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1. Experiment Details
In this section, we supplement more experiment details for
reproducing the experiment results.

1.1. Implementation Details in Reinforcement
Learning

In the experiments of transfer learning in reinforcement
learning, we use the network architecture in Data-Efficient
Rainbow, which consists of 2 convolutional layers: 32 filters
of size 5× 5 with the stride of 5 and 64 filters of size 5× 5
with the stride of 5, followed by a flatten layer and 2 noisy
linear layer with the hidden size of 256. We train two models
with this architecture on the Seaquest and Riverraid games,
respectively, as our source models. We train for 1×105 steps
with the same hyper-parameters as those in Data-Efficient
Rainbow. We then perform Zoo-Tuning on the first 2 layers
for each target task. To be specific, we replace the first 2
layers in the original architecture with adaptive aggregation
(AdaAgg) layers, which learn to adaptively aggregate the
parameters of these layers in source models to form the
corresponding layers of the target model. The last 2 layers
of the architecture are not modified, which are randomly
initialized and trained together with the previous AdaAgg
layers. During the test stage, we calculate an average of 10
episodes as the final result, and report the mean and variance
of results with 5 different random seeds.

1.2. Implementation Details in Image Classification
and Facial Landmark Detection

In the experiments of classification and facial landmark de-
tection, we use 5 pretrained models trained from various
datasets and tasks as stated in the main text. Each pre-
trained model consists of a ResNet-50 backbone and several
task-specific head layers. For each target task, we perform
Zoo-Tuning on the ResNet-50 backbone. We modify each

*Equal contribution 1School of Software, BNRist, Ts-
inghua University, Beijing, China. E-mail: Yang Shu (shu-
y18@mails.tsinghua.edu.cn). Correspondence to: Mingsheng
Long <mingsheng@tsinghua.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

convolutional layer in the backbone with an AdaAgg layer
to aggregate knowledge from all 5 pretrained models. We do
not perform channel alignment on top 1× 1 convolutional
layers in the backbone, which preserves the accuracy and fur-
ther reduces the parameters and computational complexity
of our method. We keep other layers such as pooling layers,
batch normalization layers, and activation layers unchanged.
For each batch normalization layer in the backbone, we
initialize its learnable linear transformation parameters with
the average of the corresponding parameters in 5 pretrained
models, which gives the layer a smooth warm-up.

Based on the modified backbone with AdaAgg layers, we
add a task-specific head for each task. The task-specific
head is randomly initialized and trained together with the
AdaAgg backbone. For classification tasks, the head is
composed of a linear layer. For facial landmark detection,
the head is composed of three 4× 4 transpose convolution
layers with the stride of 2, and a 1 × 1 convolution layer.
For each target task, we run experiments for 3 times and
report the average results of the 3 runs.

1.3. Computing Infrastructure

For reinforcement learning experiments, we implement all
the methods based on PyTorch 1.5.0, torchvison 0.6.0, and
CUDA 10.2 libraries. For the other two computer vision
experiments, we use PyTorch 1.1.0, torchvison 0.3.0, and
CUDA 10.0 libraries for the classification tasks. We use
PyTorch 1.0.0, torchvison 0.2.1, and CUDA 9.0 libraries for
facial landmark detection tasks. We use a machine with 32
CPUs, 256 GB memory, and one NVIDIA TITAN X GPU.

2. Experiment Results
In this section, we supplement more experiment results.

2.1. More Transfer Learning Baselines

In this section, we design two more transfer learning meth-
ods for transferring from a zoo of models. The first method,
called Concat-Ensemble-Distill (CED), performs a knowl-
edge distillation from model ensembles but uses the con-
catenation of their features instead of direct averaging their
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Figure 1. Visualization of gating values in each layer of source models. We use the 5 vision pretrained models as source models and use
the facial landmark detection dataset COFW as the target task. From the left to right is from the bottom layer to the top layer. The darker
color means a higher gating value.

predictions. Specifically, it adopts a network architecture
consisting of a shared backbone with multi-heads to dis-
till the high-level features from each source model in the
zoo. Then it uses the concatenation of all these features
from multi-heads for the target task. The second method,
called Feature Extraction (FE), extracts the features (specif-
ically, features of the penultimate layers) from all the source
models in the model zoo and concatenates them to serve as
the new features for the target data. It then trains a target
classifier with the concatenated features. The two methods
are extensions of feature-level transfer learning methods to
the model zoo transfer setting. We perform two variants
for each method based on whether the source models are
firstly fine-tuned with target data (+Finetuned). Note that
fine-tuning all source models causes high computation costs.

Table 1. Comparison with the proposed baselines.

MODEL CIFAR COCO INDOORS

CED 81.84 82.19 73.15
CED+FINETUNED 81.91 82.01 74.57
FE 80.01 56.52 66.15
FE+FINETUNED 83.00 83.34 74.66

ZOO-TUNING 83.77 84.91 75.39

As shown in Table 1, Zoo-Tuning still outperforms these
baselines. Compared with them, Zoo-Tuning has two main
advantages. (1) It adaptively leverages the knowledge in
pretrained models to facilitate target learning tasks instead
of using the fixed features. (2) These baselines only consider
high-level features while Zoo-Tuning enables aggregation
in all layers, leading to a deeper transfer of knowledge.

2.2. Visualization of Gating Values

We also visualize the gating values of each layer in each pre-
trained model learned by Zoo-Tuning on the facial landmark
detection benchmark COFW, as shown in Figure 1.

Different layers in different source models have diverse gat-
ing values, which indicates that different layers and source
pretrained models have different underlying influences on
the target task. Note that this task is more complicated

than classification, as the relationship between source and
target tasks is unclear, and there is little prior knowledge.
We also find that the single model performance cannot nec-
essarily determine its importance when transferring from
multiple models under this situation. For example, though
fine-tuning from the MoCo pretrained model performs bet-
ter than other models, it does not have dominant gating
values in Zoo-Tuning. This makes transferring from a zoo
of models difficult, especially on more complex downstream
tasks, and shows the advantage of using Zoo-Tuning, which
learns to adaptively aggregate the source models without
handcrafted designs.

0 10 20 30 40 50 60
Epochs

4.5

5.0

5.5

6.0

6.5

7.0

7.5

NM
E

Baseline
Zoo-Tuning

Figure 2. The normalized mean error of the fine-tuning baseline
and Zoo-Tuning on WFLW dataset.

2.3. Training Curves

We plot the curves of the normalized mean error (NME) on
target test data while training with the fine-tuning baseline
and Zoo-Tuning methods on the WFLW dataset in Figure 2.
We can observe that Zoo-Tuning shows a similar conver-
gence speed compared with fine-tuning from one model but
consistently achieves better generalization results.


