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Abstract
Adversarial domain adaptation has made remark-
able advances in learning transferable represen-
tations for knowledge transfer across domains.
While adversarial learning strengthens the feature
transferability which the community focuses on,
its impact on the feature discriminability has not
been fully explored. In this paper, a series of ex-
periments based on spectral analysis of the feature
representations have been conducted, revealing an
unexpected deterioration of the discriminability
while learning transferable features adversarially.
Our key finding is that the eigenvectors with the
largest singular values will dominate the feature
transferability. As a consequence, the transferabil-
ity is enhanced at the expense of over penalization
of other eigenvectors that embody rich structures
crucial for discriminability. Towards this problem,
we present Batch Spectral Penalization (BSP), a
general approach to penalizing the largest singular
values so that other eigenvectors can be relatively
strengthened to boost the feature discriminability.
Experiments show that the approach significantly
improves upon representative adversarial domain
adaptation methods to yield state of the art results.

1. Introduction
Deep networks have achieved remarkable success in diverse
machine learning areas. On the basis of large-scale labeled
data, transferable features across multiple tasks and domains
can be learned (Yosinski et al., 2014; Oquab et al., 2014;
Donahue et al., 2014). Unfortunately, in many real-world
applications, shortage of labeled data is not uncommon. To
avoid both labeling efforts and overfitting issues, domain
adaptation is extensively studied to overcome the domain
shift or dataset bias such that a learner trained on other large-
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scale datasets can be leveraged (Torralba & Efros, 2011).

Domain adaptation tackles the problem of learning a model
that reduces the dataset shift between training and testing
distributions (Pan et al., 2010). Early domain adaptation
methods in the shallow regime learn feature representations
invariant across domains (Pan et al., 2011; Gong et al., 2012)
or reweigh source instances based on their relevance to the
target domain (Huang et al., 2007; Gong et al., 2013). Re-
cent domain adaptation methods in the deep regime disentan-
gle the explanatory factors of variations behind data and ex-
plore two strategies for aligning feature distributions across
domains. The first strategy is moment matching, bridging
the distributions by matching all their statistics (Long et al.,
2015; Li et al., 2016; Long et al., 2017; Maria Carlucci et al.,
2017). The second strategy is adversarial learning, where
a domain discriminator is trained to distinguish the source
from the target while feature representations are learned to
confuse it simultaneously (Ganin & Lempitsky, 2015; Tzeng
et al., 2015; Ganin et al., 2016; Tzeng et al., 2017; Luo et al.,
2017; Long et al., 2018). These adversarial domain adapta-
tion methods have yielded remarkable performance gains.

While it is widely believed by the the community that adver-
sarial learning strengthens the feature transferability, which
part of the features are transferable remains unclear. Further,
how the feature discriminability will change in the process
of learning transferable features has not been fully explored.
From a spectral analysis viewpoint, we can decompose the
feature representations into eigenvectors with importance
quantified by the corresponding singular values. Intuitively,
the feature transferability may mainly reside in the eigenvec-
tors with top singular values, since the eigenvectors with low
singular values may embody domain variations and should
be discouraged. In contrast, the feature discriminability may
depend on more eigenvectors, since the rich discriminative
structures cannot be conveyed by only a few eigenvectors.
As a result, there exists a contradiction when we try to make
the representations both transferable and discriminative. As
the target domain is fully unlabeled, this contradiction will
mainly sacrifice the discriminability of target domain data.

In this paper, we try to address the dilemma of transferability
against discriminability by understanding their behaviors in
adversarial domain adaptation. We apply linear discriminant
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analysis (LDA) (Fukunaga, 1990) to compute the largest ra-
tio of the between-class variance and within-class variance
in the projected space as a criterion of feature discriminabil-
ity. We further train a joint classifier based on the feature
representations on the source and target labeled data and
use the error rate as another criterion of the discriminability.
Both criteria indicate that the adversarial domain adaptation
methods tend to enhance the transferability at the expense of
deteriorating the discriminability. Based on this observation,
we further introduce singular value decomposition (SVD)
(Golub & Reinsch, 1970) to analyze the spectral properties
of feature representations in batches. We confirm that the
eigenvectors with the top singular values dominate the trans-
ferability of feature representations, while the eigenvectors
with smaller singular values are overly penalized to convey
deficient discriminability. Towards this problem, we present
Batch Spectral Penalization (BSP), a general approach to
penalizing the largest singular values so that the other eigen-
vectors can be relatively strengthened to boost the feature
discriminability. Experimental results show that our method
enables existing adversarial domain adaptation methods to
learn both transferable and discriminative representations,
yielding state of the art results on four benchmark datasets.

2. Transferability vs. Discriminability
In this paper, we study the unsupervised domain adaption
problem, where we have access to labeled examples in the
source domain while only unlabeled examples in the target
domain. We are given ns labeled examples from a source
domain S = {(xs

i ,y
s
i )} and nt unlabeled examples from a

target domain T = {(xt
i)}, which are sampled from differ-

ent distributions P and Q. Adversarial domain adaptation
(Ganin et al., 2016; Long et al., 2018) has been arguably one
of the most successful deep learning approaches to domain
adaptation. By embedding adversarial learning modules into
deep networks, we can learn transferable representations to
suppress the distributional variations across domains.

There are two key criteria that characterize the goodness of
feature representations to enable domain adaptation. One is
transferability, which indicates the ability of feature repre-
sentations to bridge the discrepancy across domains. With
transferability, we can effectively transfer a learning model
from the source domain to the target domain via the fea-
ture representations. The other is discriminability, which
refers to the easiness of separating different categories by a
supervised classifier trained over the feature representations.
Adversarial domain adaptation methods make remarkable
advances in enhancing the transferability of representations,
however, the discriminability of the learned representations
has only been attempted via minimizing the classification
error on the source domain labeled data. In what follows, we
will analyze that such a vanilla strategy is not good enough.

2.1. Adversarial Domain Adaptation

Adversarial domain adaptation methods, starting from Do-
main Adversarial Neural Network (DANN) (Ganin & Lem-
pitsky, 2015), have become increasingly influential in do-
main adaptation. The fundamental idea behind is to learn
transferable features that explicitly reduce the domain shift.
Basically, these approaches constitute a feature extractor
f = F (x) and a category classifier y = G(f), similar to
standard supervised classification models. Additionally, a
domain discriminator d = D(f) is added as the adversary
to play a two-player minimax game against F . While the
domain discriminator D is trained to distinguish the source
domain from the target domain, the feature extractor F is
trained to confuse the domain discriminator. As mathemati-
cally justified in (Ganin & Lempitsky, 2015), training the
domain discriminator D to distinguish the source from the
target is equivalent to maximizing some statistical distance
distP↔Q(F,D) across the source and target distributions P
andQ. By training F adversarially to deceiveD, the feature
representations are made transferable across domains. In
addition, the feature extractor F and the source classifier
G are learned simultaneously by minimizing the classifica-
tion error E(F,G) on the source labeled data. This makes
the feature representations discriminative across categories.
Formally, adversarial domain adaptation is formulated as

min
F,G
E(F,G) + δdistP↔Q(F,D)

max
D

distP↔Q(F,D),
(1)

where δ is a hyperparameter to trade off the importance of
transferability vs. discriminability in feature representation.

2.2. Discriminability of Feature Representations

In this paper, we rethink the adversarial domain adaptation
by investigating both the transferability and discriminability
of their learned feature representations. To investigate the
discriminability, we need to define an evaluation criterion.
Inspired by Linear Discriminant Analysis (LDA) (Fukunaga,
1990), we can calculate the between-class variance Sb and
within-class variance Sw as follows:

Sb =

c∑
j=1

nj(µj − µ)(µj − µ)
T

Sw =

c∑
j=1

∑
f∈Fj

(f − µj)(f − µj)
T

(2)

where c is the number of classes, each class has nj samples,
f = F (x) is the deep feature extracted by F , µj and µ are
the centers of the feature vectors in class j and in all classes
respectively, andFj is the set of all feature vectors in class j.
Sb and Sw represent the total variance of the feature vectors
across different classes and in the same class, respectively.
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Figure 1. Two experiments measuring discriminability of features:
(a) max J(W ); (b) Classification error rate on the representation.

We project the high-dimensional feature vectors into low-
dimensional space and calculate the ratio of between-class
variance to within-class variance. Intuitively, the representa-
tions with larger ratio imply stronger discriminability and
vice versa. The discriminability criterion based on LDA is

arg max
W

J(W) =
tr(WTSbW)

tr(WTSwW)
(3)

The optimal solution to the above optimization problem is
the k (set to the num of classes) largest singular values of
S−1
w Sb, found by the Singular Value Decomposition (SVD):

S−1
w Sb = UΣVT. (4)

More formally, the optimal solution is W∗ = U.

In this study, we investigate the discriminability of feature
representations of DANN (Ganin et al., 2016) (ResNet-50
backbone) and ResNet-50 (He et al., 2016) pre-trained on
ImageNet (Russakovsky et al., 2015). From Office-31, the
most widely used dataset for visual domain adaptation, we
choose 4 transfer tasks to compute the discriminability cri-
terion max J(W): A → W, W → A, A → D, D → A,
with results shown in Figure 1(a). It is very unexpected
that the feature discriminability of DANN is lower than
that of ResNet-50, implying that DANN’s transferability is
enhanced at the expense of worse discriminability.

We further confirm the above observation by another study.
Motivated by the domain adaptation theory (Ben-David
et al., 2010), we train a multilayer perceptrons (MLP) clas-
sifier G′ with the representations learned by DANN (Ganin
et al., 2016) (ResNet-50 backbone) and ResNet-50 (He et al.,
2016), respectively. The MLP classifier is trained over all
data with labels from both source and target domains, while
the feature extractor F is fixed. Note that the target labels
are only used for this pilot analysis. We compare the aver-
age error rates of the MLP classifier on both representations,
with results shown in Figure 1(b). Again, we observe that
the error rate on the representation of DANN is much higher
than that of ResNet-50. Obviously, higher error rate implies
weaker discriminability. This leads to worse generalization
error bound as revealed by the domain adaptation theory
(Ben-David et al., 2010).
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Figure 2. SVD analysis. With source and target feature matrices
from different methods, we compute (a) the singular values (max-
normalized); (b) squared root of the cosine values of corresponding
angles (unnormalized); (c) squared root of the cosine values of
corresponding angles (max-normalized). In the max-normalized
version we scaled all singular values such that the largest one is 1.

With the above analyses, it is natural to raise the following
questions: (a) Why features extracted by DANN present
worse discriminability? (b) How can we enhance the trans-
ferability while guaranteeing acceptable discriminability?

2.3. Why Worse Discriminability?

To investigate the first question in-depth, we apply singular
value decomposition (SVD) to compute respectively all sin-
gular values and eigenvectors of the source feature matrix
Fs = [fs1 . . . f

s
b ] and target feature matrix Ft = [f t1 . . . f

t
b ]:

Fs = UsΣsV
T
s

Ft = UtΣtV
T
t

(5)

where b is the size of each batch used for mini-batch SGD
training. Then we plot the singular values (max-normalized
in each Σ) of the feature matrix extracted by ResNet-50 (He
et al., 2016) and DANN (Ganin et al., 2016) (ResNet-50
backbone). From Figure 2(a), we observe that the largest
singular value of the DANN feature matrix is significantly
larger than the other singular values, greatly weakening the
informative signals of eigenvectors corresponding to smaller
singular values. Such a sharp distribution of singular values
intuitively imply deteriorated discriminability.

Next we investigate the transferability of each principal com-
ponents in the feature matrix, i.e., eigenvectors in each direc-
tion. Shonkwiler (2009) introduced the principal angles,
denoted by θ, to measure the similarity of two subspaces:

cos(θi) =
〈ai,bi〉
‖ai‖ ‖bi‖

= max
a,b

{
〈a,b〉
‖a‖ ‖b‖

: a⊥aj ,b⊥bj , j = 1, ..., i− 1

}
(6)
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where ai ∈ Us is an eigenvector of source feature matrix
and bi ∈ Ut is an eigenvector of target feature matrix, and
‖ai‖ = 1, ‖bi‖ = 1.

However, the principal angles calculated by Mohammadi
(2014) complete the pairing between the eigenvectors with
the smallest angle, regardless of their corresponding singular
values. In other words, all eigenvectors are treated equally
when pairing. This is unreasonable because in recognition
problems every feature may play a different role, and thus it
does not make sense that eigenvectors with large singular
values are easily transferred to the eigenvectors with small
singular values simply because they have a small principal
angle. More importantly, to understand the transferability of
feature representations, it is necessary to explore the angles
between the eigenvectors of the same singular value index in
matrices Σs and Σt. In this paper we call it corresponding
angle, denoted by ψ, and define it more formally as follows:

Definition 1 (Corresponding Angle) The angle between
two eigenvectors corresponding to the same singular value
index, which are equally important in their feature matrices.

The cosine value of the corresponding angle is calculated as

cos(ψi) =
〈us,i,ut,i〉
‖us,i‖ ‖us,i‖

, (7)

where us,i is the ith eigenvector in Us with the ith largest
singular value in the source feature matrix, and similarly
for ut,i. Figures 2(b)–2(c) show the top-10 corresponding
angles between the source and target eigenvectors Us and
Ut. Results are averaged over batches. We observe that
cos(ψ1) is much larger than cos(ψi), i ≥ 2, which suggests
that the eigenvector with the largest singular value domi-
nates the transferability of feature representation. However,
the decay trend in DANN features is even sharper than in
ResNet-50 features, showing a severer dominance of the top
eigenvectors for transferability in DANN.

The observations from the series of studies above suggest
why the feature representations extracted by DANN present
worse discriminability. That is, only the eigenvectors corre-
sponding to largest singular values tend to carry transferable
knowledge, while other eigenvectors may endow domain
variations and thus be overly penalized. As a side effect, the
crucial discriminative information conveyed in these eigen-
vectors will also be suppressed to weaken discriminability.

3. Approach
In this paper, we stress that transferability and discriminabil-
ity are equally important for learning good representations
in adversarial domain adaptation. While previous section
focuses on uncovering the reasons on discriminability loss,
this section focuses on how to enhance transferability while

guaranteeing acceptable discriminability. The idea is two-
fold. First, the eigenvectors corresponding to larger singular
values should be fully leveraged to enhance transferability,
as these eigenvectors generally suppress domain variations.
Second, the eigenvectors corresponding to relatively smaller
singular values should also be leveraged to convey richer
structures, which are vitally important for discriminability.

3.1. Batch Spectral Penalization

The above analysis reveals two insights. The eigenvectors
with large singular values are important for the entire feature
matrix and its transferability. Although other eigenvectors,
or dimensions, play a minor role for transferability, this does
not mean that for discriminability they can be ignored. In
contrast, to our knowledge, discriminative classifiers have
necessary dependence on most dimensions. Therefore, it is
necessary to suppress the dimension with top singular value
to prevent it from standing out. In our approach, we first
apply SVD to obtain the largest k singular values of source
feature matrix Fs and target feature matrix Ft respectively.
Then we propose Batch Spectral Penalization (BSP) as a
regularization term over these largest k singular values:

Lbsp(F ) =

k∑
i=1

(σ2
s,i + σ2

t,i), (8)

where σs,i and σt,i refer to the i-th largest singular values
in Σs and Σt respectively. This BSP penalty can be applied
directly among feature vectors within each batch.

Denote by F = [Fs,Ft] the concatenation of the source and
target features in each batch. It is also intuitively possible
to impose a BSP penalization over the singular values of F.
However, due to the domain difference, the eigenvectors of
F may not be equally contributed by the source domain and
target domain. To avoid potential distortion, it is necessary
to penalize the singular values of the feature matrices from
the source domain and target domain independently.

Computational complexity. Note that full SVD computing
all the singular values on an m× n matrix would cost time
O(min(m2n,mn2)). This is too expensive to be used in
adversarial domain adaptation if computed over a nearly
squared matrix, e.g. the weight parameters of deep networks.
While the complexity of our batch spectral penalization is
O(b2d) where d is the dimension of features, since b is often
small, the overall computational budget of BSP is nearly
negligible in the mini-batch SGD training of deep networks.

3.2. Models with Batch Spectral Penalization

As stated before, the distributions of the singular values of
the feature matrices Fs and Ft are pathological in DANN
(Ganin et al., 2016). With batch spectral penalization (BSP)
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Figure 3. The architecture of BSP+DANN where BSP enhances discriminability while learning transferable features via domain adversarial
network (DANN). BSP is a lightweight module readily pluggable into any deep domain adaptation networks, which is end-to-end trainable
with the support of differentiable SVD in PyTorch. GRL denotes Gradient Reversal Layer widely used in adversarial domain adaptation.

applied to adversarial domain adaptation, the distributions
of singular values are expected to be more balanced. The dis-
criminability will be preserved as much as possible during
adversarial learning, which is originally tailored to transfer-
ability. To learn representations with both transferability and
discriminability, the minimax game of adversarial domain
adaptation with batch spectral penalization is formulated as

min
F,G
E(F,G) + δdistP↔Q(F,D) + βLbsp(F )

max
D

distP↔Q(F,D),
(9)

where β is a hyperparameter for trading off BSP.

Next, we apply batch spectral penalization (BSP) to a vanilla
and a state of the art adversarial domain adaptation models.

Domain Adversarial Neural Network (DANN). This
vanilla model (Ganin et al., 2016) exactly fits into the adver-
sarial domain adaptation framework in Equation (9), where
E(F,G) uses cross-entropy loss to lower classification error
on the source domain, and distP↔Q(F,D) uses negative
cross-entropy loss to measure whether the feature represen-
tations f confuse the domain discriminator D successfully:

E(F,G) = E(xs
i ,y

s
i )∼PL(G(xs

i ),y
s
i )

distP↔Q(F,D) = Exs
i∼P log[D(fsi )]

+ Ext
i∼Q log[1−D(f ti )]

(10)

where L is the cross-entropy loss of category classifier G.
The architecture of BSP+DANN is shown in Figure 3. As
shown, BSP can be easily plugged in as a penalization to
the features extracted by any domain adaptation networks.

Conditional Domain Adversarial Network (CDAN).
This state of the art model (Long et al., 2018) exploits the
classifier predictions which are believed to convey rich dis-
criminative information useful for conditional adversarial
learning. Specifically, it conditions domain discriminator D
on the classifier prediction g through the multilinear map:

T⊗(h) = f ⊗ g, (11)

where h = [f ,g]. Different from DANN, CDAN employs h
instead of f as the input to the domain discriminator D:

distP↔Q(F,D) = Exs
i∼P log[D(hs

i )]

+ Ext
i∼Q log[1−D(ht

i)].
(12)

And E(F,G) in CDAN is the same with that of DANN.

We use default k = 1 due to the distribution of the singular
values in domain adversarial networks, making batch spec-
tral penalization suitable to be calculated more efficiently by
the power method (Golub & Van der Vorst, 2001). However,
since k may be different in other networks and SVD does
not cost too much computation time in a feature matrix of a
small batch, we still use SVD to compute BSP in this paper.

3.3. Theoretical Understanding

Ben-David et al. (2010) pioneered the domain adaptation
theory that bounds the expected error ET (h) of a hypothesis
h on the target domain by using three terms: (a) expected
error of h on the source domain, ES(h); (b)H∆H-distance
dH∆H(S, T ), measuring domain shift as the discrepancy
between the disagreement of two hypotheses h, h′ ∈ H∆H;
and (c) the error λ of the ideal joint hypothesis h∗ on both
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source and target domains. The learning bound is

ET (h) ≤ ES(h) +
1

2
dH∆H(S, T ) + λ. (13)

The error λ of the ideal joint hypothesis h∗ = minh ES(h)+
ET (h) is

λ = ES(h∗) + ET (h∗). (14)

Noteworthily, most adversarial domain adaptation methods
treated the third term, λ, as a constant, which measures the
discriminability of features especially in the target domain.
From previous experimental analysis in Figure 1(b) we can
find that the average error rate of the MLP classifier trained
on the labeled data of source and target domains is half of λ.
And features extracted by DANN (Ganin et al., 2016) incur
higher error rate, implying worse discriminability than fea-
tures extracted by pre-trained ResNet-50 (He et al., 2016).

To mitigate this pitfall of adversarial domain adaptation,
the BSP approach penalizes the eigenvectors with largest
singular values from standing out in the feature representa-
tions, such that the other eigenvectors with relatively smaller
singular values (which also provide discriminative informa-
tion) can be matched instead of being suppressed. This will
essentially controls λ, yielding lower bound for the target
error. We will extensively justify this in the empirical study.

4. Experiments
We embed the batch spectral penalization (BSP) into well-
known adversarial domain adaptation methods and evaluate
our method on several visual domain adaptation datasets.
The code of BSP is available at github.com/thuml/
Batch-Spectral-Penalization.

4.1. Setup

Office-31 (Saenko et al., 2010) is a vanilla dataset for visual
domain adaptation with 4,652 images in 31 categories from
three domains: Amazon (A), Webcam (W) and DSLR (D).
We evaluate our methods on all six transfer tasks.

Office-Home (Venkateswara et al., 2017) is a more difficult
dataset than Office-31, which consists of around 15,500
images from 65 classes in office and home settings, forming
four extremely distinct domains: Artistic images (Ar), Clip
Art (Cl), Product images (Pr), and Real-World images (Rw).
We evaluate our methods on all twelve transfer tasks.

VisDA-2017 (Peng et al., 2017) is a challenging simulation-
to-real dataset, with two domains: Synthetic, renderings of
3D models from different angles and with different light-
ning conditions; Real, real-world images. We evaluate our
methods on the Synthetic→ Real task.

Digits (Ganin et al., 2016). We use three digits datasets:
MNIST, USPS, and SVHN. We build three transfer tasks:

USPS to MNIST (U→M), MNIST to USPS (M→ U), and
SVHN to MNIST (S → M). We follow the experimental
settings of (Hoffman et al., 2018).

We extend Domain Adversarial Neural Network (DANN)
(Ganin et al., 2016), Adversarial Discriminative Domain
Adaptation (ADDA) and Conditional Domain Adversarial
Network (CDAN) (Long et al., 2018) by the proposed batch
spectral penalization (BSP). We compare with state of the
art domain adaptation methods: Deep Adaptation Network
(DAN) (Long et al., 2015), Domain Adversarial Neural Net-
work (DANN) (Ganin et al., 2016), Adversarial Discrim-
inative Domain Adaptation (ADDA) (Tzeng et al., 2017),
Joint Adaptation Network (JAN) (Long et al., 2017), Un-
supervised Image-to-Image Translation (UNIT) (Zhu et al.,
2017), Generate to Adapt (GTA) (Sankaranarayanan et al.,
2018), Cycle-Consistent Adversarial Domain Adaptation
(CyCADA) (Hoffman et al., 2018), Maximum Classifier
Discrepancy (MCD) (Saito et al., 2018) and Conditional
Domain Adversarial Network (CDAN) (Long et al., 2018).

We use PyTorch to implement our methods and fine-tune
ResNet pre-trained on ImageNet (Russakovsky et al., 2015).
Following the standard protocols for unsupervised domain
adaptation (Long et al., 2018), all labeled source samples
and unlabeled target samples participate in the training stage.
We fix δ = 1 and β = 10−4 in all experiments. The learning
rates of the layers trained from scratch are set to be 10 times
those of fine-tuned layers. We adopt mini-batch SGD with
momentum of 0.95 using the learning rate and progressive
training strategies of DANN (Ganin & Lempitsky, 2015).

4.2. Results

The classification accuracies on Office-31 are shown in Ta-
ble 1, with results of baselines directly reported from their
original papers wherever available. Our method significantly
improves the performance of domain adversarial networks
and achieves state of the art results. There is an obvious
boost in accuracies on relatively difficult tasks D→ A and
W→A where the source domain is quite small. As reported
in Tables 2, 3 and 4, our method also boosts the accuracies of
DANN and CDAN. As CDAN is a more advanced method,
leading to relatively less room for improvement, our promo-
tion on DANN is more obvious. This justifies the efficacy
of BSP for improving the discriminability in the process of
learning transferable features. A more inspiring result is that
by training from scratch, BSP improves the performance of
ADDA on the Digits dataset. This indicates that BSP is also
helpful for the asymmetric adversarial adaptation methods.

4.3. Analyses

In this section, we employ the more difficult task W→A on
Office-31 as the testbed. We analyze the features extracted
by four networks: (a) ResNet-50 pre-trained on ImageNet;

github.com/thuml/Batch-Spectral-Penalization
github.com/thuml/Batch-Spectral-Penalization
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Table 1. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet-50 (He et al., 2016) 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
DAN (Long et al., 2015) 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4
DANN (Ganin et al., 2016) 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
JAN (Long et al., 2017) 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3
GTA (Sankaranarayanan et al., 2018) 89.5 ± 0.5 97.9 ± 0.3 99.8 ± 0.4 87.7 ± 0.5 72.8 ± 0.3 71.4 ± 0.4 86.5
CDAN (Long et al., 2018) 93.1 ± 0.2 98.2 ± 0.2 100.0 ± 0.0 89.8 ± 0.3 70.1 ± 0.4 68.0 ± 0.4 86.6
CDAN+E (Long et al., 2018) 94.1 ± 0.1 98.6 ± 0.1 100.0 ± 0.0 92.9 ± 0.2 71.0 ± 0.3 69.3 ± 0.3 87.7
BSP+DANN (Proposed) 93.0 ± 0.2 98.0 ± 0.2 100.0 ± 0.0 90.0 ± 0.4 71.9 ± 0.3 73.0 ± 0.3 87.7
BSP+CDAN (Proposed) 93.3 ± 0.2 98.2 ± 0.2 100.0 ± 0.0 93.0 ± 0.2 73.6 ± 0.3 72.6 ± 0.3 88.5

Table 2. Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN (Long et al., 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN (Long et al., 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN (Long et al., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP+DANN (Proposed) 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
BSP+CDAN (Proposed) 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

(b) ResNet-50 trained only with source samples; (c) DANN;
(d) DANN with batch spectral penalization (BSP+DANN).
In spectral analysis and corresponding angle analysis we use
features extracted by (b)–(d), while in ideal joint hypothesis
analysis we use features extracted by (a), (c) and (d). In
addition, in each min-batch iteration, (c) uses 0.342s while
(d) uses 0.359s (Titan V), which shows that SVD does not
cost much computation for feature matrix of a small batch.
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Figure 4. SVD analysis. With source and target feature matrices
from different methods, we compute (a) the singular values (max-
normalized); (b) squared root of the cosine values of corresponding
angles (unnormalized); (c) squared root of the cosine values of
corresponding angles (max-normalized). In the max-normalized
version we scaled all singular values such that the largest one is 1.

Spectral Analysis. Singular values of features extracted
by BSP+DANN are shown in Figure 4(a). BSP successfully
decreases the big difference between the largest and the rest.
More dimensions pose positive influence on classification.

Corresponding Angle. Cosines of corresponding angles
between the source and target domains are shown in Figures
4(b)–4(c). For DANN, the transferability of the eigenvector
with the largest cosine far outweighs that of the rest. How-
ever, BSP gives consecutive eigenvectors a more prominent
role during the transfer process. According to previous anal-
ysis, the feature matrix BSP constructs has a better-shaped
distribution of singular values to enhance discriminability.
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Figure 5. Discriminability and transferability of learned features:
(a) Classification error rate on each representation; (b) A-distance.

Ideal Joint Hypothesis. We investigate the ideal joint hy-
pothesis, which can be found by training an MLP classifier
on all source and target data with labels. As analyzed before,
it serves as a good indicator of discriminability. Moreover,
this error rate is half of λ in Equation (14). The results
are shown in Figure 5(a). As expected, while pre-trained
ResNet has a lower λ than domain adversarial networks,
BSP significantly enhances the discriminability of DANN.

Distribution Discrepancy. The A-distance (Ben-David
et al., 2010) is a measure of domain discrepancy, defined as
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Table 3. Accuracy (%) on VisDA-2017 for unsupervised domain adaptation (ResNet-101).

Method plane bcybl bus car horse knife mcyle person plant sktbrd train truck mean

ResNet-101 (He et al., 2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN (Long et al., 2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN (Ganin et al., 2016) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD (Saito et al., 2018) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN (Long et al., 2018) 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
BSP+DANN (Proposed) 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
BSP+CDAN (Proposed) 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

Table 4. Accuracy (%) on Digits for domain adaptation.

Method M→U U→M S→M Avg

DANN (Ganin et al., 2016) 90.4 94.7 84.2 89.8
ADDA (Tzeng et al., 2017) 89.4 90.1 86.3 88.6
UNIT (Zhu et al., 2017) 96.0 93.6 90.5 93.4
CyCADA (Hoffman et al., 2018) 95.6 96.5 90.4 94.2
CDAN (Long et al., 2018) 93.9 96.9 88.5 93.1
CDAN+E (Long et al., 2018) 95.6 98.0 89.2 94.3
BSP+DANN (Proposed) 94.5 97.7 89.4 93.9
BSP+ADDA (Proposed) 93.3 94.5 91.4 93.1
BSP+CDAN (Proposed) 95.0 98.1 92.1 95.1

dA = 2(1− 2ε), where ε is the error rate of a domain classi-
fier trained to discriminate source domain and target domain.
We employ the A-distance as a measure of transferability
of feature representations. Results on tasks A→W & W
→D are shown in Figure 4(b). The A-distance with features
of BSP+DANN is smaller than that of DANN. This, com-
bined with the experimental results above, reveals that BSP
enhances not only discriminability but also transferability.

Table 5. Accuracy on VisDA-2017 for sensitivity of k.

k 1 2 4 8

Avg 72.1 72.3 71.9 71.5

Sensitivity Analysis. Sensitivity of a larger k in Equation
(8) is conducted on the VisDA-2017 dataset, with results
shown in Table 5. It is inspiring that results are better when
k = 2, while performance drops a little with a larger k in
BSP. When k = 1, once the largest singular value has been
suppressed in an iteration, the second largest one may stand
out and be suppressed in the next iteration. Thus k = 1 is
good for most datasets. When k gets large, smaller singular
values are also suppressed, which contradicts our analysis.

5. Related Work
The goal of domain adaptation (Candela et al., 2009; Pan
et al., 2010) is to transfer knowledge from one domain to
anther by reducing domain shift. Deep networks prove
to be able to learn transferable representations (Yosinski
et al., 2014). However, feature representations extracted by

deep networks can only reduce, but not remove, the cross-
domain discrepancy (Glorot et al., 2011). To mitigate the
problem, some domain adaptation methods plug adaptation
layers (Long et al., 2015; Li et al., 2016; Maria Carlucci
et al., 2017; Long et al., 2017) or adaptive normalization
layers (Li et al., 2016; Maria Carlucci et al., 2017) in deep
networks to match the feature distributions of the source
and target domains. In other methods, a subnetwork called
domain discriminator, which is trained to distinguish source
data from target data and the deep features are learned to
confuse the discriminator in domain-adversarial training
(Ganin et al., 2016; Tzeng et al., 2017; Luo et al., 2017; Long
et al., 2018). The pixel-level adaptation methods provide
alternative thinking for domain adaptation. Liu & Tuzel
(2016) used two GANs to generate the source and target
images respectively, and Gatys et al. (2016) introduced an
additional reconstruction objective on the target domain
for pixel-level adaptation. Chao et al. (2018) studied cross-
dataset adaptation for Visual Question Answering. Tsai et al.
(2018) imposed two independent domain discriminators on
the feature and class layers for output space adaptation.
Without domain discriminator, Saito et al. (2018) performed
a minimax game between the feature generator and the two-
branch classifiers to minimize the domain shift, while Kim
et al. (2019) proposed a systematic and effective way to
achieve hypothesis consistency through Gaussian processes.

All of the above methods enhance transferability of fea-
tures in a variety of ways. In this paper, we try to improve
domain adaptation methods based on in-depth analysis of
discriminability, from a brand new perspective.

6. Conclusion
In this paper, we investigate how to learn feature representa-
tions that are both transferable and discriminative for deep
domain adaptation. While previous works mainly focus on
the transferability, we find that existing adversarial domain
adaptation methods may inevitably deteriorate the discrim-
inability. We thus propose a regularization approach based
on spectral analysis of the feature representations. The ap-
proach is general and pluggable into any adversarial domain
adaptation networks to yield significant performance gains.
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