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Abstract
Out-of-distribution (OOD) generalization, where
the model needs to handle distribution shifts from
training, is a major challenge of machine learning.
Contrastive language-image pre-training (CLIP)
models have shown impressive zero-shot ability,
but the further adaptation of CLIP on downstream
tasks undesirably degrades OOD performances.
This paper aims at generalizing CLIP to out-of-
distribution test data on downstream tasks. We
propose CLIPood, a fine-tuning method that can
adapt CLIP models to OOD situations where both
domain shifts and open classes may occur on the
unseen test data. To exploit the semantic relations
between classes from the text modality, CLIPood
introduces a new training objective, margin metric
softmax (MMS), with class adaptive margins for
fine-tuning. To incorporate both pre-trained zero-
shot model and fine-tuned task-adaptive model,
CLIPood leverages a new optimization strategy,
Beta moving average (BMA), to maintain a tem-
poral ensemble weighted by Beta distribution. Ex-
periments on diverse datasets with different OOD
scenarios show that CLIPood consistently outper-
forms existing generalization techniques.

1. Introduction
In a complex and changing open world, machine learning
applications inevitably come across the problem of out-of-
distribution (OOD) generalization (Bengio et al., 2021),
which confronts new tasks with different distributions from
the training situation. Even equipped with large-scale pre-
trained models and carefully-designed transfer learning al-
gorithms, OOD generalization still remains a significant
challenge in the way of developing a reliable machine learn-
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Figure 1: We adapt pre-trained CLIP models on downstream
tasks with training data, while maintaining OOD generaliza-
tion ability to overcome both domain shift and open class.

ing system for the open world (Taori et al., 2020; Gulrajani
& Lopez-Paz, 2021; Miller et al., 2021). Instead of learn-
ing from human-labeled data, recent advances in vision-
language pre-training seek to learn from naturally formed su-
pervision of web-scale image-language pairs (Radford et al.,
2021; Jia et al., 2021), which enables learning from diverse
domains, and recognizing concepts from an open world. As
a result, vision-language pre-trained models demonstrate
impressive zero-shot learning performance and outperform
models trained from only labeled images, which reveals a
promising approach toward OOD generalization.

Despite the good zero-shot performance, vision-language
models such as Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) achieves OOD generalization
in a task-agnostic way. In order for more satisfactory per-
formance on downstream tasks of interest, the pre-trained
models still need to utilize task-specific data to make adap-
tations such as fine-tuning (Agrawal et al., 2014; Girshick
et al., 2014). Although fine-tuning achieves better perfor-
mance than using fixed representations (Kornblith et al.,
2019), for CLIP it comes at the cost of OOD generalization:
the performance of fine-tuned models may be even worse
than zero-shot models on related tasks with distribution
shifts (Radford et al., 2021; Pham et al., 2021; Wortsman
et al., 2022). These results leave OOD generalization an
important yet unsolved problem for adapting CLIP models.

Motivated by the promising zero-shot performance, the
stronger transfer learning performance against image-only
models, and the under-explored challenge of generalization
degradation during adaptation, in this paper, we explore the
problem of generalizing CLIP models to out-of-distribution
data in downstream tasks. As shown in Figure 1, a more
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general and challenging setting is proposed, where both
types of OOD situations, i.e., domain shift (where the train-
ing and test data come from different domains), and open
class (where the test data contain new classes not appear-
ing during training), may occur. We manage to solve this
problem from the view of fine-tuning and seek to handle the
dilemma during the adaptation of CLIP models. On the one
hand, the pre-trained model should be given the flexibility to
fine-tune with the downstream data thus mitigating the gap
between upstream and downstream task distributions. On
the other hand, since the downstream data are limited and
the concrete relationship between the specific training task
and the OOD task is unconstrained, the generalization prop-
erty from large-scale vision-language pre-training should
be exploited or maintained to enable safe model adaptation
and finally boosts OOD generalization.

Based on this insight, we propose CLIPood, a simple and
effective fine-tuning method to improve the OOD general-
ization ability of CLIP models on downstream tasks. Instead
of training an additional classifier for the downstream task,
we choose to conduct classification by comparing image em-
beddings with text embeddings generated from task prompts,
which utilizes the knowledge from text modality and keeps
the ability of open-class image-text alignment. From the
point of the training objective, we propose Margin Met-
ric Softmax (MMS). MMS adds an adaptive margin term
for each negative class in the metric softmax loss, which
is based on its distance from the positive class in the pre-
trained text space. By adding such a margin, MMS explores
semantic relationships from vision-language pre-training
to boost the OOD generalization during fine-tuning. From
the point of model optimization, we propose Beta Moving
Average (BMA). Tailored to the fine-tuning trajectory of
CLIP models, where the pre-trained model has good zero-
shot performance and the adapted model has the knowledge
of specific downstream tasks, BMA maintains a temporal
ensemble for the intermediate models in the fine-tuning
trajectory, and the contributions of models from different
training steps are determined according to their correspond-
ing probability in the Beta distribution.

The contributions of the paper can be summarized as:

• We aim at an under-explored problem of generalizing
CLIP models to out-of-distributions, and propose a
more general and challenging in-the-wild setting where
both domain shift and open class occur on test data.

• We propose CLIPood, a simple and effective fine-
tuning method of CLIP. Based on metric softmax fine-
tuning, CLIPood proposes a new training objective
Margin Metric Softmax, and a new model optimization
strategy Beta Moving Average to boost OOD general-
ization performance on downstream tasks.

• We conduct experiments on various datasets with dif-

ferent OOD scenarios, including domain shift, open
class and co-occurrence of both. Experimental results
show that the proposed CLIPood method consistently
outperforms existing generalization techniques.

2. Related Work
Vision-Language Pre-training. Vision-language models
connect images and texts through a common embedding
space to enable cross-modal learning (Frome et al., 2013;
Socher et al., 2013; Elhoseiny et al., 2013). Recent advances
employ architectures with better representation learning
abilities such as Transformer (Vaswani et al., 2017) and web-
scale training datasets and build stronger vision-language
pre-trained models. One type of the approach learns the
common embedding space by masked language modeling
or masked region prediction (Lu et al., 2019; Tan & Bansal,
2019; Su et al., 2020; Kim et al., 2021). In this paper,
we focus on another typical type of contrastive language-
image pre-training such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021). Recent research also seeks to
improve the pre-training paradigm, such as using additional
supervision (Li et al., 2021; Mu et al., 2022), employing
pre-trained image encoders (Zhai et al., 2022), and adding
cross-modal and in-modal consistency constraints (Goel
et al., 2022). In this paper, instead of designing better pre-
training techniques, we aim at utilizing recent advances
in vision-language pre-trained models such as CLIP and
achieving better OOD performance.

Out-of-Distribution (OOD) Generalization. Research on
OOD generalization aims to improve the performance of
the model on new data with different distributions from
the training data. One typical research topic domain gener-
alization explores domain distribution shifts, which trains
the model with source-domain data and aims at achieving
high performance in unseen target domains (Khosla et al.,
2012; Muandet et al., 2013). Most domain generalization
methods focus on the training strategies on source domains,
including cross-domain feature alignment (Li et al., 2018b),
decomposing domain-specific and domain-common knowl-
edge (Piratla et al., 2020; Chattopadhyay et al., 2020), meta-
learning over domains (Li et al., 2018a; Balaji et al., 2018),
designing data-augmentation tasks (Volpi et al., 2018; Car-
lucci et al., 2019), and weight ensemble (Cha et al., 2021).
Besides domain distribution shift, recent research also ex-
plores open classes in heterogeneous domain generaliza-
tion (Li et al., 2019) and open domain generalization (Shu
et al., 2021). However, these settings still cannot ensure
training-free generalization or can only perform open-class
detection, which is limited by the closed-set property of the
pre-trained models. Gulrajani & Lopez-Paz (2021) compare
various methods fairly on the same benchmark and show
that only focusing on algorithm design may not fully address
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Figure 2: Overview of the proposed CLIPood method. CLIPood compares image embeddings with class text embeddings.
Margin Metric Softmax is introduced to exploit semantic relationships between classes. Moreover, a Beta Moving Average
model is maintained for prediction, which incorporates both the pre-trained zero-shot model and the fine-tuned model.

the OOD generalization problem.

Vision-language pre-trained models such as CLIP exhibit im-
pressive zero-shot generalization ability to the open world,
which opens a new path towards stronger OOD generaliza-
tion. Despite the good zero-shot performance, research finds
that further adapting CLIP models with task-specific data
comes at the cost of OOD generalization ability (Radford
et al., 2021; Wortsman et al., 2022). Recent advances ex-
plore improving the OOD generalization of CLIP models
on the downstream tasks by adapter learning (Gao et al.,
2021; Zhang et al., 2021), model ensemble (Wortsman et al.,
2022), test-time adaptation (Shu et al., 2022), and prompt
learning (Zhou et al., 2022b; Lu et al., 2022; Zhou et al.,
2022a). Compared with most of the existing works on
prompt learning or adapter learning, we focus on the aspect
of fine-tuning CLIP models, which is a simple and common
practice for transfer learning but an under-explored point for
generalizing CLIP to out-of-distributions. Compared with
some recent fine-tuning-based methods (Wortsman et al.,
2022; Kumar et al., 2022; Goyal et al., 2023), we propose
a novel design from the aspects of both training objectives
and model optimization. We consider two types of OOD
situations with domain shift and open class and propose to
solve a more general and challenging problem where both
these two OOD situations may appear in unseen test data.

3. Method
3.1. Generalizing CLIP to Out-of-Distributions

CLIP Models. In this paper, we focus on generalizing the
vision-language pre-trained model CLIP (Radford et al.,

2021) to OOD distributions. Instead of supervision from
human labels, CLIP learns directly from the raw texts about
images. During the training time, CLIP jointly trains an
image encoder gI(·) and a text encoder gT (·) in a contrastive
learning way to predict the correct pairings of the image-text
training samples. At the test time, the names of the target
dataset’s classes are embedded by the learned text encoder
to synthesize a zero-shot classifier for the target task.

Problem Setup. We explore the problem of generaliz-
ing CLIP models to out-of-distributions. Given a pre-
trained CLIP model, it is first adapted with some train-
ing data S = {(x, y)} of the downstream task, with class
label y ∈ Y . The adapted model should achieve good
generalization on related but out-of-distribution test data
T = {(x′, y′)}, with the class label y′ ∈ Y ′. We explore
two OOD scenarios in this paper. In the domain shift sce-
nario, we have P (x, y) ̸= P (x′, y′), which means the test
data may come from domains with different distributions.
In the open class scenario, we have Y ≠ Y ′, which means
the test data may contain new classes not appearing in the
training data. Instead of the controlled setting that considers
two scenarios separately, we propose an even more chal-
lenging in-the-wild setting where both types of distribution
shifts may occur simultaneously in the test data.

3.2. CLIP Fine-tuning

In this paper, we aim to design a method that further fine-
tunes and adapts CLIP models to downstream tasks. In
standard fine-tuning, a linear classifier W = {wc}Cc=1 is
employed to fit for the new task, with each learnable pa-
rameter vector wc representing a new class c. The classifier
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makes predictions on the image feature gI (x) , and outputs
the probability that the sample x belongs to the class y as:

P (y|x) = exp (wy · gI (x))∑C
c=1 exp (wc · gI (x))

. (1)

Then training signals, e.g. cross-entropy losses, are used
to simultaneously train the classifier W and fine-tune the
image encoder gI(·) on the downstream task.

For CLIP models, applying the standard fine-tuning strategy
only transfers the knowledge in the image modality, which
discards the knowledge in the text modality and breaks the
connection between them. This may decrease the generaliza-
tion ability benefiting from image-text alignment. Besides,
the added classifier is tailored to the training dataset, mak-
ing it hard to generalize to unseen classes. Therefore, we
propose to perform a vision-language fine-tuning strategy
on CLIP to enhance its OOD generalization ability.

Inspired by the zero-shot prediction protocol of CLIP, for
each class c, we generate a text prompt tc describing it,
such as “a photo of a [CLASS],” where the [CLASS]
token is replaced by the name of class c. We then get the
text embedding of each class Tc = gT (tc) extracted by the
text encoder. For making predictions, we compare the image
embedding Ix = gI(x) of input image x with the class text
embeddings. Concretely, the probability that a sample x
belongs to class y is computed as a metric softmax:

P (y|x) =
exp

(
S (Ix,Ty) /τ

)∑C
c=1 exp

(
S (Ix,Tc) /τ

) , (2)

where S(·, ·) is a similarity metric between embeddings,
and τ is a temperature. We follow the training protocol in
CLIP to use the cosine similarity. We can fine-tune the CLIP
model with such predictions, which utilizes knowledge in
both image and text modalities and preserves the alignment
between them. Different from the pre-training stage with
abundant and diverse image-text pairs, in downstream sce-
narios with images and class text prompts, image patterns
are still rich, but the diversity of text corpus is limited. Fine-
tuning the text encoder would ruin the semantic relations
of concepts pre-trained from a diverse world and overfit
to sided knowledge of downstream training classes, which
degrades the performance in open class scenarios. Thus, we
fine-tune the image encoder to adapt to downstream tasks
and freeze the text encoder to avoid representation collapse.
To further exploit the inherent unequal relations of classes,
we next introduce our proposed Margin Metric Softmax.

3.3. Margin Metric Softmax

When directly applying cross-entropy loss with the predic-
tion in Equation (2) to update the model, it enforces that the
similarity between the image embedding Ix of each sample

bowtie
tiger

cat lion

Domain
Shift

Open
Class

Figure 3: The illustration of Margin Metric Softmax (MMS),
where the hollow diamond at the center represents the image
embedding Ix. Since D (Ty,Tc) varies across classes, the
adaptive margin is attained, preserving the inherent unequal
relations of classes.

x and the text embedding Ty of the correct class y is higher
than those Tc of other false classes c. This aligns the image
embedding with the correct text embedding but treats all
the false equally, which ignores the potential semantic re-
lations between classes. On the other hand, the pre-trained
text modality contains more detailed semantic knowledge,
which quantifies the semantic relationships between texts in
detail other than just discriminating between classes. Thus,
we propose to explore such knowledge to enhance the gen-
eralization during vision-language fine-tuning.

For each training sample (x, y), we newly propose the Mar-
gin Metric Softmax (MMS) loss as:

L = − log
exp

(
S (Ix,Ty) /τ

)∑C
c=1 exp

(
(S (Ix,Tc) + λ ·D (Ty,Tc))/τ

) .
(3)

Here, D (Ty,Tc) represents the distance between the text
embeddings of classes y and c, instantiated naturally as:

D (Ty,Tc) = 1− S (Ty,Tc) . (4)

The term λ ·D (Ty,Tc) serves as an adaptive margin for
each S (Ix,Tc) in the loss. λ is a hyper-parameter that
trades off the image-text similarity and the class-embedding
distance. Note that D (Ty,Ty) = 0, thus these margin
terms enforce that the similarity with the correct text label
is higher than those with false text labels by an adaptive
margin, which strengthens the image-class alignment. Dif-
ferent from a fixed margin for all classes, the adaptive term
D (Ty,Tc) implies that when the semantic distance be-
tween classes y and c is small, the margin term only makes
a small difference, but when the semantic distance is larger
(indicating that this false text label is much more different
from the correct text label in semantic meanings), the mar-
gin term pushes the image embedding further way from
such a false text label. In this way, MMS exploits the more
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detailed knowledge of semantic relations in the pre-trained
text modality to achieve a better image-text cross-modal
alignment and enhance the generalization of the model dur-
ing vision-language fine-tuning.

3.4. Beta Moving Average

Despite generally better performance on downstream tasks,
fine-tuning pushes the model far away from the pre-trained
one at the risk of catastrophic forgetting and representation
collapse. This may hurt OOD generalization ability, espe-
cially considering that the CLIP pre-trained model itself is
a good zero-shot learner. Additional regularization can be
applied to preserve the pre-trained knowledge. However,
it always needs task-specific designs and careful tuning of
extra hyper-parameters, which hinders its flexibility in real-
world applications. In this paper, from the perspective of
model optimization, we newly propose Beta Moving Aver-
age (BMA) to maintain the benefits of both sides.

Consider a fine-tuning procedure of T training steps, we
can get a trajectory of models {θt}Tt=0, where θ0 is the pre-
trained model and θt is the model at the t-th step. We aim
to compute the temporal ensembling θTE of the training
procedure as a weighted average of intermediate models:

θTE =

T∑
t=0

αt∑T
k=0 αk

· θt, (5)

where αt determines the contribution of each model θt. Dur-
ing CLIP fine-tuning, the checkpoints near the pre-trained
model (with a smaller step t) keep more knowledge from
large-scale pre-training, which results in better generaliza-
tion on various domains and classes in a task-agnostic man-
ner but lacks task-specific knowledge. In contrast, the check-
points near the fine-tuned model (with a larger step t) has
been injected more task-related knowledge through training,
but the generalization of such knowledge is not guaranteed
due to the unknown relationship with the OOD test data.
Since both sides contribute to the final OOD generaliza-
tion performance, we want to strengthen the influence of
the models near the two sides with a distribution prior on
their weights. We propose Beta Temporal Ensemble which
normalizes the training steps to (0, 1) and samples from a
Beta distribution Beta(β, β) to determine the weight of each
model as its corresponding probability in the distribution:

αt = Beta(β, β)
(
t+ 0.5

T + 1

)
. (6)

Here, β is a hyper-parameter and we choose β < 1 to focus
more on pre-trained and fine-tuned models.

Directly performing the temporal model ensemble requires
saving many snapshots of the model on the training trajec-
tory, which greatly increases the storage cost. To mitigate
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Figure 4: A comparison between Exponential Moving Aver-
age (EMA) and Beta Moving Average (BMA), in which the
first term of EMA is αT θ0 over the T training step and θ0 is
the pre-trained model. Since αT → 0 when 0 < α < 1, the
fine-tuned model with EMA will almost forget the knowl-
edge of the pre-trained model.

this problem, we further adjust Beta Temporal Ensemble
into Beta Moving Average, which computes the average of
current models on the fly. We maintain a moving average
model θBMA and at each time step t, the current model θt is
added into θBMA

t to update the moving average:

θBMA
t =

∑t−1
k=0 αk∑t
k=0 αk

· θBMA
t−1 +

αt∑t
k=0 αk

· θt. (7)

We present a comparison between common-used Exponen-
tial Moving Average (EMA) and the proposed Beta Moving
Average (BMA) in Figure 4.

The whole architecture of the CLIPood model is shown in
Figure 2. In Algorithm 1, we show the overall training pro-
cedure of the proposed CLIPood method. The pre-trained
model is fine-tuned with Margin Metric Softmax (MMS),
and at each step of the fine-tuning, the Beta Moving Average
(BMA) of the models is computed and updated on the fly.
The final BMA model is stored to make OOD predictions.

Algorithm 1 Training Procedure of CLIPood

Input: Pre-trained CLIP model θ0, learning rate η
Initialize the BMA model θBMA

0 ← θ0
for t ∈ [1, T ] do

Sample data {(x, y)} from the training set S
Calculate MMS loss L as in Eq. (3)
Update model parameters θt ← θt−1 − η∇θt−1L
Calculate αt of the current model as in Eq. (6)
Update the BMA model θBMA

t as in Eq. (7)
end for

Output: The final BMA model θBMA
T

4. Experiments
We explore two types of out-of-distributions in this paper.
One is domain shift, where the test data follow different do-
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Table 1: Accuracy on the DomainBed benchmark with domain shift.

METHOD BACKBONE PACS VLCS OFFICEHOME TERRAINC DOMAINNET AVG.

ERM RESNET 85.5 77.5 66.5 46.1 40.9 63.3
CORAL (2016) RESNET 86.2 78.8 68.7 47.6 41.5 64.6
ZERO-SHOT CLIP 96.2 81.7 82.0 33.4 57.5 70.2
ERM CLIP 96.1±0.5 83.0±0.2 83.3±0.3 60.9±0.2 59.9±0.1 76.7±0.2

MIRO (2022) CLIP 95.6 82.2 82.5 54.3 54.0 73.7
DPL (2022) CLIP 97.3 84.3 84.2 52.6 56.7 75.0
CLIPOOD CLIP 97.3±0.1 85.0±0.4 87.0±0.2 60.4±0.7 63.5±0.1 78.6±0.1

Table 2: Accuracy on ImageNet with various domain shifts.

METHOD
IN-DISTRIBUTION OUT-OF-DISTRIBUTIONS

IMAGENET IMAGENET-V2 IMAGENET-S IMAGENET-A IMAGENET-R AVG.

ZERO-SHOT 66.7 60.8 46.1 47.8 74.0 57.2
FINE-TUNE 68.2±0.1 61.9±0.1 46.8±0.1 46.4±0.1 75.1±0.1 57.6±0.1

COOP (2022B) 71.5 64.2 48.0 49.7 75.2 59.3
COCOOP (2022A) 71.0 64.2 48.8 50.6 76.2 59.9
CLIPOOD 71.6±0.1 64.9±0.1 49.3±0.1 50.4±0.1 77.2±0.1 60.4±0.1

main distributions from the training data. The other is open
class, where the test data contain different classes unseen in
the training data. We conduct experiments on three OOD
scenarios. In the first two scenarios, we explore the two
OOD types separately. In the third scenario, we newly pro-
pose to solve a more general and challenging OOD situation
where both domain shift and open class appear in test data.
Code is available at https://github.com/thuml/CLIPood.

Implementation Details. We use the CLIP pre-trained
model with the ViT-B/16 (Dosovitskiy et al., 2021) image
encoder and run experiments with half-precision (FP16)
during training and inference. We keep the temperature of
the softmax function the same as the pre-trained model as
τ = 0.01, and use the same hyper-parameter λ = 0.3 for all
datasets to avoid over-tuning on specific tasks. We adopt a
batch size of 36. We use the AdamW (Loshchilov & Hutter,
2019) optimizer with the cosine learning rate strategy for
all datasets. By default, we set β = 0.5, use a learning rate
of 5× 10−6, and train for 5000 iterations. For each result
of CLIPood, we report the average result and the standard
deviation of three runs with random seeds. More details can
be found in supplementary materials.

4.1. Generalize CLIP to Domain Shift

Benchmarks. We evaluate generalization to domain shift
with two benchmarks. On the first benchmark, we use five
multi-domain datasets in DomainBed (Gulrajani & Lopez-
Paz, 2021): PACS (Li et al., 2017), VLCS (Torralba & Efros,
2011), OfficeHome (Venkateswara et al., 2017), TerraIncog-
nita (Beery et al., 2018) and DomainNet (Peng et al., 2019).
We follow the train-validate-test split of each dataset as the
DomainBed benchmark and the leave-one-out evaluation

protocol, where at each time, one domain is chosen as the
test domain for evaluating OOD generalization, and other
domains are chosen as the training domains.

On the second benchmark, we use ImageNet (Deng et al.,
2009) as the training dataset and evaluate the perfor-
mance on four variants of ImageNet with distribution shifts:
ImageNet-V2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and
ImageNet-R (Hendrycks et al., 2021a). We follow the pro-
tocol in (Zhou et al., 2022a) and randomly sample a 16-shot
training set while using the original test set for evaluation.

Results. For each dataset in the DomainBed benchmark, we
report the average accuracy on all test domains in Table 1.
We consider the methods with the CLIP pre-trained model
and the ResNet-50 (He et al., 2016) model pre-trained on
ImageNet. We compare with the zero-shot performance
and standard fine-tuning of the model using all training do-
mains (ERM). For ERM with CLIP, we follow Wortsman
et al. (2022) and initialize the classifier head with text em-
beddings to achieve competitive performance. Its results
are reported from our own implementation, following the
details mentioned in our paper. We also compare with the
state-of-the-arts using the CLIP pre-trained model for do-
main generalization: MIRO (Cha et al., 2022), DPL (Zhang
et al., 2022), and the best-performing method using ResNet-
50 reported in DomainBed (Gulrajani & Lopez-Paz, 2021),
CORAL (Sun & Saenko, 2016). We present the results re-
ported in original papers of these methods for comparison in
Table 1. For some methods such as MIRO and other meth-
ods where the original papers do not report results under
our setting, we also re-implement them with our desings
for a unified comparison, and these results are shown in
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Table 3: Generalization performance on 11 downstream datasets with open classes.

(a) Average over 11 datasets

BASE NEW H

CLIP 69.3 74.2 71.7
COOP (2022B) 82.7 63.2 71.7
COCOOP (2022A) 80.5 71.7 75.8
CLIPOOD 83.9±0.1 74.5±0.1 78.9±0.1

(b) ImageNet

BASE NEW H

CLIP 72.4 68.1 70.2
COOP (2022B) 76.5 67.9 71.9
COCOOP (2022A) 76.0 70.4 73.1
CLIPOOD 77.5±0.1 70.3±0.1 73.7±0.1

Table 4: Accuracy on OfficeHome and DomainNet with both domain shift and open classes.

SPLIT METHOD
OFFICEHOME DOMAINNET

A C P R C I P Q R S

BASE
CLIP 86.8 75.5 89.5 92.6 72.8 51.7 66.0 13.5 83.4 66.9
COOP 87.0±0.4 78.3±1.2 92.4±0.2 91.4±0.6 75.7±0.2 58.8±0.5 68.5±1.3 13.1±1.0 84.0±0.5 70.0±0.1

CLIPOOD 90.1±0.2 79.7±0.2 93.1±0.1 94.8±0.1 79.0±0.2 62.2±0.1 73.0±0.2 20.2±0.2 86.2±0.1 73.8±0.1

NEW
CLIP 76.6 59.4 88.1 86.2 70.2 44.1 66.4 14.1 83.5 61.0
COOP 76.5±1.1 56.6±2.4 88.0±1.9 86.8±0.7 71.5±0.2 47.2±0.3 67.3±0.7 14.8±0.7 83.7±0.7 63.1±0.3

CLIPOOD 77.8±0.2 60.0±0.2 88.3±0.1 86.7±0.1 71.2±0.1 48.1±0.1 68.2±0.2 18.0±0.4 83.4±0.1 62.9±0.1

TOTAL
CLIP 82.6 67.3 88.8 89.5 71.4 47.1 66.2 13.8 83.4 63.4
COOP 82.7±0.5 67.2±0.7 90.2±1.0 89.2±0.6 73.4±0.3 51.8±0.3 67.9±1.0 13.7±0.8 83.9±0.5 66.0±0.2

CLIPOOD 85.1±0.1 69.6±0.2 90.8±0.1 91.0±0.1 74.8±0.1 53.6±0.1 70.6±0.1 19.1±0.3 84.8±0.1 67.4±0.1

Appendix B.1. CLIPood outperforms methods with ResNet
pre-trained model by a large margin, which indicates that
utilizing knowledge in vision-language models provides a
promising way for improving OOD generalization. It also
outperforms state-of-the-arts using CLIP models: MIRO
and DPL, indicating CLIPood is a simple and effective
method to generalize CLIP to out-of-distributions. We fur-
ther report the OOD generalization results on different vari-
ants of ImageNet in Table 2. CLIPood achieves comparable
performance on the in-distribution test data and outperforms
the state-of-the-art methods CoOp (Zhou et al., 2022b) and
CoCoOp (Zhou et al., 2022a) on the OOD datasets, which
shows its generalizability on various domain shifts.

4.2. Generalize CLIP to Open Class

Benchmarks. We evaluate generalization to open classes on
the benchmark covering a diverse set of recognition tasks,
including general object classification: ImageNet (Deng
et al., 2009) and Caltech101 (Fei-Fei et al., 2004); fine-
grained classification: OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102 (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014) and
FGVCAircraft (Maji et al., 2013); specific classification
tasks: SUN397 (Xiao et al., 2010) for scene recogni-
tion, UCF101 (Soomro et al., 2012) for action recognition,
DTD (Cimpoi et al., 2014) for texture classification and Eu-
roSAT (Helber et al., 2019) for satellite image recognition.
We follow the protocol in (Zhou et al., 2022a) and split the
classes in each dataset equally into two parts, one as base
classes and the other as new classes. We train the model

on base-class data and test on base classes and new classes
separately to evaluate the generalization ability.

Results. The results of generalizing CLIP to open classes
are shown in Table 3. We report the accuracies on base
classes and new classes as well as their harmonic mean (H)
to highlight the trade-off between downstream adaptation
and open-class generalization. We compare CLIPood with
the zero-shot prediction of CLIP and the state-of-the-art
methods on this benchmark: CoOp (Zhou et al., 2022b) and
CoCoOp (Zhou et al., 2022a). The detailed results on each
dataset are presented in the appendix. As shown in the table,
CoOp suffers from a large decrease in the accuracy of new
classes after its adaptation to base classes. CoCoOp miti-
gates the decrease in the accuracy of new classes but sacri-
fices the adaptation performance on the base classes, and the
gap with zero-shot performance on new classes is still large.
On some datasets such as ImageNet, CoCoOp and CLIPood
successfully improve the performance on unseen classes
over zero-shot prediction by adapting the model with related
training classes. Comparing the average results, CLIPood
outperforms zero-shot prediction and existing methods by
a large margin, showing that it simultaneously adapts the
model to improve the performance on the downstream tasks
and keeps the OOD generalization ability on open classes.

4.3. Generalize CLIP to Domain Shift and Open Class

Benchmarks. We further propose a more realistic in-the-
wild setting where both domain shift and open class may
appear in the test data. We choose OfficeHome and Domain-
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Figure 5: Analysis experiments for CLIPood.
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Figure 6: Predictions from models trained with and without adaptive margin.

Net from DomainBed because they have sufficient numbers
of classes for evaluating open class situations. We split the
classes in each dataset into two parts, one as base classes and
the other as new classes. We adopt the leave-one-domain-
out protocol and train the model on base-class data in train-
ing domains and test on all test data with both base and new
classes to evaluate the OOD generalization ability. We put
the text embeddings of base and new classes together for
the classification of all test data, which is a more realistic
OOD testing protocol, since we cannot know whether the
test data is from base or new classes in advance.

Results. The experimental results are shown in Table 4.
We report the accuracy of each test domain. We compare
with zero-shot performance (CLIP) and CoOp and do not
reimplement CoCoOp because of its great memory and time
cost on these datasets. CoOp improves upon zero-shot on
some domains but also suffers from degradation in other
domains. CLIPood consistently outperforms zero-shot and
CoOp on all test domains, showing its effectiveness in more
general and realistic OOD situations.

4.4. Analysis of CLIPood

Ablation Study. We explore the efficacy of each module
in CLIPood, including Margin Metric Softmax (MMS) and
Beta Moving Average (BMA). We compare CLIPood with
its variants with or without MMS and BMA on the Do-
mainNet dataset. We report the average results over all
test domains with domain shift (Domain) and under the
OOD setting with both domain shift and open classes (Do-
main+Class). From Figure 5a, we can observe that adding
MMS and BMA improves the generalization performance
on the domain shift and open class situations, which demon-
strates the effectiveness of these two modules. CLIPood

incorporates both these two modules and achieves the best
performance, which demonstrates that the designs from the
aspects of training objective and model optimization work
together towards better OOD generalization of CLIP. Note
that the variant without MMS and BMA still outperforms
standard fine-tuning because it utilizes metric softmax as
the training objective, which we will also discuss below.

Analysis on CLIP Fine-tuning. In CLIPood, we choose to
fine-tune the model by metric softmax, which compares the
image and class text embeddings. Here we compare it with
standard fine-tuning, which adds and trains a parametric
linear classifier together with the pre-trained backbone. We
show the performance on OfficeHome with domain shifts
as in Section 4.1. As shown in Figure 5b, metric softmax
fine-tuning outperforms standard fine-tuning on most of the
test domains, which indicates that metric softmax is a better
choice to improve OOD generalization for CLIP.

Analysis on Adaptive Margin. Margin Metric Softmax
(MMS) adds an adaptive margin to preserve inherent un-
equal relations of classes in the language space during fine-
tuning. We compare MMS to the variants with a fixed
margin for all data or without margin on OfficeHome and
DomainNet with both domain shift and open classes as
in Section 4.3. As shown in Figure 5c, adding a margin
in metric softmax may improve the performance. Still, a
fixed margin does not give a stable improvement on the
variant without margins (the vanilla metric softmax), and an
adaptive margin consistently outperforms the variants with a
fixed margin or no margins, especially achieving remarkable
(1.2%) improvement on DomainNet. This demonstrates the
efficacy of the proposed Margin Metric Softmax for OOD
generalization of the CLIP model.
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Table 5: Performance with different weight ensemble methods.

METHOD DOMAINNET
IMAGENET SUN397

BASE NEW H BASE NEW H

CLIPOOD W/ SWAD 62.3 77.2 68.7 72.7 80.7 78.2 79.4
CLIPOOD W/ WISE-FT 62.7 77.3 69.9 73.4 79.2 78.8 79.0
CLIPOOD W/ BMA (OURS) 63.5 77.5 70.3 73.7 81.0 79.3 80.2

In Figure 6, we show the top-5 predictions on test images
from the models trained with and without adaptive margins.
The cat image comes from a domain with the distribution
shift. The model without margins outputs unrelated classes
(underlined) such as bowtie (probably because the ears of
the cat may look like a bowtie), indicating that it may
overfit the image modality and forget semantic relations.
The model trained with margins outputs related classes of
animals. The strawberry image comes from a new class
unseen during training. The model without margins out-
puts unrelated classes and makes wrong predictions, while
the model with margins makes related and right predictions.
These results show that the adaptive margin keeps the seman-
tic relationship of classes better and improves generalization
under domain shift and open classes.

Analysis on BMA. To evaluate the efficacy of the proposed
Beta Moving Average (BMA), we compare it with the com-
monly used Exponential Moving Average (EMA) and the
uniform average (AVG) of the model checkpoints. We re-
port results on ImageNet with open classes as in Section 4.2.
As shown in Figure 5d, EMA focuses on only one side of the
training trajectory, which may perform worse than average
weighting. BMA performs the best balance on base and new
classes, showing the importance of the Beta-distribution
weighting to focus on both zero-shot and fine-tuned models.

We also compare BMA with other weight ensemble meth-
ods. We re-implement and compare with SWAD (Cha et al.,
2021) and WiSE-FT (Wortsman et al., 2022). We investi-
gate how CLIPood performs when BMA in our method is
replaced with SWAD or WiSE-FT, which are denoted as
CLIPood w/ SWAD or CLIPood w/ WiSE-FT. We conduct
experiments on DomainNet for domain shift settings and on
ImageNet and SUN397 for open class settings. As shown in
Table 5, for both domain shift and open class, CLIPood with
BMA outperforms CLIPood with SWAD and WiSE-FT in
most cases, which also shows that BMA is a better model
averaging choice for CLIP models.

5. Discussion
CLIPood consistently outperforms zero-shot pre-trained
models and existing generalization techniques of pre-trained
models, showing its efficacy for different OOD generaliza-
tion situations. Here we also discuss some limitations of this

method and some possible future directions regarding these
limitations. In CLIPood, we propose Metric Margin Soft-
max and Beta Moving Average, which introduce negligible
additional costs in storage or computation compared with
standard fine-tuning. Computing BMA requires the storage
of one more model during training. It would be impercepti-
ble in common situations but may be constrained when the
memory resource is extremely limited. One of the limita-
tions is that we mainly consider better fine-tuning the image
encoder for OOD generalization. A possible future work
regarding this would be exploring adaptation on both text
and image modalities for better OOD generalization. An-
other limitation is that the performance of our method may
still be influenced by the zero-shot performance of the pre-
trained model. For some domains or classes with extremely
poor zero-shot performance, indicating that the pre-trained
knowledge may not help certain cases, the improvements
from exploiting knowledge in pre-trained models may be
minor. A possible future work regarding this may need
to consider the whole pre-training-fine-tuning pipeline, ex-
ploring pre-trained models with better generalization and
designing corresponding adaptation methods for them.

6. Conclusion
In this paper, we propose to solve the problem of generaliz-
ing CLIP to out-of-distributions with both domain shift and
open classes in downstream tasks. We propose CLIPood
to fine-tune CLIP with a simple and effective design to im-
prove its OOD generalization. CLIPood introduces Margin
Metric Softmax, which adds class adaptive margins in met-
ric softmax training to exploit semantic relations between
classes from the text modality. It also introduces Beta Mov-
ing Average to maintain a temporal ensemble according
to a Beta distribution, which incorporates both the zero-
shot model and the adapted model. Experiments on various
datasets with different OOD scenarios show that CLIPood
consistently outperforms existing generalization techniques.
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A. Experimental Details
A.1. Implementation Details

We use the CLIP pre-trained model with ViT-B/16 (Dosovitskiy et al., 2021) as the image encoder. We keep the temperature
of the softmax function the same as the pre-trained model as τ = 0.01. All the default configs are shown in Table 6. We use
the same hyper-parameter λ = 0.3 for all datasets to avoid over-tuning on specific tasks. We adopt a batch size of 36 except
for DomainNet with 60, and all images are randomly resized and cropped to 224× 224. We use the AdamW (Loshchilov
& Hutter, 2019) optimizer with the cosine learning rate strategy for all datasets. By default, we set β = 0.5, and use a
learning rate of 5× 10−6 and train for 5000 iterations. Considering the small amount of data, we set β to 0.1 for all 16-shot
benchmarks. For specific datasets, we adjust different numbers of iterations and learning rates. We train 10000 iterations for
DomainNet, 2500 iterations for StanfordCars and SUN397, 1000 iterations for UCF101, and 500 iterations for other 16-shot
datasets except for ImageNet and FGVCAirCraft. We adopt the learning rate of 1× 10−5 for DomainNet and OfficeHome
in the case of domain shifts. For each result of CLIPood, we report the average result and the standard deviation of three
runs with random seeds.

Table 6: Default configs for the experiments.

Default Config Value

optimizer AdamW
base lr 5× 10−6

weight decay 0.1
lr scheduler cosine decay
augmentation RandomResizedCrop
batch size 36
# iterations 5000
temperature 0.01
λ for MMS 0.3
β for BMA 0.5

A.2. Prompt Templates for Each Dataset

By default, we use “a photo of [CLASS].” as the prompt template for class labels, where [CLASS] refers to the name of a
class with the hyphens replaced by spaces. Following Zhou et al. (2022b), for fine-grained classification datasets such as
FGVCAircraft, we add the name of the superclass (aircraft) or the description to the template. The full templates for all
datasets are shown as follows.

• OxfordPets: “a photo of a [CLASS], a type of pet.”

• FGVCAircraft: “a photo of a [CLASS], a type of aircraft.”

• DTD: “[CLASS] texture.”

• EuroSAT: “a centered satellite photo of [CLASS].”

• Food101: “a photo of a [CLASS], a type of food.”

• UCF101: “a photo of a person doing [CLASS].”

• Other datasets: “a photo of a [CLASS].”

A.3. Computing Infrastructure

For the experiments, we use PyTorch 1.13.1, torchvision 0.14.1, and CUDA 11.6 libraries. We use a machine with 32 CPUs,
256 GB memory, and the NVIDIA TITAN X GPU.
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A.4. Licenses of Datasets

OxfordPets is under CC BY-SA 4.0 license. Other datasets are publicly available online and under custom licenses for
non-commercial usage.

B. More Experimental Results
B.1. Unified Comparison with More Methods on Domain Shifts

We compare our method with other state-of-the-art baselines, including WiSE-FT (Wortsman et al., 2022), FLYP (Goyal
et al., 2023), LP-FT (Kumar et al., 2022), and MIRO (Cha et al., 2022) with SWAD (Cha et al., 2021). Since there are no
available results in our setting, we re-implement them with our codebase for a unified comparison. We report the accuracy
on each domain of DomainNet. Results are shown in Table 7. Under our setting, all the state-of-the-art methods give better
performance than ERM. Among them, MIRO benefits from SWAD, and MIRO+SWAD achieves previous state-of-the-art
results. Compared with these baselines, CLIPood can outperform them generally with a significant accuracy gain.

Table 7: Performance of more baselines on DomainNet.

METHOD CLIPART INFOGRAPH PAINTING QUICKDRAW REAL SKETCH AVERAGE

ERM 76.3 47.8 68.1 19.7 80.9 66.5 59.9
WISE-FT 76.8 49.5 69.4 20.1 81.7 67.2 60.8
FLYP+WISE-FT 78.1 51.9 69.8 20.0 84.3 67.6 61.9
LP-FT 75.1 51.7 70.7 16.2 85.0 67.1 61.0
MIRO 76.6 51.0 70.9 18.8 82.3 68.5 61.3
MIRO+SWAD 75.9 51.6 71.3 20.0 82.5 68.4 61.6
CLIPOOD (OURS) 77.6 54.7 72.5 20.7 85.7 69.9 63.5

B.2. Detailed Results on Open Classes

We report the full results of generalizing to open classes as in Section 4.2. We report the results in each dataset and the
average results over all 11 datasets in Table 8. On most of the datasets, CLIPood achieves better adaptation performance on
base classes and still narrows the gap between zero-shot prediction on new classes or even performs better. Comparing
the average results, CLIPood outperforms zero-shot prediction and existing methods by a large margin, showing that it
simultaneously adapts the model to improve the performance on the downstream tasks and keeps the OOD generalization
ability on open classes.
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Figure 7: Results on other vision-language models.

B.3. Generalization on Other Vision-Language Models

In this paper, we mainly focus on the CLIP pre-trained model and use its open-source version with ViT-B/16 as the image
encoder. Here we investigate whether CLIPood is general for other backbones or other variants of vision-language models.
For other backbones, we use the CLIP pre-trained model with ResNet-50 as its image encoder (CLIP-RN50). For other
variants of vision-language models, we use DeCLIP (Li et al., 2021) and Slip (Mu et al., 2022), and use their open-source
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Table 8: Generalization performance on 11 downstream datasets with open classes.

(a) Average over 11 datasets

BASE NEW H

CLIP 69.3 74.2 71.7
COOP 82.7 63.2 71.7
COCOOP 80.5 71.7 75.8
CLIPOOD 83.9±0.1 74.5±0.1 78.9±0.1

(b) ImageNet

BASE NEW H

CLIP 72.4 68.1 70.2
COOP 76.5 67.9 71.9
COCOOP 76.0 70.4 73.1
CLIPOOD 77.5±0.1 70.3±0.1 73.7±0.1

(c) Caltech101

BASE NEW H

CLIP 96.8 94.0 95.4
COOP 98.0 89.8 93.7
COCOOP 98.0 93.8 95.8
CLIPOOD 98.7±0.1 94.6±0.1 96.6±0.1

(d) OxfordPets

BASE NEW H

CLIP 91.2 97.3 94.1
COOP 93.7 95.3 94.5
COCOOP 95.2 97.7 96.4
CLIPOOD 95.7±0.1 96.4±0.2 96.0±0.1

(e) StanfordCars

BASE NEW H

CLIP 63.4 74.9 68.7
COOP 78.1 60.4 68.1
COCOOP 70.5 73.6 72.0
CLIPOOD 78.6±0.1 73.5±0.3 75.9±0.2

(f) Flowers102

BASE NEW H

CLIP 72.1 77.8 74.8
COOP 97.6 59.7 74.1
COCOOP 94.9 71.8 81.7
CLIPOOD 93.5±0.2 74.5±0.5 82.9±0.3

(g) Food101

BASE NEW H

CLIP 90.1 91.2 90.7
COOP 88.3 82.3 85.2
COCOOP 90.7 91.3 91.0
CLIPOOD 90.7±0.1 91.7±0.1 91.2±0.1

(h) FGVCAircraft

BASE NEW H

CLIP 27.2 36.3 31.1
COOP 40.4 22.3 28.8
COCOOP 33.4 23.7 27.7
CLIPOOD 43.3±0.3 37.2±0.5 40.0±0.4

(i) SUN397

BASE NEW H

CLIP 69.4 75.4 72.2
COOP 80.6 65.9 72.5
COCOOP 79.7 76.9 78.3
CLIPOOD 81.0±0.1 79.3±0.1 80.2±0.1

(j) DTD

BASE NEW H

CLIP 53.2 59.9 56.4
COOP 79.4 41.2 54.2
COCOOP 77.0 56.0 64.9
CLIPOOD 80.8±0.6 58.6±0.6 67.9±0.3

(k) EuroSAT

BASE NEW H

CLIP 56.5 64.1 60.0
COOP 92.2 54.7 68.7
COCOOP 87.5 60.0 71.2
CLIPOOD 97.5±0.2 64.1±1.1 77.3±0.8

(l) UCF101

BASE NEW H

CLIP 70.5 77.5 73.9
COOP 84.7 56.1 67.5
COCOOP 82.3 73.5 77.6
CLIPOOD 85.7±0.1 79.3±0.2 82.4±0.1
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pre-trained models with ViT-B/32 as the image encoders. We evaluate the performance of CLIPood on the OfficeHome
dataset with both domain shift and open classes as the protocol in Section 4.3. As shown in Figure 7, CLIPood consistently
outperforms the zero-shot prediction on these three models, demonstrating its generalization ability on different architectures
and variants of vision-language models.

B.4. Parameter Sensitivity

To investigate the robustness of hyper-parameters, we conduct detailed analysis experiments with different values of λ and β.
We experiment on the DomainNet dataset and the results are shown in Table 9. As shown, only if λ is set too large to let the
margin term dominate the loss will it hurt the performance. In a wide range, CLIPood on various values of hyper-parameters
performs robustly and still outperforms the baseline results (59.9% on DomainNet).

Table 9: Performance with different λ and β on DomainNet dataset.

λ 0.01 0.03 0.1 0.3 1.0

CLIPOOD 62.9 63.1 63.3 63.5 61.8

β 0.1 0.3 0.5 0.7 0.9

CLIPOOD 63.0 63.7 63.5 63.5 63.1

B.5. Analysis on Zero-shot Performance

To further analyze how our approach exploits CLIP’s pre-trained knowledge, we conduct an analysis on zero-shot per-
formance. We compare the improvement of ERM and our approach on classes and domains where CLIP’s zero-shot
performance is poor. We first select the two domains where CLIP has the worst zero-shot performance as in Table 10. On
the worst domain Quickdraw, our CLIPood still slightly outperforms ERM, while on the second worst domain Infograph,
CLIPood outperforms ERM significantly.

Table 10: Performance on the worst 2 domains.

METHOD QUICKDRAW INFOGRAPH

ZERO-SHOT 13.8 46.7
ERM 19.7 47.6
CLIPOOD 20.7 54.7

Then, we investigate class-wise performance on the domain Infograph. Since there exist over 300 classes, we can only show
part of them. According to zero-shot performance, we show 3 groups of classes with 12 classes in total. As shown in Table
11, for the first group of classes where CLIP has poor zero-shot performance (class 1-4), CLIPood and ERM may lead
to minor improvements upon zero-shot, or may outperform each other in different cases. This is because the pre-trained
knowledge may not help certain classes. However, for the classes where the zero-shot performance is moderate (class 5-8),
and where the zero-shot performance is near the average performance on the dataset (class 9-12), we find CLIPood, which
benefits from better exploitation of pre-trained knowledge, generally provides better accuracies.

Table 11: Performance on 12 different classes.

INFOGRAPH
LOW ZERO-SHOT ACC MEDIUM ZERO-SHOT ACC HIGH ZERO-SHOT ACC

1 2 3 4 5 6 7 8 9 10 11 12

ZERO-SHOT 0.0 1.3 2.8 4.6 20.8 21.2 22.5 23.1 46.2 46.3 46.8 47.0
ERM 0.0 1.3 11.1 22.7 37.5 7.7 17.5 61.5 46.2 53.7 40.4 49.4
CLIPOOD 0.0 3.9 2.8 27.3 37.5 19.2 30.0 65.4 61.5 56.1 44.7 53.0
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