable parameter sensitivity for unsupervised cross-modal retrieval.
Summary

- A composite correlation quantization for multimodal retrieval
- A seamless optimization framework of
 - Multimodal Correlation
 - Composite Quantization
- Learning bound analysis for approximate similarity retrieval

Future Work

- Multimodal Inverted Multi-Index for indexing CCQ codes
- Deep neural networks for multimodal correlation embedding

http://ise.thss.tsinghua.edu.cn/~mlong