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In the supplementary materials, we will provide the theo-
retical insight of active domain adaptation, more details on
the implementation, and more experimental results.

1. Theoretical Insight of Active Domain Adap-
tation

The seminal work on domain adaptation theory [9] pro-
vides a bound on the target expected error εt as follows:

Theorem 1 [9] Let 〈Ds, ls〉 and 〈Dt, lt〉 be the source and
target domains, where ls and lt are the optimal labeling
functions. For any binary function class H ∈ [0, 1]X , and
∀h ∈ H, the following generalization bound holds:

εt(h) ≤ εs(h) + dH̃(Ds,Dt)

+ min{EDs
[|ls − lt|],EDt

[|ls − lt|]},
(1)

where εt(h) and εs(h) are target and source expected error
of hypothesis h respectively. H̃ = {sgn(|h(x) − h′(x) −
t|)|h, h′ ∈ H, 0 < t < 1} is loss-derived hypothesis space
and dH̃(Ds,Dt) is the marginal domain discrepancy.

In this paper, hypothesis h is defined as h = C(F (x)).
Previous unsupervised domain adaptation methods usually
suppose that jointly minimizing the first two terms εs(h) and
dH̃(Ds,Dt) is sufficient for unsupervised domain adapta-
tion, because they assume there exists an optimal common
labeling function on the source and target domains to make
the third term small enough or otherwise it is not proper to
perform domain adaptation. They typically adopt a feature
extractor F to minimize the domain discrepancy. Thus, for
their case, the terms Ds and Dt in the bound should refer to
the distribution of features generated by F .

However, a new theory [9] shows that even if we can
achieve low or zero min{EDs

[|ls − lt|] ,EDt
[|ls − lt|]}

with the original input space, after a feature transforma-
tion F , the difference between optimal labeling functions
can be enlarged because the new labeling functions and ex-
pectations are defined on source and target features but not

∗Equal contribution

original inputs. Let h be the prediction function of the cur-
rent training model. To ensure that the feature extractor F
does not increase the third term in Equation (1), we can
derive an upper bound for it based on the sub-additivity:

min{EDs
[|ls − lt|] ,EDt

[|ls − lt|]}
≤ min{EDs

[|ls − h|+ |lt − h|] ,
EDt

[|ls − h|+ |lt − h|]}
≤ EDs

|ls − h|+ EDs
|lt − h|

+ EDt
|ls − h|+ EDt

|lt − h|

(2)

where |ls−h| and |lt−h|measures the discrepancy between
the current prediction function and the source/target optimal
labeling functions. And note that ls and lt can only be well-
defined on Ds and Dt respectively.

By split, EDt
|ls−h| = EDt∩Ds

|ls−h|+EDt\Ds
|ls − h|.

We delve into the term EDt\Ds
|ls − h|. Note that ls is the

source labeling function, which can only give the ground-
truth labels for samples in Ds but is undefined for samples
out of Ds. In other words, we can replace ls by proper
function for samples out of Ds. Therefore, we define ls = h
for samples inDt\Ds. Then we have EDt\Ds

|ls−h| = 0. So
EDt
|ls − h| = EDt∩Ds

|ls − h|. Similarly, we define lt = h
for samples in Ds \ Dt, and EDs

|lt − h| = EDs∩Dt
|lt − h|.

Since we train h to minimize the classification error on
source data, h is expected to be close to ls on Ds. So both
EDs
|ls− h| and EDt∩Ds

|ls − h| should be small. To further
ensure that EDs∩Dt

|lt−h| and EDt
|lt−h| are small, a direct

way is to annotate target samples that are (1) of high uncer-
tainties or of wrong predictions by the current classifier and
(2) to cover the whole target domain and incorporate them
into supervised training. The two conditions are sufficiently
fulfilled by TQSu, TQSc and TQSd. Hence, our transferable
query selection metric can potentially bound the third term
of the target error bound. Our approach is orthogonal and
complementary to previous UDA methods based on domain
discrepancy minimization. Integrating our approach with
them can ensure a lower target error for domain adaptation.
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Table 1. Classification accuracy on Office-31 with 10% target samples as the the labeling budget for active methods.

Method A→D A→W D→A D→W W→A W→D Avg

ResNet 81.5±0.1 75.0±0.1 63.1±0.2 95.2±0.1 65.7±0.1 99.4±0.1 80.0±0.1

RAN 90.9±0.5 90.4±0.5 80.4±0.6 98.3±0.3 80.8±0.5 99.6±0.1 90.1±0.5
UCN 94.0±0.3 93.0±0.3 84.0±0.4 100.0±0.0 84.3±0.4 100.0±0.0 92.6±0.3
QBC 93.3±0.2 93.1±0.2 83.0±0.3 99.5±0.2 84.2±0.2 99.6±0.1 92.1±0.2
Cluster 88.1±0.2 86.0±0.1 76.2±0.2 98.3±0.1 77.4±0.2 99.6±0.1 87.6±0.1
AADA 93.5±0.3 93.1±0.3 83.2±0.4 99.7±0.1 84.2±0.3 100.0±0.0 92.3±0.3
ADMA 94.0±0.2 93.4±0.3 84.4±0.3 100.0±0.0 84.6±0.3 100.0±0.0 92.7±0.3

TQS 96.4±0.3 96.4±0.3 86.4±0.4 100.0±0.0 87.1±0.3 100.0±0.0 94.4±0.3

Table 2. Classification accuracy on Office-31 with 20% target samples as the the labeling budget for active methods.

Method A→D A→W D→A D→W W→A W→D Avg

ResNet 81.5±0.1 75.0±0.1 63.1±0.2 95.2±0.1 65.7±0.1 99.4±0.1 80.0±0.1

RAN 94.6±0.3 94.4±0.4 86.0±0.5 99.5±0.3 83.6±0.4 99.4±0.1 92.9±0.4
UCN 98.0±0.2 98.1±0.2 90.8±0.2 100.0±0.0 90.2±0.2 100.0±0.0 96.2±0.2
QBC 97.7±0.1 97.4±0.1 90.0±0.1 100.0±0.0 89.0±0.2 100.0±0.0 95.7±0.1
Cluster 96.2±0.1 96.1±0.1 89.4±0.1 99.5±0.1 87.3±0.2 99.6±0.1 94.7±0.1
AADA 98.0±0.1 97.8±0.1 91.0±0.2 99.5±0.1 90.0±0.2 100.0±0.0 96.1±0.2
ADMA 98.1±0.1 98.2±0.1 91.0±0.2 100.0±0.0 90.5±0.2 100.0±0.0 96.3±0.2

TQS 100.0±0.0 100.0±0.0 94.2±0.2 100.0±0.0 94.2±0.2 100.0±0.0 98.1±0.2

2. Experiment Details
We introduce additional experiment details in this section,

including dataset description, hyperparameter setting and
implementation details.

2.1. Dataset Description

Office-31 [7] is a standard domain adaptation dataset of
3 diverse domains, Amazon(A), Webcam(W) and Dslr(D)
with 4,652 images in 31 classes.

Office-Home [8] is a more complex dataset containing
15,500 images from 4 different domains in 65 classes: Artis-
tic (A) images, Clipart (C), Product (P) images, and Real-
world (R) images.

Following previous works [2], for Office-31 and Office-
Home, we use all the data in the source domain as labeled
data and all the data in the target domain as unlabeled data,
which is also used as the unlabeled data pool in our active
setting. For evaluation, following previous domain adapta-
tion paper [1], we use the whole target domain as testing
data and compute the classification accuracy.

VisDA-2017 [6] is a simulation-to-real dataset composed
of 280K images in 12 classes with two distinct domains:
synthetic 3D models and photo-realistic images.

The training split consists of synthetic images and the
validation split consists of real images. Following previous
works [4], we use the training split as the source domain
and the validation split as the target domain since the ground

truth labels for the testing split are not available.

2.2. Hyperparameter

According to Section 3.4 of the main text, the size of
the candidate pool b′ and the number of samples b in each
selection process are two hyperparameters in the model. For
b, we use 1% of all target samples. For b′, we fix it as 2% of
all target samples. Note the b′ can be larger than the labeling
budget B since we only select a portion of candidates to
annotate. We observe that the fixed b′ and b can work well
across all datasets. The number of times to perform active
selection is B/b.

For optimizer, we use AdaDelta since it can better adapt
to adding new samples during the training process. For
optimizer hyperparameters, we perform cross-validation on
source data to tune the hyperparameters. For all the datasets,
the learning rate is set as 0.1, which is selected in the range
[10−4, 1]. The batch size is 32 and the number of training
epochs is 30.

In Equation (6) of the main text, We can control µ to
decide a soft separation between normal samples and out-
liers. We can tune σ to control the difference between the
largest domainness (D(F (x)) = µ) and the smallest one
(D(F (x)) = 0 or 1). In the experiments, We observe the
density distribution of normal samples and outliers, and fix
µ as 0.75 and σ as 0.4, which works well for all the datasets.
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Table 3. Classification accuracy on Office-Home with 10% target samples as the labeling budget for active methods.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3±0.1

RAN 61.6 80.5 80.1 61.8 76.8 73.9 64.1 60.2 78.4 72.9 62.6 84.8 71.5±0.5
UCN 65.5 85.0 82.6 63.7 80.9 76.0 66.7 62.1 80.3 74.6 65.2 88.6 74.3±0.3
QBC 66.1 84.4 81.4 64.1 80.2 74.6 67.2 62.9 78.8 73.3 66.2 86.9 73.9±0.2
Cluster 65.2 83.1 81.0 64.0 79.6 74.2 65.1 60.5 77.8 73.0 65.2 86.1 72.9±0.2
AADA 65.8 84.5 82.2 64.1 80.6 76.1 67.6 62.6 80.1 73.7 66.1 88.6 74.3±0.2
ADMA 66.5 85.4 82.8 63.8 80.9 76.3 67.7 61.6 80.9 74.3 66.8 89.7 74.7±0.3

TQS 68.0 87.7 85.7 67.0 83.0 78.7 69.3 64.5 83.9 77.8 68.9 90.6 77.1±0.3

Table 4. Classification accuracy on Office-Home with 20% target samples as the labeling budget for active methods.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3±0.1

RAN 71.0 87.0 84.2 70.2 83.1 79.9 71.7 70.2 82.5 77.0 73.1 87.9 78.2±0.4
UCN 76.3 91.4 87.4 73.3 89.1 83.2 74.8 73.4 85.4 80.0 75.8 93.9 82.0±0.2
QBC 77.1 90.8 85.9 73.2 88.1 81.0 75.1 74.7 83.1 77.8 76.8 91.3 81.2±0.2
Cluster 75.9 89.5 85.4 72.6 87.1 80.4 72.8 70.8 81.7 77.3 75.8 90.0 79.9±0.2
AADA 76.7 90.9 86.9 74.7 88.7 83.3 75.7 74.3 85.0 78.5 76.7 93.9 82.1±0.2
ADMA 77.5 91.8 87.6 73.9 89.1 83.5 75.6 72.6 86.3 79.5 77.4 95.6 82.5±0.2

TQS 79.6 94.0 91.2 77.6 92.1 87.2 78.7 77.4 90.8 85.7 79.6 97.0 85.9±0.2

2.3. Implementation Details

We implement our algorithm in PyTorch [5]. We use
ResNet-50 [3] pre-trained on ImageNet as the backbone
network. We run each experiment 3 times to compute the
average and the standard deviation. We use PyTorch 1.7,
torchvison 0.6 and CUDA 11 libraries.

We use a machine with 32 core CPUs, 256 GB memory
and one NVIDIA TITAN RTX. The average training time
for each run is about 0.5 hours.

3. Results

We provide more experimental results in this section,
including classification accuracy on more labeling budget
and the sample overlap ratio of different criteria.

3.1. Classification Accuracy

In this section, we give more results for three dataset
Office-31 [7], Office-Home [8] and VisDA-2017 [6] with
different labeling budgets.

We further run experiments on the 6 tasks on the Office-
31 dataset and 12 tasks on the Office-Home dataset with
10% and 20% labeling budgets. Table 1 and 2 show results
on Office-31 with 10% and 20% target samples as the la-
beling budget. Table 3 and 4 show results on Office-Home
with 10% and 20% as the labeling budget. We can observe
that Transferable Query Selection (TQS) consistently out-

Table 5. Classification accuracy on VisDA-2017 with different
percents of target samples as labeling budget for active methods.

Method 2% 5% 10% 20%

ResNet 44.7±0.1

RAN 73.4±0.6 78.1±0.6 82.1±0.4 87.2±0.3
UCN 76.4±0.4 81.3±0.4 85.4±0.3 90.3±0.2
QBC 75.8±0.3 80.5±0.3 84.1±0.2 89.6±0.1
Cluster 75.7±0.3 79.8±0.2 83.5±0.2 89.6±0.1
AADA 76.1±0.4 80.8±0.4 84.6±0.3 89.7±0.2
ADMA 76.3±0.4 81.4±0.4 84.8±0.3 90.0±0.1

TQS 78.3±0.4 83.1±0.4 87.2±0.3 92.0±0.2

performs other active learning and active domain adaptation
methods with different labeling budgets. The results demon-
strate that the proposed TQS works well stably with various
labeling budgets, which is an important property for a suc-
cessful active selection criterion.

As for VisDA-2017, the amount of target samples is large
but the number of classes is smaller, so the portion of data
needed for active domain adaptation is smaller. Therefore,
we further report the results with 2% target samples as the
labeling budget. We also report 10% and 20% as the labeling
budget for a comprehensive performance report.

From Table 5, we can observe that TQS consistently out-
performs previous active learning and active domain adapta-
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Table 6. Comparison between UDA methods combined with TQS or random selection (RAN) on Office-31

Method A→D A→W D→A D→W W→A W→D Avg

CDAN 92.9±0.2 94.1±0.2 71.0±0.2 98.6±0.1 69.3±0.3 100.0±0.0 87.7±0.2
CDAN+RAN 94.1±0.3 94.8±0.3 79.1±0.3 99.1±0.2 77.0±0.3 100.0±0.0 90.7±0.3
CDAN+TQS 95.2±0.2 96.3±0.2 84.7±0.3 100.0±0.0 83.4±0.3 100.0±0.0 93.3±0.2
AFN 92.1±0.2 90.3±0.2 73.4±0.2 98.7±0.1 71.2±0.2 100.0±0.0 87.6±0.2
AFN+RAN 93.4±0.3 92.7±0.3 81.2±0.4 99.3±0.2 79.3±0.4 100.0±0.0 91.0±0.3
AFN+TQS 94.6±0.2 93.7±0.2 86.0±0.3 99.3±0.2 84.7±0.3 100.0±0.0 93.0±0.2
CAN 95.0±0.3 94.5±0.3 78.0±0.4 99.1±0.2 77.0±0.4 99.8±0.1 90.6±0.3
CAN+RAN 95.5±0.3 96.7±0.3 80.5±0.4 99.6±0.1 79.3±0.3 100.0±0.0 91.9±0.3
CAN+TQS 96.0±0.0 97.0±0.0 86.2±0.0 100.0±0.0 86.1±0.0 100.0±0.0 94.2±0.3

tion methods. In particular, even with 2% labeling budget,
TQS outperforms ResNet, which indicates the efficacy of
the proposed TQS even with an extremely small labeling
budget.

3.2. Combining with UDA methods

We aim to demonstrate that TQS can improve the perfor-
mance of UDA methods, which can further indicate that the
proposed TQS has wide usage in domain adaptation. We
also need to demonstrate that the improvement of UDA+TQS
over UDA does not naı́vely come from labeling some target
data, so we also compare with UDA with randomly selected
labeled target samples, which shows that which samples to
select is also important for domain adaptation.

As shown in Table 6, CAN+TQS steadily outperforms
CAN+RAN and CAN, AFN+TQS outperforms AFN+RAN
and AFN, and CDAN+TQS outperforms CDAN+RAN and
CDAN. While with various unsupervised domain adaptation
methods, training with the annotated samples selected by
TQS, outperforms with randomly selected annotated samples
and with no annotated samples. The observations demon-
strate that TQS and UDA methods can cooperate with each
other to address the domain adaptation problem. As stated in
the theoretical insight, TQS and UDA methods address dif-
ferent challenges in domain adaptation. TQS addresses the
difference in optimal labeling function, while UDA methods
address the distribution shift. These two kinds of methods
are complementary and collaborate to achieve better perfor-
mance.

3.3. Overlap Ratio of three criteria.

To empirically demonstrate that the proposed transfer-
able uncertainty, transferable committee and transferable
domainness are complementary, we show the overlap ratio
of the candidates selected by each pair of individual criteria
and all the three criteria in Table 7. We can observe that
the overlap ratio is far from 100%, which means the three
criteria are not redundant but are complementary. Also, the
overlap ratios are not very low, which means the criteria are
not contradictory.

Table 7. Overlap Ratio (%) on Office-31 with 5% labeling budget.
Task TQSc-TQSu TQSc-TQSd TQSu-TQSd ALL of 3

Ratio 70.2 63.2 66.3 60.4
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