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Abstract

Time series analysis is widely used in extensive areas. Recently, to reduce labeling
expenses and benefit various tasks, self-supervised pre-training has attracted im-
mense interest. One mainstream paradigm is masked modeling, which successfully
pre-trains deep models by learning to reconstruct the masked content based on the
unmasked part. However, since the semantic information of time series is mainly
contained in temporal variations, the standard way of randomly masking a portion
of time points will seriously ruin vital temporal variations of time series, making the
reconstruction task too difficult to guide representation learning. We thus present
SimMTM, a Simple pre-training framework for Masked Time-series Modeling.
By relating masked modeling to manifold learning, SimMTM proposes to recover
masked time points by the weighted aggregation of multiple neighbors outside the
manifold, which eases the reconstruction task by assembling ruined but comple-
mentary temporal variations from multiple masked series. SimMTM further learns
to uncover the local structure of the manifold, which is helpful for masked model-
ing. Experimentally, SimMTM achieves state-of-the-art fine-tuning performance
compared to the most advanced time series pre-training methods in two canonical
time series analysis tasks: forecasting and classification, covering both in- and
cross-domain settings. Code is available at https://github.com/thuml/SimMTM.

1 Introduction

Time series analysis has attached immense importance in extensive real-world applications, such as
financial analysis, energy planning and etc [47, 51]. Vast amounts of time series are incrementally
collected from IoT and wearable devices. However, the semantic information of time series is
mainly buried in human-indiscernible temporal variations, making it difficult to annotate. Recently,
self-supervised pre-training has been widely explored [23, 15], which benefits deep models from
pretext knowledge learned over large-scale unlabeled data and further promotes the performance of
various downstream tasks. Mainly, as a well-recognized pre-training paradigm, masked modeling has
achieved great success in many areas, such as masked language modeling (MLM) [7, 31, 32, 3, 10]
and masked image modeling (MIM) [11, 50, 20]. This paper extends pre-training methods to time
series, especially masked time-series modeling (MTM).

The canonical technique of masked modeling is to optimize the model by learning to reconstruct
the masked content based on the unmasked part [7]. However, unlike images and natural languages
whose patches or words contain much even redundant semantic information, we observe that the
valuable semantic information of time series is mainly included in the temporal variations, such as
the trend, periodicity, and peak valley, which can correspond to unique weather processes, abnormal
faults, etc. in the real world. Therefore, directly masking a portion of time points will seriously ruin
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Figure 1: Comparison between (a) canonical masked modeling and (b) SimMTM in both manifold
perspective and reconstruction performance. The showcase is to recover 50% masked time series.

the temporal variations of the original time series, which makes the reconstruction task too difficult
to guide representation learning of time series. (Figure 1).

According to the analysis in stacked denoising autoencoders [40], as shown in Figure 1, we can view
the randomly masked series as the “neighbor” of the original time series outside the manifold and the
reconstruction process is to project the masked series back to the manifold of original series. However,
as we analyzed above, direct reconstruction may fail since the essential temporal variations are ruined
by random masking. Inspired by the manifold perspective, we go beyond the straightforward
reconstruction convention of masked modeling and propose a natural idea of reconstructing the
original data from its multiple “neighbors”, i.e. multiple masked series. Although the temporal
variations of the original time series have been partially dropped in each randomly masked series, the
multiple randomly masked series will complement each other, making the reconstruction process
much more accessible than directly reconstructing the original series from a single masked series.
This process will also pre-train the model to uncover the local structure of the time series manifold
implicitly, thereby benefiting masked modeling and representation learning [35, 41].

Based on the above insights, we propose the SimMTM as a simple but effective pre-training framework
for time series in this paper. Instead of directly reconstructing the masked time points from unmasked
parts, SimMTM recovers the original time series from multiple randomly masked time series.
Technically, SimMTM presents a neighborhood aggregation design for reconstruction, which is to
aggregate the point-wise representations of time series based on similarities learned in the series-wise
representation space. In addition to the reconstruction loss, a constraint loss is presented to guide
the series-wise representation learning based on the neighborhood assumption of the time series
manifold. Empowering by above designs, SimMTM achieves consistent state-of-the-art in various
time series analysis tasks when fine-tuning the pre-trained model into downstream tasks, covering
both the low-level forecasting and high-level classification tasks, even if there is a clear domain shift
between pre-training and fine-tuning datasets. Overall, our contributions are summarized as follows:

• Inspired by the manifold perspective of masking, we propose a new task for masked time-
series modeling, which is to reconstruct the original time series on the manifold based on
multiple masked series outside the manifold.

• Technically, we present SimMTM as a simple but effective pre-training framework, which
aggregates point-wise representations for reconstruction based on the similarities learned in
series-wise representation space.

• SimMTM consistently achieves the state-of-the-art fine-tuning performance in typical time
series analysis tasks, including low-level forecasting and high-level classification, covering
both in- and cross-domain settings.

2 Related Work

2.1 Self-supervised Pre-training

Self-supervised pre-training is an important research topic for learning generalizable and shared
knowledge from large-scale data and further benefiting downstream tasks [15]. Originally, this topic
has been widely explored in computer vision and natural language processing. Elaborative manually-
designed self-supervised tasks are presented, which can be roughly categorized into contrastive
learning [12, 5, 4] and masked modeling [7, 11]. Recently, following the well-established contrastive
learning and masked modeling paradigms, some self-supervised pre-training methods for time series
have been proposed [9, 27, 34, 33, 36, 54, 52, 6].
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Contrastive learning. The critical insight of contrastive learning is to optimize the representation
space based on the manually designed positive and negative pairs. where representations of positive
pairs are optimized to be close to each other. In contrast, negative ones tend to be far apart [48, 14].
The canonical design presented in SimCLR [37] views different augmentations of the same sample
as positive pairs and augmentations among different samples as negative pairs.

Recently, in time series pre-training, many designs of positive and negative pairs have been proposed
by utilizing the invariant properties of time series. Concretely, to make the representation learning
seamlessly related to temporal variations, TimCLR [53] adopts the DTW [25] to generate phase-shift
and amplitude-change augmentations, which is more suitable for time series context. TS2Vec [55]
splits multiple time series into several patches and further defines the contrastive loss in both instance-
wise and patch-wise aspects. TS-TCC [8] presents a new temporal contrastive learning task as making
the augmentations predict each other’s future. Mixing-up [45] exploits a data augmentation scheme
in which new samples are generated by mixing two data samples. LaST [42] aims to disentangle
the seasonal-trend representations in the latent space based on variational inference. Afterward,
CoST [46] employs contrastive losses in both time and frequency domain to learn discriminative
seasonal and trend representations. Besides, TF-C [57] proposes a novel time-frequency consistency
architecture and optimizes time-based and frequency-based representations of the same example to be
close to each other. Note that contrastive learning mainly focuses on the high-level information [49],
and the series-wise or patch-wise representations inherently mismatch the low-level tasks, such as
time series forecasting. Thus, in this paper, we focus on the masked modeling paradigm.

Masked modeling. The masked modeling paradigm optimizes the model by learning to reconstruct
the masked content from the unmasked part. This paradigm has been widely explored in computer
vision and natural language processing, which is to predict the masked words of a sentence [7]
and masked patches of an image [2, 11, 50] respectively. As for the time series analysis, TST [56]
follows the canonical masked modeling paradigm and learns to predict removed time points based
on the remaining time points. Next, PatchTST [26] proposes to predict masked subseries-level
patches to capture the local semantic information and reduce memory usage. Ti-MAE [21] uses mask
modeling as an auxiliary task to boost the forecasting and classification performances of advanced
Transformer-based methods. However, as we stated before, directly masking time series will ruin
the essential temporal variations, making the reconstruction too difficult to guide the representation
learning. Unlike the direct reconstruction in previous works, SimMTM presents a new masked
modeling task, which is reconstructing the original time series from multiple randomly masked series.

2.2 Understanding Masked Modeling

Masked modeling has been explored in stacked denoising autoencoders [40], where masking is
viewed as adding noise to the original data and the masked modeling is to project masked data from
the neighborhood back to the original manifold, namely denoising. It has recently been widely used in
pre-training, which can learn valuable low-level information from data unsupervisedly [49]. Inspired
by the manifold perspective, we go beyond the classical denoising process and project the masked
data back to the manifold by aggregating multiple masked time series within the neighborhood.

3 SimMTM

As aforementioned, to tackle the problem that randomly masking time series will ruin the essential
temporal variation information, SimMTM proposes to reconstruct the original time series from
multiple masked time series. To implement this, SimMTM first learns similarities among multiple
time series in the series-wise representation space and then aggregates the point-wise representations
of these time series based on pre-learned series-wise similarities. Next, we will detail the techniques
in both model architecture and pre-training protocol aspects.

3.1 Overall Architecture

The reconstruction process of SimMTM involves the following four modules: masking, representation
learning, series-wise similarity learning and point-wise reconstruction.
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aggregate multiple series based on the series-wise similarity.
Benefiting from the above designs, SimMTM can succes-
sively unify the series-wise and point-wise properties of
time series into representation learning. Experimentally,
SimMTM achieves consistent state-of-the-art in various
time series analysis tasks when finetuning the pre-trained
model into downstream tasks, even if there is a clear domain
gap between the pre-training and finetuning datasets. Our
contributions are summarized as follows:

• To unify the series-wise and point-wise properties of
time series, SimMTM presents a new mask modeling
task, that is reconstructing the original time series from
multiple randomly masked augmentations.

• Based on the basic operation of masking modeling
and data augmentation views of temporal masking, we
implement SimMTM with series-wise contrastive and
point-wise reconstruction modules.

• SimMTM achieves consistent state-of-the-art finetun-
ing performance in various tasks, including time se-
ries forecasting, classification and imputation, covering
both in-domain and cross-domain settings.

2. Related Work
2.1. Self-supervised Pre-training for time series

Self-supervised pre-training has obtained breakthrough
progress in natural language processing (NLP) (Brown et al.,
2020; Devlin et al., 2018; Gao et al., 2020; Radford et al.,
2019) and computer vision (CV) (He et al., 2022; Li et al.,
2022; Radford et al., 2021) to alleviate the problem of over-
reliance on large-scale labeled data in deep learning.

The core of pre-training is to learn generalizable and shared
knowledge that can transfer to different but related tasks. Al-
though, there are already some self-supervised pre-training
methods for time series (Eldele et al., 2021; Shi et al., 2021;
Zerveas et al., 2021; Zhang et al., 2022). Unlike CV and
NLP, which try to learn general visual elements and latent
semantic and grammatical associations through pre-training,
time series still has not yet established such pre-training prin-
ciples and self-supervised signals due to insufficient labeled
data, potential distribution shifts, and temporal dynamics
(Zhang et al., 2022).

2.2. Contrastive Learning for time series

contrastive learning: pulling positive close neighbors and
pushing apart neg- ative non-neighbor

In comparison to the augmentations of other instances, each
instance is more similar to its own augmentation (Chen et al.,
2020; He et al., 2020).

Contrastive learning aims to learn effective representation
by pulling positive close neighbors and pushing apart neg-
ative non-neighbors. It assumes a set of positive examples
D =

�
(xi, x

+
i )
 M

i=1
. We follow the standard contrastive

framework and take a cross-entropy objective with in-batch
negatives: let hi and h+

i denote the representations of xi and
x+

i , the training objective for
�
xi, x

+
i

�
with a mini-batch of

N pairs is:

`i = � log
esim(hi,h

+
i )/⌧

PN
j=1 esim(hi,h

+
j )/⌧

. (1)

2.3. Masked Modeling for time series

masked modeling: removing a portion of the data and learn-
ing to predict the removed content.

3. Method
To adapt to various downstream time series analysis tasks,
we present a simple time series pre-training framework, nam-
ing by SimMTM, which can unify the series-wise and point-
wise properties into learned representations. As shown in
Figure 1, SimMTM involves three key designs: tempo-
ral masking for creating self-supervised tasks, contrastive
among series for series-wise properties and reconstruction
of original time series for point-wise properties.

3.1. Temporal Masking

At the crossroads of contrastive learning and mask modeling,
we find that temporal masking of time series will bring two
types of self-supervised tasks, which corresponds to series-
wise and point-wise properties of time series respectively.

Technically, given a batch of N time series samples {xi}N
i=1,

where xi 2 RL⇥C contains L time points and C observed
variates, we can easily generate a set of series for each sam-
ple xi by randomly masking along the temporal dimension,
which can be formalized as follows:

{xj
i}M

j=1 = Temporal-Maskr(xi), (2)

where r 2 [0, 1] denotes the masked ratio. M is a hyperpa-
rameter for the number of masked time series. xj

i 2 RL⇥C

represents the j-th masked time series of xi, where the val-
ues of masked time points are replaced by zeros. By doing
this, we can obtain a batch of augmented time series. For
clarity, we present the input series in a matrix as follows:

X =

N[

i=1

⇣
{xi} [ {xj

i}M
j=1

⌘
. (3)

From Eq. (3), we can naturally observe the following two
types of self-supervised tasks:
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Figure 1. Overall Architecture of SimMTM, which can reconstruct the original time series based on the aggregation of masked time series.

• Relation between each pair of elements: If we view
the temporal masking as data augmentation, for the
original time series xi, its own maskings {xj

i}M
j=1 are

positive samples since they still share the same series
properties (e.g. trend, periodicity) even though the
latter is masked, while the masked series from other se-
ries are negative samples w.r.t xi. Thus, we can obtain
a series-wise contrastive task by temporal masking.

• Relation between original series and its masked se-
ries: Following the well-acknowledged mask modeling
paradigm, the temporal masking can also be seen as
missing values, where the task is to reconstruct the
masked parts based on the reserved time points, namely
the point-wise reconstruction task.

Instead of directly combining these two types of tasks, we
present a special mask modeling task to unify the series-
wise and point-wise properties of time series and make them
collaborate with each other.

3.2. Series-wise Contrastive

Given the input X after temporal masking, we feed it into
the encoder and obtain the deep representations:

Z =

N[

i=1

⇣
{zi} [ {zj

i}M
j=1

⌘
= Enocder(X ) (4)

where zi, z
j
i 2 RL⇥dmodel . Further, as shown in Figure 1, to

obtain series-wise representations, we employ a temporal
pooler to summarize the temporal information and obtain
the series-wise representations:

S =

N[

i=1

⇣
{si} [ {sj

i}M
j=1

⌘
= Temporal-Pool(Z), (5)

where si, s
j
i 2 R1⇥dmodels denotes series-wise representa-

tions for original time series xi and its mask-augmentation
xj

i respectively. In specific, S contains (M + 1) ⇥ N

representations. Thus, the similarity matrix of S is in
R((M+1)⇥N)⇥((M+1)⇥N), which includes four types of
similarities: original series to original series, original se-
ries to masked series, masked series to original series and
masked series to masked series, where the pair of positive
samples only exists in the latter three types of relations.

By analyzing the relation between each pair of elements in
S , we can derive the series-wise contrastive loss as follows:

Lcontrastive = �
NX

i=1

⇣ MX

j=1

log
eSim(si,s

j
i )/⌧

P
s02S\{si}

�
eSim(si,s0)/⌧

�
⌘

�
NX

i=1

MX

j=1

 
log

eSim(sj
i ,si)/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘

+
X

1kM,k 6=j

log
eSim(sj

i ,sk
i )/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘
!

,

(6)

where Sim(x,y) = xyT and ⌧ is the temperature hyper-
parameter. By optimizing with Lcontrastive, the model can
extract valuable series-wise properties to representations.

3.3. Point-wise Reconstruction

Instead of directly generating missing values for masked
data, we attempt to reconstruct the original time series
{xi}N

i=1 by weighted aggregating the point-wise represen-
tations Z of other series, which is based on the similarity
matrix calculated from series-wise representations S .

Since the similarity matrix of S has already been calcu-
lated in Eq. (6). As shown in Figure 1, we can present the
reconstruction of i-th original time series as follows:

ẑi =
X

s02S\{si}

eSim(si,s
0)/⌧

P
s002S\{si}

�
eSim(si,s00)/⌧

�z0, (7)

where z0 denote the corresponding point-wise representation
of s0 and ẑi 2 RL⇥dmodel are the reconstructed point-wise
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Figure 1. Overall Architecture of SimMTM, which can reconstruct the original time series based on the aggregation of masked time series.

• Relation between each pair of elements: If we view
the temporal masking as data augmentation, for the
original time series xi, its own maskings {xj

i}M
j=1 are

positive samples since they still share the same series
properties (e.g. trend, periodicity) even though the
latter is masked, while the masked series from other se-
ries are negative samples w.r.t xi. Thus, we can obtain
a series-wise contrastive task by temporal masking.

• Relation between original series and its masked se-
ries: Following the well-acknowledged mask modeling
paradigm, the temporal masking can also be seen as
missing values, where the task is to reconstruct the
masked parts based on the reserved time points, namely
the point-wise reconstruction task.

Instead of directly combining these two types of tasks, we
present a special mask modeling task to unify the series-
wise and point-wise properties of time series and make them
collaborate with each other.

3.2. Series-wise Contrastive

Given the input X after temporal masking, we feed it into
the encoder and obtain the deep representations:

Z =

N[

i=1

⇣
{zi} [ {zj

i}M
j=1

⌘
= Enocder(X ) (4)

where zi, z
j
i 2 RL⇥dmodel . Further, as shown in Figure 1, to

obtain series-wise representations, we employ a temporal
pooler to summarize the temporal information and obtain
the series-wise representations:

S =

N[

i=1

⇣
{si} [ {sj

i}M
j=1

⌘
= Temporal-Pool(Z), (5)

where si, s
j
i 2 R1⇥dmodels denotes series-wise representa-

tions for original time series xi and its mask-augmentation
xj

i respectively. In specific, S contains (M + 1) ⇥ N

representations. Thus, the similarity matrix of S is in
R((M+1)⇥N)⇥((M+1)⇥N), which includes four types of
similarities: original series to original series, original se-
ries to masked series, masked series to original series and
masked series to masked series, where the pair of positive
samples only exists in the latter three types of relations.

By analyzing the relation between each pair of elements in
S , we can derive the series-wise contrastive loss as follows:

Lcontrastive = �
NX
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⇣ MX

j=1

log
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where Sim(x,y) = xyT and ⌧ is the temperature hyper-
parameter. By optimizing with Lcontrastive, the model can
extract valuable series-wise properties to representations.

3.3. Point-wise Reconstruction

Instead of directly generating missing values for masked
data, we attempt to reconstruct the original time series
{xi}N

i=1 by weighted aggregating the point-wise represen-
tations Z of other series, which is based on the similarity
matrix calculated from series-wise representations S .

Since the similarity matrix of S has already been calcu-
lated in Eq. (6). As shown in Figure 1, we can present the
reconstruction of i-th original time series as follows:

ẑi =
X

s02S\{si}

eSim(si,s
0)/⌧

P
s002S\{si}

�
eSim(si,s00)/⌧

�z0, (7)

where z0 denote the corresponding point-wise representation
of s0 and ẑi 2 RL⇥dmodel are the reconstructed point-wise
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Table 1. In-Domain evaluation in forecasting. The input sequence length is 96 and all results are averaged from 4 different prediction
lengths O 2 {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. Full results can be found in Table 11.

MODELS RANDOM INIT.

MASKING CONTRASTIVE DEEP MODEL

TST TF-C TS-TCC MIXING-UP TS2VEC NSTRANS.? SIMMTM
(2021) (2022) (2021) (2022) (2022) (2022) (OURS)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1 0.605 0.549 0.877 0.720 1.162 0.863 1.152 0.857 1.098 1.933 0.897 0.752 0.570 0.537 0.497 0.476

ETTH2 0.457 0.455 2.550 1.361 2.850 1.349 3.101 1.509 2.723 1.348 2.628 1.381 0.526 0.516 0.415 0.428

ETTM1 0.478 0.464 0.669 0.589 0.744 0.652 1.298 0.893 0.734 0.635 0.669 0.600 0.481 0.456 0.414 0.422

ETTM2 0.416 0.388 1.125 0.771 1.755 0.947 1.153 0.857 1.420 0.912 1.466 0.957 0.306 0.347 0.302 0.342

representations. After a channel projector, we can obtain the
reconstructed original time series x̂i = Projector(ẑi), x̂i 2
RL⇥C . Thus, the point-wise reconstruction loss can be
formalized as follows:

Lreconstruction =

NX

i=1

kxi � x̂ik2
2. (8)

Giving consideration to both series-wise and point-wise
properties, The overall optimization process of SimMTM
can be represented as follows:

min
⇥

Lcontrastive + Lreconstruction, (9)

where ⇥ denotes the set of all parameters of the backbone.
Since the point-wise reconstruction is based on the series-
wise similarity matrix, the series-wise contrastive learning
will also benefit the reconstruction process. And the opti-
mization of point-wise representations with reconstruction
loss will also bring better series-wise representations for the
contrastive loss. Thus, both parts will collaborate with each
other for better representation learning of time series.

4. Experiments
To evaluate the proposed SimMTM, we extensively experi-
ment on nine real-world benchmarks, covering three main-
stream time series analysis tasks: multivariate time series
forecasting, classification, and imputation. The nine bench-
marks cover different numbers of channels, varying series
lengths, and application scenarios, including electricity sys-
tems, neurological healthcare, human activity recognition,
mechanical fault detection, and physical status monitoring.

Then we do self-supervised pre-training to evaluate whether
SimMTM can capture effective representations with two
setups, in-domain and cross-domain, in every type of time
series analysis task. In In-Domain evaluation, we pre-train
and fine-tune using the same or same domain dataset. But
in Cross-Domain evaluation, we pre-train a model on one
pre-training dataset and use it for fine-tuning on different
datasets.

Implementation Table 3 is a summary of experiment
benchmarks. More details about datasets, experiment im-
plementation and model configuration can be found in Ap-
pendix

Baselines To verify the generality and effectiveness of
SimMTM, we compared three advanced and prevalent foun-
dation models for time series on four ETT datasets, in-
cluding NSTransformer (Liu et al., 2022), AutoFormer
(Wu et al., 2021), and vanilla Transformer (Vaswani et al.,
2017); Besides, we also compared five state-of-the-art self-
supervised time series pre-training methods, including the
contrastive learning methods: TF-C (Zhang et al., 2022),
TS-TCC (Eldele et al., 2021), Mixing-up (Wickstrøm et al.,
2022), TS2Vec (Yue et al., 2022), and masked modeling
method: TST (Zerveas et al., 2021)

4.1. Main results

As a self-supervised time series pre-training method, our
proposed SimMTM consistently achieves state-of-the-art
performance on nine real-world time series benchmarks
of three main-stream time series analysis tasks, including
multivariate time series forecasting, classification, and im-
putation.(Figure x-axis: classification; y-axis: forecasting;
z-axis: imputation)

4.2. Forecasting

In-Domain All results of the in-domain evaluation for the
forecasting task in Table 1. We pre-train the model on one
pre-training dataset and finetune it to the same target dataset
to compare the effect of different time series self-supervised
pre-training methods.

As shown in Table1, TST outperforms all the contrastive
pre-training baselines as a masked pre-training method
by randomly masking single time steps of the time se-
ries and reconstructing the missing content, indicating that
masked time series modeling by temporal-wise reconstruc-
tion learns more benefit forecasting representations than
the series-wise contrastive pre-training. Nevertheless, our
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Figure 2: Architecture of SimMTM, which reconstructs the original time series by adaptive aggregat-
ing multiple masked time series based on series-wise similarities learned contrastively from data.

Masking. Given {xi}Ni=1 as a mini-batch of N time series samples, where xi ∈ RL×C contains L
time points and C observed variates, we can easily generate a set of masked series for each sample
xi by randomly masking a portion of time points along the temporal dimension, formalizing by:

{xj
i}Mj=1 = Maskr(xi), (1)

where r ∈ [0, 1] denotes the masked portion. M is a hyperparameter for the number of masked time
series. xj

i ∈ RL×C represents the j-th masked time series of xi, where the values of masked time
points are replaced by zeros. With above process, we can obtain a batch of augmented time series.
For clarity, we present all the (N(M + 1)) input series in a set as X =

⋃N
i=1

(
{xi} ∪ {xj

i}Mj=1

)
.

Representation learning. After the encoder and projector layer, we can obtain the point-wise
representations Z and series-wise representations S, which can be formalized as:

Z =

N⋃

i=1

(
{zi} ∪ {zji}Mj=1

)
= Enocder(X ), S =

N⋃

i=1

(
{si} ∪ {sji}Mj=1

)
= Projector(Z), (2)

where zi, z
j
i ∈ RL×dmodel and si, s

j
i ∈ R1×dmodel . Encoder(·) denotes the model encoder, which can

project the input data into deep representations and will be transferred to downstream tasks during the
fine-tuning process. In this paper, we implement the encoder as a well-acknowledged Transformer
[39] and ResNet [13]. As for the Projector(·), we employ a simple MLP layer along the temporal
dimension to obtain series-wise representations. More details can be found in Section 4. Technically,
the encoder is applied to input series separately, namely

⋃N
i=1(Encoder(xi) ∪ {Encoder(xj

i )}Mj=1),
and so does for projector. Here we adopt the set-style formalization for conciseness.

Series-wise similarity learning. Note that directly averaging multiple masked time series will
result in the over-smoothing problem [40], impeding the representation learning. Thus, to precisely
reconstruct the original time series, we attempt to utilize the similarities among series-wise represen-
tations S for weighted aggregation, namely exploiting the local structure of the time series manifold.
For simplification, we formalize the calculation of series-wise similarities as follows:

R = Sim(S) ∈ RD×D, D = N(M + 1), Ru,v =
uvT

∥u∥∥v∥ ,u,v ∈ S, (3)

where R is the matrix of pair-wise similarities for (N(M + 1)) input samples in series-wise repre-
sentation space, which are measured by the cosine distance. Ru,v is the calculated similarity between
series-wise representations u,v ∈ S.

Point-wise aggregation. As shown in Figure 2, based on the learned series-wise similarities, the
aggregation process for the i-th original time series is:

ẑi =
∑

s′∈S\{si}

exp(Rsi,s′/τ)∑
s′′∈S\{si} exp(Rsi,s′′/τ)

z′, (4)

where z′ represents the corresponding point-wise representation of s′, i.e. z′ = Projector(s′). ẑi ∈
RL×dmodel is the reconstructed point-wise representation. τ denotes the temperature hyperparameter
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of softmax normalization for series-wise similarities. It is notable that as described in Eq. (4), for
each time series xi, the reconstruction is not only based its own masked series {xj

i}Mj=1. We also
introduce other series representations S\{si} into aggregation, which requires the model to suppress
the interference of less-related noise series and precisely learn similar representations for both the
masked and the original series, namely guiding the model to learn the manifold structure better. After
the decoder, we can obtain the reconstructed original time series, namely

{x̂i}Ni=1 = Decoder({ẑi}Ni=1), (5)

where x̂i ∈ RL×C is the reconstruction to xi. Decoder(·) is instantiated as a simple MLP layer
along the channel dimension following [50].

3.2 Self-supervised Pre-training

Following the masked modeling paradigm, SimMTM is supervised by a reconstruction loss:

Lreconstruction =

N∑

i=1

∥xi − x̂i∥22. (6)

Note that the reconstruction process is directly based on the series-wise similarities, while it is hard
to guarantee the model captures the precise similarities without explicit constraints in the series-wise
representation space. Thus, to avoid trivial aggregation, we also utilize the neighborhood assumption
of the time series manifold to calibrate the structure of series-wise representation space S . For clarity,
we formalize the neighborhood assumption by defining positive and negative pairs as follows:

Positive pairs: (si, s+i ), s
+
i ∈ {sji}Mj=1

Negative pairs: (si, s−i ), s
−
i ∈ {sk} ∪ {sjk}Mj=1, i ̸= k

(7)

where s+i and s−i mean the elements that are assumed as close to and far away from si respectively.
Eq. (7) indicates that the original time series and its masked series will present close representations
and be far away from the representations from other series in S . For each series-wise representation
s ∈ S, we define the set of its assumed close series as S+ ⊂ S. Note that to avoid the dominating
representation, we assume that s /∈ S+. With the above formalization, we can define manifold
constraint to series-wise representation space as:

Lconstraint = −
∑

s∈S


 ∑

s′∈S+

log
exp(Rs,s′/τ)∑

s′′∈S\{s} exp(Rs,s′′/τ)


 , (8)

which can optimize the learned series-wise representations to satisfy the neighborhood assumption in
Eq. (7) better. Finally, the overall optimization process of SimMTM can be represented as follows:

min
Θ

Lreconstruction + λLconstraint, (9)

where Θ denotes the set of all parameters of the deep architecture. To trade off the two parts in
Eq. (9), we adopt the tuning strategy presented by [17], which can adjust the hyperparameters λ
adaptively according to the homoscedastic uncertainty of each loss.

4 Experiments

To fully evaluate SimMTM, we conduct experiments on two typical time series analysis tasks:
forecasting and classification, covering low-level and high-level representation learning. Further, we
present the fine-tuning performance for each task under in- and cross-domain settings.

Benchmarks. We summarize the experiment benchmarks in Table 1, comprising twelve real-world
datasets that cover two mainstream time series analysis tasks: time series forecasting and classification.
Concretely, we have followed the standard experimental setups in Autoformer [47] for the forecasting
tasks and the experiment settings proposed by TF-C [57] for classification.
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Table 1: Summary of experiment benchmarks.

Tasks Datasets Semantic

Forecasting

ETTh1,ETTh2 Electricity
ETTm1,ETTm2 Electricity

Weather Weather
Electricity Electricity

Traffic Transportation

Classification

SleepEEG EEG
Epilepsy EEG

FD-B Faulty Detection
Gesture Hand Movement
EMG Muscle Responses

Implementations. We compare SimMTM
with six competitive state-of-the-art baseline
methods, including the contrastive learning
methods: TF-C [57], CoST [46], TS2Vec [55],
LaST [42], the masked modeling method: Ti-
MAE [21], TST [56]. TF-C [57] and Ti-
MAE [21] are the previous best pre-training
methods. We experiment on both in- and cross-
domain settings. For the in-domain setting, we
pre-train and fine-tune the model using the same
dataset. As for the cross-domain setting, we pre-
train the model on a certain dataset and fine-tune
the encoder to different datasets. More details
are provided in Appendix A.

Unified encoder. To make a fair compari-
son, we attempt to unify encoder for these pre-
training methods. Concretely, we adopt vanilla Transformer [39] with the channel independence [26]
as the unified encoder for forecasting. The channel-independent design allows models to accomplish
cross-domain transfer between datasets with different variate numbers. As for the classification, we
use 1D-ResNet [13] as the shared encoder following [57]. Notably, for LaST [42] and TFC [57],
since their designs are closely related to model structures, we directly report results from their papers
or reproduce with official codes. For other baselines and SimMTM, the results in the main text are
from the unified encoder. The results from their official papers are also compared in Appendix A.2.
For all baselines, the results with a unified encoder generally surpass results reported by themselves.

4.1 Main results

We summarize the results in forecasting and classification of in- and cross-domain settings in Figure 3.
In all these settings, SimMTM outperforms other baselines significantly. It is also notable that
although the masking-based method Ti-MAE [21] achieves good performance in the forecasting task
(x-axis of Figure 3), it fails in the classification task (y-axis). Besides, contrastive-based methods fail
in low-level forecasting tasks. These results indicate that previous methods cannot simultaneously
cover high-level and low-level tasks, highlighting the advantages of SimMTM in task generality.

Cross-DomainIn-Domain

Figure 3: Performance comparison of time series pre-training methods in forecasting (MSE ↓) and
classification (Acc ↑) tasks, including both in-domain (left) and cross-domain (right) settings.

4.2 Forecasting

In-domain. As shown in Table 2, empowering by SimMTM pre-training, the model performance is
promoted significantly (SimMTM vs. Random init.). Besides, SimMTM consistently outperforms
other pre-training methods. On the average of all benchmarks, SimMTM achieves 8.3% MSE reduc-
tion and 4.3% MAE reduction compared to the advanced masked modeling baseline Ti-MAE [21],
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Table 2: In-domain setting of forecasting the future O time points based on the past 336 time points.
All results are averaged from 4 different choices of O ∈ {96, 192, 336, 720}. A smaller MSE or
MAE indicates a better prediction. See Appendix E for full results.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.409 0.428 0.431 0.448 0.423 0.446 0.466 0.462 0.474 0.461 0.527 0.513 0.485 0.472 0.446 0.456

ETTh2 0.353 0.390 0.395 0.427 0.380 0.386 0.404 0.421 0.449 0.459 0.692 0.724 0.399 0.427 0.417 0.468

ETTm1 0.348 0.385 0.356 0.387 0.366 0.391 0.373 0.389 0.398 0.398 0.496 0.474 0.356 0.385 0.699 0.557

ETTm2 0.263 0.320 0.279 0.336 0.267 0.325 0.297 0.347 0.265 0.327 0.465 0.562 0.314 0.365 0.326 0.361

Weather 0.230 0.271 0.239 0.275 0.234 0.265 0.239 0.276 0.232 0.261 0.286 0.349 0.324 0.329 0.233 0.267

Electricity 0.162 0.256 0.212 0.300 0.205 0.296 0.209 0.289 0.186 0.274 0.363 0.432 0.215 0.295 0.213 0.293

Traffic 0.392 0.264 0.490 0.316 0.475 0.310 0.586 0.362 0.713 0.397 0.717 0.456 0.435 0.362 0.470 0.350

Avg 0.308 0.331 0.343 0.356 0.336 0.346 0.368 0.364 0.388 0.368 0.507 0.501 0.361 0.376 0.401 0.393

Table 3: Cross-domain setting of forecasting the future O time points based on the past 336 time
points. All results are averaged from 4 different choices of O ∈ {96, 192, 336, 720}. A lower MSE
or MAE indicates a better prediction. Full results are in Appendix E.

Models SimMTM Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 → ETTh1 0.415 0.430 0.466 0.456 0.469 0.459 0.443 0.471 0.635 0.634 0.428 0.433 0.517 0.486

ETTm1 → ETTh1 0.422 0.430 0.495 0.469 0.475 0.463 0.426 0.441 0.700 0.702 0.620 0.541 0.484 0.482

ETTm2 → ETTh1 0.428 0.441 0.464 0.456 0.453 0.450 0.503 0.507 1.091 0.814 0.598 0.548 0.616 0.550

Weather → ETTh1 0.456 0.467 0.462 0.464 0.465 0.456 - - - - 0.518 0.487 0.463 0.460

ETTh1 → ETTm1 0.346 0.384 0.360 0.390 0.373 0.393 0.353 0.390 0.746 0.652 0.370 0.393 0.699 0.557

ETTh2 → ETTm1 0.365 0.384 0.383 0.402 0.391 0.409 0.475 0.489 0.750 0.654 0.363 0.387 0.694 0.557

ETTm2 → ETTm1 0.351 0.383 0.390 0.410 0.382 0.402 0.414 0.464 0.758 0.699 0.385 0.412 0.423 0.420

Weather → ETTm1 0.350 0.383 0.411 0.423 0.368 0.392 - - - - 0.382 0.403 0.382 0.395

Avg 0.392 0.413 0.429 0.434 0.422 0.428 0.436 0.460 0.780 0.693 0.458 0.451 0.535 0.488

14.7% MSE reduction and 12.0% MAE reduction compared to the contrastive baseline CoST [46]. It
is also notable that both Ti-MAE [21] and TST [56] outperform all the contrastive-based baselines.
This indicates that masked modeling based on point-wise reconstruction suits the forecasting task
better than the series-wise contrastive pre-training.

Cross-domain. As demonstrated in Table 3, we present multiple scenarios to verify the effectiveness
under the cross-domain setting, where SimMTM consistently outperforms other baselines. Note
that the channel-independent encoder enables the comparing baselines to be capable of transferring
pre-trained models between datasets with different variate numbers: Weather → {ETTh1, ETTm1}.
But for LaST and TF-C with model-specific designs, they cannot be applied to these scenarios. While
negative migration has been observed in some cross-domain scenarios, such as Weather → ETTh1
and ETTh2 → ETTm1, SimMTM is still significantly overall superior to other baselines.
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Table 4: In- and cross-domain settings of classification. For the in-domain setting, we pre-train and
fine-tune the model on the same dataset Epilepsy. For the cross-domain setting, we pre-train a model
on SleepEEG and fine-tune it to multiple target datasets: Epilepsy, FD-B, Gesture, EMG. Accuracy
(%) score are recorded. Full results are included in Appendix E.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Epilepsy → Epilepsy 94.75 89.83 80.34 80.89 92.11 93.96 92.35 92.33

SleepEEG → Epilepsy 95.49 89.83 73.45 82.89 86.46 94.95 93.66 94.46

SleepEEG → FD-B 69.40 47.36 67.98 65.57 46.67 69.38 54.82 60.74

SleepEEG → Gesture 80.00 42.19 75.54 75.12 64.17 76.42 73.33 73.33

SleepEEG → EMG 97.56 77.80 63.52 75.89 66.34 81.74 73.17 80.92

Avg 87.44 69.40 72.17 76.07 71.15 83.29 77.47 80.36

In-Domain - Epilepsy to Epilepsy Cross-Domain - SleepEEG to EMGIn-Domain - ETTh1 to ETTh1 Cross-Domain - ETTh2 to ETTh1
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Figure 4: Ablations of SimMTM on the reconstruction loss (Lrec.) and constraint loss (Lcon.) in
time series forecasting (left part) and classification (right part) tasks under both in-domain and
cross-domain settings. More ablations are included in Appendix E.

4.3 Classification

In-domain. We investigate the in-domain pre-training effect on the classification tasks in Table 4.
Note that different from forecasting, the classification task requires the model to learn high-level
time series representations. From Table 4, we can find that the contrastive pre-training baselines
achieve competitive performances. In contrast, the masking-based model Ti-MAE [21] and TST [56]
perform poorly, and TST even exhibits a negative transfer phenomenon compared to the random
initialization, indicating that contrastive learning is generally more suitable for classification tasks.
Surprisingly, although SimMTM follows the masked modeling paradigm, with our specially-designed
reconstruction task, it can still achieve the best performance in the classification task. This is benefited
from the neighborhood aggregation from multiple masked series, which enables the model to exploit
the local structure of the time series manifold.

Cross-domain. We experiment with four cross-domain transfer scenarios in Table 4: SleepEEG →
{Epilepsy, FD-B, Gesture, EMG}, where the target datasets are distinct from the pre-training dataset.
Due to the large gap between pre-training and fine-tuning datasets, the baselines perform poorly in
most cases, while SimMTM still surpasses other baselines and the random initialization significantly.
Especially for SleepEEG → EMG, SimMTM remarkably surpasses previous state-of-the-art TF-C
(Accuracy: 97.56% vs. 81.74%). These results demonstrate that SimMTM can precisely capture
valuable knowledge from pre-training datasets and uniformly benefit extensive downstream datasets.

4.4 Model Analysis

Ablations. As shown in Figure 4, we provide ablations to two parts of the training loss in SimMTM.
It is observed that both Lreconstruction and Lconstraint are essential to the final performance. Especially, for
the SleepEEG → EMG experiment, SimMTM surpasses the random initialization remarkably, where
reconstruction and constraint losses provide 9.7% and 16.0% absolute improvement respectively.
Besides, we can also find that in comparison to Lreconstruction, Lconstraint provides more contributions to
the final results. This comes from our design that the constraint loss uncovers a proper time series
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Table 5: Representation analysis for different methods in classification and forecasting tasks. For
each model, we calculate the Centered Kernel Alignment (CKA) similarity (%) [18] between repre-
sentations from the first and the last encoder layers to measure the representation-learning property
of deep models. Since the bottom layer representations usually contain low-level or detailed informa-
tion, a smaller CKA similarity means the top layer includes different information from the bottom
layer and indicates the model tends to learn high-level representations or more abstract information.
For comparison, we also calculate the |∆CKA| between pre-trained and fine-tuned models, where a
smaller value indicates a smaller representation gap between pre-training and fine-tuning, and the
representations have stronger universality and portability.

Tasks Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2vec [55] SimMTM

Classification
Pre-training 84.12 54.98 82.01 85.78 60.74 70.01 33.87
Fine-tuning 87.26 55.80 79.56 86.30 62.24 69.79 32.84

|∆CKA| 3.14 0.82 2.45 1.53 1.50 0.22 1.04

Forecasting
Pre-training 83.60 99.76 75.20 59.35 87.09 70.20 97.79
Fine-tuning 91.24 94.92 79.25 60.60 77.38 83.73 97.89

|∆CKA| 7.64 4.84 4.05 1.25 9.70 13.53 0.11

Sum|∆CKA| 10.78 5.66 6.50 2.77 11.20 13.75 1.15

Table 6: Performance by applying SimMTM to four advanced time series forecasting models under
the in-domain setting. “+ Sub-series Masking” refers to the sub-series masked modeling pre-training
method proposed by PatchTST [26] itself. MSE and MAE are averaged from all prediction lengths in
{96,192,336,720}. The detailed results for each forecasting horizon are in Appendix E.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Model MSE MAE MSE MAE MSE MAE MSE MAE

Transformer [39] 1.088 0.836 4.103 1.612 0.901 0.704 1.624 0.901
+ SimMTM 0.927 0.761 3.498 1.487 0.809 0.663 1.322 0.808

Autoformer [47] 0.573 0.573 0.550 0.559 0.615 0.528 0.324 0.368
+ SimMTM 0.561 0.568 0.543 0.555 0.553 0.505 0.315 0.360

NS Transformer [24] 0.570 0.537 0.526 0.516 0.481 0.456 0.306 0.347
+ SimMTM 0.543 0.527 0.493 0.514 0.431 0.455 0.301 0.345

PatchTST [26] 0.417 0.431 0.331 0.379 0.352 0.382 0.258 0.317
+ Sub-series Masking 0.430↓ 0.445↓ 0.355↓ 0.394↓ 0.341 0.379 0.258 0.318↓

+ SimMTM 0.409 0.428 0.329 0.379 0.348 0.378 0.254 0.313

manifold helpful for reconstruction from multiple masked series, without which the neighborhood
aggregation will degenerate to the trivial average.

Representation analysis. To illustrate the advantages of SimMTM intuitively, we provide a
representation analysis in Table 5, where we can find the following observations. Firstly, we can find
that the CKA value of SimMTM in the classification task is clearly smaller than the values in the
forecasting task, where the former is a high-level task and the latter requires low-level representations.
These results demonstrate that SimMTM can learn adaptive representations for different tasks, which
can be benefited from our design in the pre-training loss. Concretely, the temporal variations of
classification pre-training datasets are much more diverse than the forecasting datasets. Thus, the
Lconstraint will be easier for optimization in classification, deriving a smaller CKA value. Secondly,
from |∆CKA|, it is observed that the models pre-trained from SimMTM present a smaller gap with
respect to the final fine-tuned model in representation learning properties, which is why SimMTM
can consistently improve downstream tasks.

Model generality. From Table 6, we can find that as a general time series pre-training framework,
SimMTM can consistently improve the forecasting performance of diverse advanced base models,
even for the state-of-the-art time series forecasting model PatchTST [26]. This generality also
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Figure 5: Model analysis. Left part is for fine-tuning ETTh2 pre-trained model to ETTh1 with limited
data, where a smaller MSE indicates better performance. Right part presents the MSE performance
of SimMTM in the ETTh1 “input-336-predict-96” in-domain setting with different masked ratio r
and numbers of masked series M , where a darker red means better performance.

indicates that we can further improve the model’s performance by employing advanced base models
as encoders. It is also notable that different from the negative transfer phenomenon caused by the
canonical sub-series masked modeling used in the PatchTST paper [26], the consistency improvement
of SimMTM further verifies the effectiveness of our design.

Fine-tuning to limited data scenarios. One essential application of pre-training models is to
provide prior knowledge for downstream tasks, especially for limited data scenarios, which is critical
to the fast-adaption of deep models. Thus, to verify the effectiveness of SimMTM and other pre-
training methods in data-limited scenarios, we pre-train a model on ETTh2 and fine-tune it to ETTh1
with different choices for the remaining proportions of training data. All results are presented
in Figure 5. We can find that SimMTM achieves significant performance gains in different data
proportions compared to other time series pre-training methods. Specifically, for the 10% data fine-
tuning setting, SimMTM significantly outperforms the advanced masking-based method Ti-MAE [21]
(MSE: 0.591 vs. 0.660). Compared with the contrastive-based method TF-C [57], SimMTM also
achieves 26.0% MSE reduction. These results further verify that SimMTM can effectively capture
valuable knowledge from datasets and boost the final performance, even in limited data scenarios.

Masking strategy. Note that the difficulty of reconstructing the original time series increases along
with the increase of the masked ratio, but decreases when the number of neighbor masked series
increases. We explore the potential relationship between the masked ratio and the number of masked
series used for reconstruction, namely r and M in Eq. (1) respectively. The experimental results in
Figure 5 show that we need to set M ∝ r to obtain better results. Experimentally, we choose the
masking ratio as 50% and adopt three masked series for reconstruction throughout this paper. In
addtion, we can find that only using one masked series (M = 1) for pre-training generally performs
worse than the settings with larger M , where the latter enables the model to discover the relations
between input series and its neighbors. See Figure 1 for an intuitive understanding. These results
further highlight the advantage of our design in manifold learning.

5 Conclusion

This paper presents SimMTM, a simple pre-training framework for masked time-series modeling.
Going beyond the previous convention in reconstructing the original time series from unmasked time
points, SimMTM proposes a new masked modeling task as reconstructing the original series from its
multiple neighbor masked series. Concretely, SimMTM aggregates the point-wise representations
based on the series-wise similarities, which are carefully constrained by the neighborhood assumption
on the time series manifold. Experimentally, SimMTM can furthest bridge the gap between pre-
trained and fine-tuned models, thereby achieving consistent state-of-the-art in distinct forecasting and
classification tasks compared to the most advanced time series pre-training methods, covering both
in-domain and cross-domain settings. In the future, we will further extend SimMTM to large-scale
and diverse pre-training datasets in pursuing the foundation model for time series analysis.
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A Implementation Details

All the experiments are repeated five times, implemented in PyTorch [28] and conducted on NVIDIA A100 SXM4
40GB GPU. We implement the baselines based on their official implementation and follow the configuration
from their original papers. For the metrics, we adopt the mean square error (MSE) and mean absolute error
(MAE) for the time series forecasting. As for the classification, accuracy, precision, recall, F1 score, and their
average value are recorded.

A.1 Dataset Description

We conduct experiments to evaluate the effect of our method under in-domain and cross-domain settings on
twelve real-world datasets for two typical time series analysis tasks: forecasting and classification, covering
diverse application scenarios (electricity system, neurological healthcare, human activity recognition, mechanical
fault detection, and physical status monitoring), different types of signals (ECG, EMG, acceleration, vibration,
power load, weather, and transoirtation), multivariate channel dimensions (from 1 to 862), varying times series
lengths (from 96 to 5120) and large span sampling ratio (from 100 Hz to 4000 Hz). The detailed descriptions of
these datasets are summarized in Table 7.

Table 7: Dataset descriptions. Samples are organized in (Train/Validation/Test).

Tasks Datasets Channels Length Samples Classes Information Frequency

Fo
re

ca
st

in
g

ETTh1,ETTh2 7 {96,192,336,720} 8545/2881/2881 - Electricity 1 Hour

ETTm1,ETTm2 7 {96,192,336,720} 34465/11521/11521 - Electricity 15 Mins

Weather 21 {96,192,336,720} 36792/5271/10540 - Weather 10 Mins

Electricity 321 {96,192,336,720} 18317/2633/5261 - Electricity 1 Hour

Traffic 862 {96,192,336,720} 12185/1757/3509 - Transportation 1 Hour

C
la

ss
ifi

ca
tio

n

SleepEEG 1 200 371005/-/- 5 EEG 100 Hz

Epilepsy 1 178 60/20/11420 2 EEG 174 Hz

FD-B 1 5120 60/21/135599 3 Faulty Detection 64K Hz

Gesture 3 315 320/120/120 8 Hand Movement 100 Hz

EMG 1 1500 122/41/41 3 Muscle responses 4K Hz

(1) ETT (4 subsets) [58] contains the time series of oil temperature and power load collected by electricity
transformers from July 2016 to July 2018. ETT is a group of four subsets with different recorded frequencies:
ETTh1/ETTh2 are recorded every hour, and ETTm1/ETTm2 are recorded every 15 minutes.

(2) WEATHER [43] includes meteorological time series with 21 weather indicators collected every 10 minutes
from the Weather Station of the Max Planck Biogeochemistry Institute in 2020.

(3) ELECTRICITY [38] records the hourly electricity consumption of 321 clients from 2012 to 2014. Values
are in kW of each 15 min. All time labels report to Portuguese hour. However, all days present 96 measures
(24×4). For every year in March, time change day (which has only 23 hours), values between 1:00 am and 2:00
am are zero for all points. For every year in October, time change day (which has 25 hours), the values between
1:00 am and 2:00 am aggregated consumption of two hours.

(4) TRAFFIC [29] encompasses the hourly measures of road occupancy rates obtained from 862 sensors situated
in the San Francisco Bay area freeways. These measurements were carried out between January 2015 and
December 2016.

(5) SLEEPEEG [16] contains 153 whole-night sleeping electroencephalography (EEG) recordings from 82
healthy subjects. We follow the same data preprocessing approach as [57] and get 371,055 univariate brainwaves.
Each brainwave is sampled at a frequency of 100 Hz and associated with one of five sleeping stages: Wake,
Non-rapid eye movement (3 sub-states), and Rapid Eye Movement.

14



(6) EPILEPSY [1] monitors the brain activities of 500 subjects with a single-channel EEG sensor. Every subject
is recorded for 23.6 seconds of brain activities. The dataset is sampled at 178 Hz and contains 11,500 samples in
total. We follow the procedure described by [57]. The first four classes (eyes open, eyes closed, EEG measured
in the healthy brain region, and EEG measured in the tumor region) of the original five categories of each sample
are classified as positive, and the remaining classes are used as negative.

(7) FD-B [19] is generated by electromechanical drive systems. It monitors the condition of rolling bearings
and detects their failures based on the monitoring conditions, which include speed, load torque, and radial
force. Concretely, FD-B has 13,640 samples in total. Each recording is sampled at 64k Hz with 3-class labels:
undamaged, inner damaged, and outer damaged.

(8) GESTURE [22] are collected from 8 hand gestures based on the paths of hand movement recorded by an
accelerometer. The eight gestures are hand swiping left, right, up, and down, hand waving in a counterclockwise
or clockwise circle, hand waving in a square, and waving a right arrow, respectively. This dataset contains 440
examples of balanced classification labels that can be used, and each sample includes eight different kinds of
gesture categories.

(9) EMG [30] is sampled with 4K Hz and consists of 163 single-channel EMG recordings from the anterior tib-
ialis muscle of three healthy volunteers suffering from neuropathy and myopathy. Each patient is a classification
category, so each sample is associated with one of three classes.

A.2 Baselines Implementation

We compare SimMTM against six state-of-the-art baselines. To make a fair and comprehensive comparison, we
tried two baseline implementation approaches for forecasting and classification tasks: the unified encoder and
reproduced with their official implementation encoder. Notably, LaST [42] and TF-C [57] are closely related to
model structures. We directly report results from their papers or reproduce codes with official implementation.

Table 8: Baselines implementation details.

Baselines Task Encoder Performance Comparison Report

Ti-MAE [21]

Forecasting Channel-independent Transformer better Main text

Official implementation Section E

Classification 1D-ResNet better Main text

Official implementation Section E

TST [56]

Forecasting Channel-independent Transformer better Main text

Official implementation Section E

Classification 1D-ResNet better Main text

Official implementation Section E

LaST [42] Forecasting Official implementation / Main text

Classification Official implementation / Main text

TF-C [57] Forecasting Official implementation / Main text

Classification Official implementation / Main text

CoST [46]

Forecasting Channel-independent Transformer better Main text

Official implementation Section E

Classification 1D-ResNet better Main text

Official implementation Section E

TS2Vec [55]

Forecasting Channel-independent Transformer better Main text

Official implementation Section E

Classification 1D-ResNet better Main text

Official implementation Section E

(1) Unified encoder. We attempt to unify the encoder for these pre-training methods. Specifically, we adopt the
vanilla Transformer [39] with channel independent [26] for forecasting to accomplish cross-domain transfer
between datasets with different variate numbers. As for the classification, we use 1D-ResNet [13] as the
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encoder following [57]. Besides, we do a comprehensive hyperparameter search for all baselines. For the
Transformer encoder, we vary the number of Transformer layers in {1, 2, 3, 4}, select the model dimension from
{16, 32, 64, 128, 256}, and the attention head from {4, 8, 16, 32}. For the 1D-ResNet, we search the number
of 1D-ResNet layers from {1, 2, 3, 4}, the kernel size from {3, 5, 8} respectively. Additionally, for the masked
modeling methods TST [56], Ti-MAE [21], we also searched the masked ratio r = {0.125, 0.25, 0.5, 0.75} for
better performance.

(2) Official implementation. We also implement the baselines following the corresponding official codes,
including encoder, hyperparameters, etc. The comparisons are included in Section E of this supplementary
material. We directly report the results from their original papers for the same set. For mismatched settings, the
results are from our implementation.

Finally, for baselines Ti-MAE [21], TST [56], CoST [46], and TS2Vec [55], we report the results based on
the unified encoder in the main text. But for baselines LaST [42] and TF-C [57], we report the results of the
official code implementation or their original paper, which are limited by their model structures. As a result, the
performances of all baselines with unified encoder (that we reported in the main text) generally surpass their
official implementation and results reported in their own paper. Table 8 shows more details. Full experimental
results are in Section E.

A.3 Pre-training and Fine-tuning Configuration

We built two types of pre-training and fine-tuning scenarios, in-domain and cross-domain, based on the bench-
marks of forecasting and classification tasks to compare the effectiveness of our method and other time series
pre-training methods.

We pre-train a model on one subset for forecasting tasks and fine-tune it to the same dataset to build seven
in-domain transfer evaluation scenarios. In cross-domain evaluation, we pre-train a model on one specific dataset
and use other datasets for fine-tuning. Based on the above settings, we constructed fifteen in- and cross-domain
pre-training and fine-tuning experiments, covering the same dataset with the same sampled frequency, different
datasets with the same sampled frequency, and different datasets with different sampled frequencies.

We use the same dataset, Epilepsy, to construct the in-domain setting for classification tasks. For the cross-
domain setting, we pre-train a model for classification tasks on a univariate time series dataset SleepEEG with
the most complex temporal dynamics and the most samples. And then fine-tune the model separately on Epilepsy,
FD-B, Gesture, and EMG. Furthermore, we constructed four cross-domain evaluation scenarios by pre-training
from SleepEEG and fine-tuning to Epilepsy, FD-B, Gesture, and EMG because of fewer commonalities and the
enormous gap among these datasets. Table 9 shows detailed pre-training and fine-tuning settings.

Table 9: Pre-training and fine-tuning scenarios for time series forecasting (Fore.) and classification
(Class.) tasks, including the same and different datasets and in- and cross-domain settings.

Tasks Evaluation Scenarios Characteristic

Fore.

In-domain

ETTh1 → ETTh1

The same dataset with the same frequency

ETTh2 → ETTh2

ETTm1 → ETTm1

ETTm2 → ETTm2

Weather → Weather

Electricity → Electricity

Traffic → Traffic

Cross-domain

ETTh2 → ETTh1
Different datasets with the same frequency.

ETTm2 → ETTm1

{ETTm1, ETTm2, Weather} → ETTh1
Different datasets with different frequencies.

{ETTh1, ETTh2, Weather} → ETTm1

Class.
In-domain Epilepsy → Epilepsy The same dataset with the same frequency.

Cross-domain SleepEEG → {Epilepsy, FD-B, Gesture, EMG} Different datasets with different frequencies.
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A.4 Model and Training Configuration

Following the previous convention, we choose the encoder part of Transformer [39] with channel independent as
the feature extractor for forecasting tasks. For the classification tasks, we adopt 1D-ResNet [13] as the encoder
following [57]. In the pre-training stages, we pre-train the model with different learning rates and batch sizes
according to the pre-train datasets. Then we fine-tune it to downstream forecasting and classification tasks
supervised by L2 and Cross-Entropy losses, respectively. The configuration details are in Table 10.

Table 10: Model and training configuration in Forecasting (Fore.) and Classification (Class.) tasks.

Tasks
Encoder Pre-training Fine-tuning

elayers dmodel learning rate batch size epochs learning rate loss function batch size epochs

Fore. 2 16 1e-3 32 50 1e-4 L2 {16,32} 10

Class. 3 128 1e-4 128 10 1e-4 Cross-Entropy 32 300

B Hyperparameter Sensitivity

We verify the hyperparameter sensitivity of SimMTM on ETTh1 in Table 11, including masked ratio (r), the
number of masked series (M), temperature (τ ), masked function (Mask), encoder depth (elayers), and the hidden
dimension (dmodel). Lower MSE and MAE represent better performance.

As shown in Table 11 (a) and 11 (b), we can observe the effect of the method is closely related to the trade-off
of the masked ratio and the number of masked series. Hence, a reasonable balance between the two kinds of
parameters is critical. For the temperature hyperparameter of softmax normalization (τ ), we use an appropriately
small τ that leads to higher differences and diversity of masked sequences. For the masked methods, we chose
two masked methods for verification: masking following random distribution and masking following geometric
distribution [56]. The results show that the method based on geometric masking is better than random masking
modeling. Besides, we can find that 2 encoder layers are enough for reconstruction tasks. Note our method
SimMTM consistently performs better than training from scratch under various hyperparameter changes.

Table 11: Hyperparameter sensitivity experiments on ETTh1 for the in-domain setting. The entries
marked in bold are the same which specify the default settings. This table format follows [11].

(a) Masked ratio (b) Masked numbers (c) Temperature

Ratio MSE MAE Numbers MSE MAE Value MSE MAE

12.5% 0.429 0.440 1 0.429 0.437 0.02 0.409 0.428

25% 0.427 0.434 2 0.416 0.429 0.2 0.409 0.429

50% 0.409 0.428 3 0.409 0.428 2 0.416 0.428

75% 0.422 0.434 4 0.419 0.431

(d) Masked function (e) Encoder depth (f) Hidden layer dimension

Type MSE MAE Layers MSE MAE Dim MSE MAE

Random 0.409 0.431 1 0.420 0.426 16 0.409 0.428

Geometric 0.409 0.428 2 0.409 0.428 32 0.420 0.432

3 0.421 0.430 64 0.422 0.434

4 0.426 0.436 128 0.428 0.444
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C Ablations on Aggregation Setting

SimMTM proposes to recover masked time points by the weighted aggregation of multiple neighbors outside the
manifold. We explored two types of aggregation settings.

(1) Positive Samples Aggregation (PSA): only aggregate multiple positive neighbors (the masked series of the
same sample) to reconstruct masked time points.

(2) Positive and Negative Samples Aggregation (PNSA): aggregate both positive and negative neighbors (the
masked series of all samples) to reconstruct masked time points.

As shown in Table 12, although PSA made good progress compared to training from scratch (Random Init.),
PNSA is consistently better than SimMTM PSA in all ablation settings. In masked time-series modeling,
masking can be viewed as adding noise to the original data, and masked modeling is to project masked data
from the neighborhood back to the original manifold. We use positive and negative masked time series as the
reconstruction candidates to drive the model to select the positive samples adaptively, which can make the model
learn the structure of the manifold better. Therefore, as stated in the Method Section of the main text, we choose
positive and negative sample aggregation (PNSA) as the standard aggregation setting of SimMTM.

Table 12: Ablations on aggregation setting in forecasting (MSE) and classification (Acc) tasks for in-
and cross-domain settings. A smaller MSE or a higher Accuracy indicates a better result (↑).

Tasks Evaluation Scenarios Aggregation Metric

Forecasting

In-domain ETTh1 → ETTh1

Random init. 0.431

SimMTM (PSA) 0.420 ↑
SimMTM (PNSA) 0.409 ↑

Cross-domain ETTh2 → ETTh1

Random init. 0.431

SimMTM (PSA) 0.426 ↑
SimMTM (PNSA) 0.415 ↑

Classification

In-domain Epilepsy → Epilepsy

Random init. 89.83

SimMTM (PSA) 92.56 ↑
SimMTM (PNSA) 94.75 ↑

Cross-domain SleepEEG → EMG

Random init. 77.80

SimMTM (PSA) 87.80 ↑
SimMTM (PNSA) 97.56 ↑

D Comparison of Masked Modeling

To investigate the reconstruction process of different masked modeling methods, we plot both original and
reconstructed time series from TST and SimMTM in Figure 6, where TST [56] follows the canonical masked
modeling paradigm and learns to predict removed time points based on the remaining time points. In Figure 6,
we can find that direct reconstruction is too difficult in time series, even for the 12.5% masking ratio. As for
the 75% masking ratio, TST degenerates more seriously. Because of this poor reconstruction effect, direct
reconstruction is difficult to provide reliable guidance to model pre-training. In contrast, our proposed SimMTM
can precisely reconstruct the original time series, benefiting the representation learning. These results also
support our design in neighborhood reconstruction.
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TST    Masked 12.5% TST    Masked 25% TST    Masked 50% TST    Masked 75%

SimMTM (Ours)    Masked 12.5% SimMTM (Ours)    Masked 25% SimMTM (Ours)    Masked 50% SimMTM (Ours)    Masked 75%

Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series
Original Time Series

Reconstructed Time Series

Original Time Series

Reconstructed Time Series

Figure 6: Comparison of the canonical masked modeling paradigm TST and neighborhood aggrega-
tion masked modeling SimMTM in reconstructing time series. All the cases are shown from ETTh1.

E Full Results

Due to the limited length of the text, we summarize all the experiments in the main text into two parts: the main
experiment and the analytical experiment. We categorize and index them in Tabel 13, 14.

Table 13: The main results of pre-training and fine-tuning scenarios for time series forecasting and
classification tasks, including the same and different encoder for in- and cross-domain settings.

Tasks Evaluation Encoder Tabels Name

Forecasting
In-domain The model utilized in the original papers Table 15

Transformer with channel independent Table 16

Cross-domain The model utilized in the original papers Table 17

Transformer with channel independent Table 18

Classification
In-domain The model utilized in the original papers Table 23

1D-ResNet Table 24

Cross-domain The model utilized in the original papers Table 23

1D-ResNet Table 24

Table 14: The model analysis results of pre-training and fine-tuning scenarios for time series
forecasting and classification tasks with the unified encoder for in- and cross-domain settings.

Tasks Evaluation Analysis Tabels Name

Forecasting
In-domain Ablation study Table 19

Model generality Table 21

Cross-domain Ablation study Table 20

Limited data Table 22

Classification In-domain Ablation study Table 25

Cross-domain Ablation study Table 25

19



F Limitations

SimMTM is inspired by the manifold perspective of masked modeling. Although we have provided relatively
comprehensive results to verify the model’s effectiveness, the model performance still needs theoretical guaran-
tees. In fact, the most high-impact works in the self-supervised pre-training community are without theoretical
analysis, such as BERT [7], GPT-3 [10], MAE [11] and SimMIM [50]. Thus, we would like to leave this problem
as a future work.

The masking ratio of masked modeling methods is an essential hyper-parameter. Although we have provided a
chosen principle to masking ratio r and the number of masked time series M as M ∝ r in the main text, we still
need to tune these two hyperparameters for different datasets to achieve the best performance. Notably, previous
methods also chose the masking ratio solely based on the empirical results [7, 11]. Thus, despite there exist
limitations of SimMTM in choosing hyperparameters, the principle of M ∝ r can somewhat ease this problem.
And the chosen strategy of the masking ratio can also be a potential topic in masked modeling [44].

G Social Impacts

This paper presents SimMTM as a new masked modeling method for time series. SimMTM achieves state-of-
the-art in two mainstream time series analysis tasks, which can be a good supplement for the self-supervised
pre-training community. We will also publish the codebase of time-series pre-training to facilitate future research.

This paper only focuses on the algorithm design. Using all the codes and datasets strictly follows the correspond-
ing licenses (Appendix A.1). There is no potential ethical risk or negative social impact.
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Table 15: Complete results of long-term forecasting tasks for the in-domain setting of forecasting
the future O ∈ {96, 192, 336, 720} time points based on the past 336 time points. All the results of
baselines are based on the encoder utilized in their original papers. The standard deviations of
SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.379 0.407 0.380 0.412 0.708 0.570 0.503 0.527 0.399 0.412 0.463 0.406 0.514 0.512 0.709 0.650
192 0.412 0.424 0.416 0.434 0.725 0.587 0.601 0.552 0.484 0.468 0.531 0.540 0.655 0.590 0.927 0.757
336 0.421 0.431 0.448 0.458 0.713 0.589 0.625 0.541 0.580 0.533 0.535 0.545 0.790 0.666 0.986 0.811
720 0.424 0.449 0.481 0.487 0.736 0.618 0.768 0.628 0.432 0.432 0.577 0.562 0.880 0.739 0.967 0.790

Avg 0.409 0.428 0.431 0.448 0.721 0.591 0.624 0.562 0.474 0.461 0.527 0.513 0.710 0.627 0.897 0.752

E
T

T
h2

96 0.293 0.347 0.325 0.374 0.443 0.465 0.335 0.392 0.331 0.390 0.463 0.521 0.465 0.482 0.506 0.477
192 0.355 0.386 0.400 0.424 0.533 0.516 0.444 0.441 0.451 0.452 0.525 0.561 0.671 0.599 0.567 0.547
336 0.370 0.401 0.405 0.433 0.445 0.472 0.455 0.494 0.460 0.478 0.850 0.883 0.848 0.776 0.694 0.628
720 0.395 0.427 0.451 0.475 0.507 0.498 0.481 0.504 0.552 0.509 0.930 0.932 0.871 0.811 0.728 0.838

Avg 0.353 0.390 0.395 0.427 0.482 0.488 0.429 0.458 0.449 0.457 0.692 0.724 0.714 0.667 0.624 0.623

E
T

T
m

1

96 0.288 0.348 0.295 0.346 0.647 0.497 0.454 0.456 0.316 0.355 0.419 0.401 0.376 0.420 0.563 0.551
192 0.327 0.373 0.333 0.374 0.597 0.508 0.471 0.490 0.349 0.366 0.471 0.438 0.420 0.451 0.599 0.558
336 0.363 0.395 0.370 0.398 0.699 0.525 0.457 0.451 0.429 0.407 0.540 0.509 0.482 0.494 0.685 0.594
720 0.412 0.424 0.427 0.431 0.786 0.596 0.594 0.488 0.496 0.464 0.552 0.548 0.628 0.578 0.831 0.698

Avg 0.348 0.385 0.356 0.387 0.682 0.532 0.494 0.471 0.398 0.398 0.496 0.474 0.477 0.486 0.670 0.600

E
T

T
m

2

96 0.172 0.261 0.175 0.268 0.304 0.357 0.363 0.301 0.163 0.255 0.401 0.477 0.276 0.384 0.448 0.482
192 0.223 0.300 0.240 0.312 0.334 0.387 0.342 0.364 0.239 0.303 0.422 0.490 0.500 0.532 0.545 0.536
336 0.282 0.331 0.298 0.351 0.420 0.441 0.414 0.361 0.259 0.366 0.513 0.508 0.680 0.695 0.681 0.744
720 0.374 0.388 0.403 0.413 0.508 0.481 0.580 0.456 0.397 0.382 0.523 0.772 0.925 0.914 0.691 0.837

Avg 0.263 0.320 0.279 0.336 0.392 0.417 0.425 0.371 0.265 0.327 0.465 0.562 0.595 0.631 0.591 0.650

W
ea

th
er

96 0.158 0.211 0.166 0.216 0.216 0.280 0.292 0.370 0.153 0.211 0.215 0.296 0.327 0.359 0.433 0.462
192 0.199 0.249 0.208 0.254 0.303 0.335 0.410 0.473 0.207 0.250 0.267 0.345 0.390 0.422 0.508 0.518
336 0.246 0.286 0.257 0.290 0.351 0.358 0.434 0.427 0.249 0.264 0.299 0.360 0.477 0.446 0.545 0.549
720 0.317 0.337 0.326 0.338 0.425 0.399 0.539 0.523 0.319 0.320 0.361 0.395 0.551 0.586 0.576 0.572

Avg 0.230 0.271 0.239 0.275 0.324 0.343 0.419 0.448 0.232 0.261 0.286 0.349 0.436 0.453 0.516 0.525

E
le

ct
ri

ci
ty 96 0.133 0.223 0.190 0.279 0.399 0.412 0.292 0.370 0.166 0.254 0.366 0.436 0.230 0.353 0.322 0.401

192 0.147 0.237 0.195 0.285 0.400 0.460 0.270 0.373 0.178 0.278 0.366 0.433 0.253 0.371 0.343 0.416
336 0.166 0.265 0.211 0.301 0.564 0.573 0.334 0.323 0.186 0.275 0.358 0.428 0.197 0.287 0.362 0.435
720 0.203 0.297 0.253 0.333 0.880 0.770 0.344 0.346 0.213 0.288 0.363 0.431 0.230 0.328 0.388 0.456

Avg 0.162 0.256 0.212 0.300 0.561 0.554 0.310 0.353 0.186 0.274 0.363 0.432 0.228 0.335 0.354 0.427

Tr
af

fic

96 0.368 0.262 0.471 0.309 0.431 0.482 0.559 0.454 0.706 0.385 0.613 0.340 0.751 0.431 0.321 0.367
192 0.373 0.251 0.475 0.308 0.491 0.346 0.583 0.493 0.709 0.388 0.619 0.516 0.751 0.424 0.476 0.367
336 0.395 0.254 0.490 0.315 0.502 0.384 0.637 0.469 0.714 0.394 0.785 0.497 0.761 0.425 0.499 0.376
720 0.432 0.290 0.524 0.332 0.533 0.543 0.663 0.594 0.723 0.421 0.850 0.472 0.780 0.433 0.563 0.390

Avg 0.392 0.264 0.490 0.316 0.489 0.399 0.611 0.503 0.713 0.397 0.717 0.456 0.761 0.428 0.501 0.375
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Table 16: Complete results of long-term forecasting tasks for the in-domain setting of forecasting
the future O ∈ {96, 192, 336, 720} time points based on the past 336 time points. All the results
of baseline are based on the unified channel-independent Transformer encoder. The standard
deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.379 0.407 0.380 0.412 0.356 0.420 0.401 0.425 - - - - 0.422 0.436 0.392 0.420
192 0.412 0.424 0.416 0.434 0.421 0.434 0.427 0.432 - - - - 0.520 0.487 0.445 0.452
336 0.421 0.431 0.448 0.458 0.447 0.446 0.519 0.487 - - - - 0.472 0.462 0.453 0.455
720 0.424 0.449 0.481 0.487 0.469 0.482 0.515 0.504 - - - - 0.525 0.501 0.495 0.496

Avg 0.409 0.428 0.431 0.448 0.423 0.446 0.466 0.462 - - - - 0.485 0.472 0.446 0.456

E
T

T
h2

96 0.293 0.347 0.325 0.374 0.339 0.378 0.322 0.358 - - - - 0.321 0.374 0.365 0.509
192 0.355 0.386 0.400 0.424 0.380 0.402 0.448 0.435 - - - - 0.380 0.403 0.396 0.422
336 0.370 0.401 0.405 0.433 0.388 0.323 0.420 0.440 - - - - 0.430 0.451 0.399 0.436
720 0.395 0.427 0.451 0.475 0.414 0.442 0.424 0.452 - - - - 0.466 0.480 0.508 0.503

Avg 0.353 0.390 0.395 0.427 0.380 0.386 0.404 0.421 - - - - 0.399 0.427 0.417 0.468

E
T

T
m

1

96 0.288 0.348 0.295 0.346 0.305 0.351 0.310 0.348 - - - - 0.291 0.343 0.681 0.689
192 0.327 0.373 0.333 0.374 0.343 0.374 0.362 0.380 - - - - 0.330 0.370 0.689 0.551
336 0.363 0.395 0.370 0.398 0.387 0.407 0.389 0.402 - - - - 0.382 0.401 0.704 0.559
720 0.412 0.424 0.427 0.431 0.428 0.432 0.433 0.427 - - - - 0.422 0.425 0.721 0.571

Avg 0.348 0.385 0.356 0.387 0.366 0.391 0.373 0.389 - - - - 0.356 0.385 0.699 0.557

E
T

T
m

2

96 0.172 0.261 0.175 0.268 0.174 0.258 0.215 0.296 - - - - 0.242 0.333 0.224 0.303
192 0.223 0.300 0.240 0.312 0.257 0.303 0.259 0.323 - - - - 0.283 0.345 0.273 0.331
336 0.282 0.331 0.298 0.351 0.277 0.333 0.319 0.364 - - - - 0.303 0.349 0.399 0.402
720 0.374 0.388 0.403 0.413 0.360 0.404 0.395 0.405 - - - - 0.431 0.431 0.406 0.408

Avg 0.263 0.320 0.279 0.336 0.267 0.325 0.297 0.347 - - - - 0.314 0.365 0.326 0.361

W
ea

th
er

96 0.158 0.211 0.166 0.216 0.153 0.196 0.162 0.214 - - - - 0.216 0.280 0.154 0.205
192 0.199 0.249 0.208 0.254 0.214 0.253 0.203 0.252 - - - - 0.303 0.335 0.200 0.243
336 0.246 0.286 0.257 0.290 0.243 0.272 0.260 0.297 - - - - 0.351 0.358 0.252 0.286
720 0.317 0.337 0.326 0.338 0.324 0.349 0.330 0.342 - - - - 0.425 0.343 0.324 0.335

Avg 0.230 0.271 0.239 0.275 0.234 0.265 0.239 0.276 - - - - 0.324 0.329 0.233 0.267

E
le

ct
ri

ci
ty

96 0.133 0.223 0.190 0.279 0.163 0.255 0.186 0.268 - - - - 0.197 0.277 0.195 0.275
192 0.147 0.237 0.195 0.285 0.194 0.288 0.193 0.276 - - - - 0.197 0.279 0.195 0.277
336 0.166 0.265 0.211 0.301 0.201 0.298 0.206 0.289 - - - - 0.211 0.295 0.210 0.294
720 0.203 0.297 0.253 0.333 0.263 0.343 0.250 0.324 - - - - 0.255 0.330 0.252 0.327

Avg 0.162 0.256 0.212 0.300 0.205 0.296 0.209 0.289 - - - - 0.215 0.295 0.213 0.293

Tr
af

fic

96 0.368 0.262 0.471 0.309 0.448 0.298 0.595 0.360 - - - - 0.378 0.365 0.480 0.357
192 0.373 0.251 0.475 0.308 0.445 0.301 0.576 0.353 - - - - 0.371 0.352 0.439 0.336
336 0.395 0.254 0.490 0.315 0.492 0.320 0.569 0.362 - - - - 0.467 0.354 0.460 0.344
720 0.432 0.290 0.524 0.332 0.514 0.321 0.603 0.372 - - - - 0.525 0.378 0.499 0.364

Avg 0.392 0.264 0.490 0.316 0.475 0.310 0.586 0.362 - - - - 0.435 0.362 0.470 0.350
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Table 17: Complete results of long-term forecasting tasks for the cross-domain setting of forecasting
the future O ∈ {96, 192, 336, 720} time points based on the past 336 time points. All the results of
baselines are based on the encoder utilized in their original papers. The standard deviations of
SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
↓

ETTh1

96 0.372 0.401 0.380 0.412 0.703 0.562 0.653 0.468 0.362 0.420 0.596 0.569 0.378 0.421 0.849 0.694
192 0.414 0.425 0.416 0.434 0.715 0.567 0.658 0.502 0.426 0.478 0.614 0.621 0.424 0.451 0.909 0.738
336 0.429 0.436 0.448 0.458 0.733 0.579 0.631 0.561 0.522 0.509 0.694 0.664 0.651 0.582 1.082 0.775
720 0.446 0.458 0.481 0.487 0.762 0.622 0.638 0.608 0.460 0.478 0.635 0.683 0.883 0.701 0.934 0.769

Avg 0.415 0.430 0.431 0.448 0.728 0.583 0.645 0.535 0.443 0.471 0.635 0.634 0.584 0.539 0.944 0.744

ETTm1
↓

ETTh1

96 0.367 0.398 0.380 0.412 0.715 0.581 0.627 0.477 0.360 0.374 0.666 0.647 0.423 0.450 0.991 0.765
192 0.396 0.421 0.416 0.434 0.729 0.587 0.628 0.500 0.381 0.371 0.672 0.653 0.641 0.578 0.829 0.699
336 0.471 0.437 0.448 0.458 0.712 0.583 0.683 0.554 0.472 0.531 0.626 0.711 0.863 0.694 0.971 0.787
720 0.454 0.463 0.481 0.487 0.747 0.627 0.642 0.600 0.490 0.488 0.835 0.797 1.071 0.805 1.037 0.820

Avg 0.422 0.430 0.431 0.448 0.726 0.595 0.645 0.533 0.426 0.441 0.700 0.702 0.750 0.632 0.957 0.768

ETTm2
↓

ETTh1

96 0.388 0.421 0.380 0.412 0.699 0.566 0.559 0.489 0.428 0.454 0.968 0.738 0.377 0.419 0.783 0.669
192 0.419 0.423 0.416 0.434 0.722 0.573 0.600 0.579 0.427 0.497 1.080 0.801 0.422 0.450 0.828 0.691
336 0.435 0.444 0.448 0.458 0.714 0.569 0.677 0.572 0.528 0.540 1.091 0.824 0.648 0.580 0.990 0.762
720 0.468 0.474 0.481 0.487 0.760 0.611 0.694 0.664 0.527 0.537 1.226 0.893 0.880 0.699 0.985 0.783

Avg 0.428 0.441 0.431 0.448 0.724 0.580 0.632 0.576 0.503 0.507 1.091 0.814 0.582 0.537 0.896 0.726

Weather
↓

ETTh1

96 0.477 0.444 0.380 0.412 - - - - - - - - - - - -
192 0.454 0.522 0.416 0.434 - - - - - - - - - - - -
336 0.424 0.434 0.448 0.458 - - - - - - - - - - - -
720 0.468 0.469 0.481 0.487 - - - - - - - - - - - -

Avg 0.456 0.467 0.431 0.448 - - - - - - - - - - - -

ETTh1
↓

ETTm1

96 0.290 0.348 0.295 0.346 0.667 0.521 0.425 0.381 0.295 0.387 0.672 0.600 0.248 0.332 0.605 0.561
192 0.327 0.372 0.333 0.374 0.561 0.479 0.495 0.478 0.335 0.379 0.721 0.639 0.336 0.391 0.615 0.561
336 0.357 0.392 0.370 0.398 0.690 0.533 0.456 0.441 0.379 0.363 0.755 0.664 0.381 0.421 0.763 0.677
720 0.409 0.423 0.427 0.431 0.744 0.583 0.554 0.477 0.403 0.431 0.837 0.705 0.469 0.482 0.805 0.664

Avg 0.346 0.384 0.356 0.387 0.666 0.529 0.482 0.444 0.353 0.390 0.746 0.652 0.359 0.407 0.697 0.616

ETTh2
↓

ETTm1

96 0.322 0.347 0.295 0.346 0.658 0.505 0.449 0.343 0.314 0.396 0.677 0.603 0.253 0.342 0.466 0.480
192 0.332 0.372 0.333 0.374 0.594 0.511 0.477 0.407 0.587 0.545 0.718 0.638 0.367 0.392 0.557 0.532
336 0.394 0.391 0.370 0.398 0.732 0.532 0.407 0.519 0.631 0.584 0.755 0.663 0.388 0.431 0.646 0.576
720 0.411 0.424 0.427 0.431 0.768 0.592 0.557 0.523 0.368 0.429 0.848 0.712 0.498 0.488 0.752 0.638

Avg 0.365 0.384 0.356 0.387 0.688 0.535 0.472 0.448 0.475 0.489 0.750 0.654 0.377 0.413 0.606 0.556

ETTm2
↓

ETTm1

96 0.297 0.348 0.295 0.346 0.647 0.497 0.471 0.422 0.304 0.388 0.610 0.577 0.239 0.331 0.586 0.515
192 0.332 0.370 0.333 0.374 0.597 0.508 0.495 0.442 0.429 0.494 0.725 0.657 0.339 0.371 0.624 0.562
336 0.364 0.393 0.370 0.398 0.700 0.525 0.455 0.424 0.499 0.523 0.768 0.684 0.371 0.421 1.035 0.806
720 0.410 0.421 0.427 0.431 0.786 0.596 0.498 0.532 0.422 0.450 0.927 0.759 0.467 0.481 0.780 0.669

Avg 0.351 0.383 0.356 0.387 0.682 0.531 0.480 0.455 0.414 0.464 0.758 0.669 0.354 0.401 0.756 0.638

Weather
↓

ETTm1

96 0.304 0.354 0.295 0.346 - - - - - - - - - - - -
192 0.338 0.375 0.333 0.374 - - - - - - - - - - - -
336 0.371 0.397 0.370 0.398 - - - - - - - - - - - -
720 0.417 0.426 0.427 0.431 - - - - - - - - - - - -

Avg 0.358 0.388 0.356 0.387 - - - - - - - - - - - -
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Table 18: Complete results of long-term forecasting tasks for the in-domain setting. All the results of
baseline are based on the unified channel-independent Transformer encoder. The past sequence
length is set as 336. The unified channel-independent transformer model can perform the transfer
experiment between datasets with different variables. The standard deviations of SimMTM are within
0.005 for MSE and within 0.004 for MAE.

Models SimMTM Random init. Ti-MAE [21] TST [56] LaST [42] TF-C [57] CoST [46] TS2Vec [55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
↓

ETTh1

96 0.372 0.401 0.380 0.412 0.399 0.424 0.401 0.425 - - - - 0.376 0.362 0.436 0.430
192 0.414 0.425 0.416 0.434 0.454 0.440 0.531 0.484 - - - - 0.376 0.362 0.455 0.440
336 0.429 0.436 0.448 0.458 0.497 0.469 0.474 0.459 - - - - 0.444 0.444 0.689 0.584
720 0.446 0.458 0.481 0.487 0.515 0.492 0.471 0.469 - - - - 0.517 0.510 0.489 0.490

Avg 0.415 0.430 0.431 0.448 0.466 0.456 0.469 0.459 - - - - 0.428 0.433 0.517 0.486

ETTm1
↓

ETTh1

96 0.367 0.398 0.380 0.412 0.400 0.418 0.443 0.440 - - - - 0.465 0.456 0.413 0.443
192 0.396 0.421 0.416 0.434 0.434 0.445 0.471 0.455 - - - - 0.722 0.588 0.459 0.465
336 0.471 0.437 0.448 0.458 0.510 0.467 0.462 0.455 - - - - 0.712 0.586 0.614 0.554
720 0.454 0.463 0.481 0.487 0.636 0.544 0.525 0.503 - - - - 0.581 0.533 0.450 0.464

Avg 0.422 0.430 0.431 0.448 0.495 0.469 0.475 0.463 - - - - 0.620 0.541 0.484 0.482

ETTm2
↓

ETTh1

96 0.388 0.421 0.380 0.412 0.433 0.431 0.389 0.413 - - - - 0.403 0.426 0.483 0.480
192 0.419 0.423 0.416 0.434 0.474 0.458 0.463 0.452 - - - - 0.457 0.468 0.579 0.537
336 0.435 0.444 0.448 0.458 0.515 0.448 0.492 0.465 - - - - 0.794 0.682 0.673 0.563
720 0.468 0.474 0.481 0.487 0.496 0.488 0.468 0.468 - - - - 0.739 0.617 0.729 0.620

Avg 0.428 0.441 0.431 0.448 0.464 0.456 0.453 0.450 - - - - 0.598 0.548 0.616 0.550

Weather
↓

ETTh1

96 0.477 0.444 0.380 0.412 0.397 0.440 0.428 0.429 - - - - 0.421 0.410 0.393 0.410
192 0.454 0.522 0.416 0.434 0.458 0.466 0.461 0.451 - - - - 0.539 0.503 0.440 0.437
336 0.424 0.434 0.448 0.458 0.479 0.458 0.463 0.456 - - - - 0.568 0.514 0.450 0.451
720 0.468 0.469 0.481 0.487 0.515 0.492 0.507 0.489 - - - - 0.544 0.522 0.567 0.541

Avg 0.456 0.467 0.431 0.448 0.462 0.464 0.465 0.456 - - - - 0.518 0.487 0.463 0.460

ETTh1
↓

ETTm1

96 0.290 0.348 0.295 0.346 0.311 0.355 0.315 0.354 - - - - 0.308 0.355 0.681 0.545
192 0.327 0.372 0.333 0.374 0.337 0.372 0.365 0.391 - - - - 0.357 0.390 0.689 0.551
336 0.357 0.392 0.370 0.398 0.372 0.398 0.384 0.400 - - - - 0.396 0.402 0.705 0.560
720 0.409 0.423 0.427 0.431 0.422 0.433 0.428 0.426 - - - - 0.419 0.423 0.722 0.571

Avg 0.346 0.384 0.356 0.387 0.360 0.390 0.373 0.393 - - - - 0.370 0.393 0.699 0.557

ETTh2
↓

ETTm1

96 0.322 0.347 0.295 0.346 0.323 0.362 0.338 0.383 - - - - 0.322 0.351 0.679 0.546
192 0.332 0.372 0.333 0.374 0.370 0.395 0.394 0.408 - - - - 0.331 0.373 0.673 0.551
336 0.394 0.391 0.370 0.398 0.397 0.413 0.401 0.412 - - - - 0.382 0.397 0.703 0.557
720 0.411 0.424 0.427 0.431 0.442 0.439 0.434 0.432 - - - - 0.417 0.428 0.722 0.573

Avg 0.365 0.384 0.356 0.387 0.383 0.402 0.391 0.409 - - - - 0.363 0.387 0.694 0.557

ETTm2
↓

ETTm1

96 0.297 0.348 0.295 0.346 0.333 0.378 0.327 0.364 - - - - 0.320 0.364 0.422 0.434
192 0.332 0.370 0.333 0.374 0.381 0.398 0.362 0.389 - - - - 0.367 0.386 0.387 0.371
336 0.364 0.393 0.370 0.398 0.394 0.413 0.401 0.418 - - - - 0.374 0.394 0.402 0.444
720 0.410 0.421 0.427 0.431 0.455 0.453 0.437 0.437 - - - - 0.479 0.503 0.481 0.432

Avg 0.351 0.383 0.356 0.387 0.390 0.410 0.382 0.402 - - - - 0.385 0.412 0.423 0.420

Weather
↓

ETTm1

96 0.294 0.354 0.295 0.346 0.338 0.380 0.324 0.366 - - - - 0.324 0.360 0.329 0.359
192 0.318 0.355 0.333 0.374 0.473 0.457 0.349 0.377 - - - - 0.359 0.387 0.392 0.392
336 0.361 0.397 0.370 0.398 0.402 0.415 0.378 0.398 - - - - 0.395 0.399 0.372 0.400
720 0.427 0.426 0.427 0.431 0.432 0.438 0.422 0.427 - - - - 0.450 0.467 0.434 0.429

Avg 0.350 0.383 0.356 0.387 0.411 0.423 0.368 0.392 - - - - 0.382 0.403 0.382 0.395
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Table 19: Full ablation studies for the in-domain setting of forecasting. The standard deviations of
SimMTM are within 0.005 for MSE and within 0.004 for MAE.

Input-336 Supervised W/o Lreconstruction W/o Lconstraint SimMTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
96 0.380 0.412 0.377 0.408 0.381 0.409 0.379 0.407

192 0.416 0.434 0.419 0.443 0.409 0.443 0.412 0.424
336 0.448 0.458 0.423 0.434 0.432 0.444 0.421 0.431
720 0.481 0.487 0.437 0.454 0.447 0.454 0.424 0.449
Avg 0.431 0.448 0.414 0.435 0.417 0.438 0.409 0.428

ETTh2
96 0.325 0.374 0.288 0.344 0.312 0.365 0.293 0.347

192 0.400 0.424 0.356 0.391 0.389 0.418 0.355 0.386
336 0.405 0.433 0.368 0.406 0.396 0.432 0.370 0.401
720 0.451 0.475 0.409 0.432 0.448 0.479 0.395 0.427
Avg 0.395 0.427 0.355 0.393 0.386 0.424 0.353 0.390

ETTm1
96 0.295 0.346 0.291 0.343 0.282 0.337 0.288 0.348

192 0.333 0.374 0.330 0.390 0.324 0.388 0.327 0.373
336 0.370 0.398 0.369 0.399 0.366 0.397 0.363 0.395
720 0.427 0.431 0.417 0.429 0.424 0.435 0.412 0.424
Avg 0.356 0.387 0.352 0.390 0.349 0.389 0.348 0.385

ETTm2
96 0.175 0.268 0.174 0.265 0.170 0.261 0.172 0.261

192 0.240 0.312 0.232 0.303 0.244 0.320 0.223 0.300
336 0.298 0.351 0.313 0.365 0.279 0.334 0.282 0.331
720 0.403 0.413 0.376 0.451 0.376 0.378 0.374 0.388
Avg 0.279 0.336 0.274 0.346 0.267 0.323 0.263 0.320

Weather
96 0.166 0.216 0.164 0.209 0.160 0.212 0.158 0.211

192 0.208 0.254 0.203 0.258 0.203 0.251 0.199 0.249
336 0.257 0.290 0.244 0.289 0.253 0.290 0.246 0.286
720 0.326 0.338 0.322 0.343 0.325 0.340 0.317 0.337
Avg 0.239 0.275 0.233 0.275 0.235 0.273 0.230 0.271

Electricity
96 0.190 0.279 0.177 0.270 0.134 0.220 0.133 0.223

192 0.195 0.285 0.184 0.279 0.163 0.274 0.147 0.237
336 0.211 0.301 0.202 0.300 0.223 0.311 0.166 0.265
720 0.253 0.333 0.250 0.337 0.241 0.321 0.203 0.297
Avg 0.212 0.300 0.203 0.397 0.190 0.282 0.162 0.256

Traffic
96 0.471 0.309 0.366 0.257 0.457 0.301 0.368 0.262

192 0.475 0.308 0.373 0.266 0.468 0.325 0.373 0.251
336 0.490 0.315 0.401 0.249 0.487 0.302 0.395 0.254
720 0.524 0.332 0.472 0.312 0.485 0.315 0.432 0.290
Avg 0.490 0.316 0.403 0.271 0.474 0.311 0.392 0.264
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Table 20: Full ablation studies on transfer to ETTh1 and ETTm1 for the cross-domain setting of
forecasting. The standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for
MAE.

Input-336 Supervised W/o Lreconstruction W/o Lconstraint SimMTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
↓

ETTh1

96 0.380 0.412 0.377 0.400 0.402 0.411 0.372 0.401
192 0.416 0.434 0.417 0.424 0.417 0.420 0.414 0.425
336 0.448 0.458 0.437 0.439 0.437 0.435 0.429 0.436
720 0.481 0.487 0.448 0.463 0.456 0.467 0.446 0.458
Avg 0.431 0.448 0.420 0.432 0.423 0.430 0.415 0.430

ETTm1
↓

ETTh1

96 0.380 0.412 0.382 0.397 0.375 0.399 0.367 0.398
192 0.416 0.434 0.418 0.418 0.413 0.422 0.396 0.421
336 0.448 0.458 0.437 0.434 0.434 0.438 0.471 0.437
720 0.481 0.487 0.459 0.469 0.467 0.475 0.454 0.463
Avg 0.431 0.448 0.424 0.430 0.422 0.434 0.422 0.430

ETTm2
↓

ETTh1

96 0.380 0.412 0.388 0.418 0.384 0.415 0.388 0.421
192 0.416 0.434 0.429 0.444 0.423 0.439 0.419 0.423
336 0.448 0.458 0.467 0.472 0.458 0.465 0.435 0.444
720 0.481 0.487 0.521 0.507 0.501 0.497 0.468 0.474
Avg 0.431 0.448 0.451 0.460 0.441 0.454 0.428 0.441

Weather
↓

ETTh1

96 0.380 0.412 0.385 0.400 0.394 0.406 0.477 0.444
192 0.416 0.434 0.417 0.429 0.425 0.424 0.454 0.522
336 0.448 0.458 0.434 0.434 0.441 0.439 0.424 0.434
720 0.481 0.487 0.444 0.464 0.446 0.468 0.468 0.469

Avg 0.431 0.448 0.420 0.432 0.427 0.434 0.456 0.467

ETTh1
↓

ETTm1

96 0.295 0.346 0.286 0.341 0.290 0.346 0.290 0.348
192 0.333 0.374 0.322 0.362 0.353 0.388 0.327 0.372
336 0.370 0.398 0.362 0.418 0.362 0.412 0.357 0.392
720 0.427 0.431 0.417 0.431 0.422 0.432 0.409 0.423
Avg 0.356 0.387 0.347 0.388 0.357 0.395 0.346 0.384

ETTh2
↓

ETTm1

96 0.295 0.346 0.299 0.348 0.301 0.352 0.322 0.347
192 0.333 0.374 0.324 0.366 0.332 0.359 0.332 0.372
336 0.370 0.398 0.374 0.401 0.389 0.382 0.394 0.391
720 0.427 0.431 0.415 0.419 0.421 0.442 0.411 0.424

Avg 0.356 0.387 0.353 0.386 0.361 0.384 0.365 0.384

ETTm2
↓

ETTm1

96 0.295 0.346 0.299 0.351 0.285 0.336 0.297 0.348
192 0.333 0.374 0.334 0.372 0.343 0.366 0.332 0.370
336 0.370 0.398 0.362 0.388 0.360 0.399 0.364 0.393
720 0.427 0.431 0.417 0.431 0.422 0.432 0.410 0.421
Avg 0.356 0.387 0.353 0.386 0.353 0.383 0.351 0.383

Weather
↓

ETTm1

96 0.295 0.346 0.322 0.361 0.309 0.354 0.294 0.354
192 0.333 0.374 0.344 0.378 0.343 0.365 0.318 0.355
336 0.370 0.398 0.371 0.399 0.401 0.411 0.361 0.397
720 0.427 0.431 0.426 0.422 0.425 0.427 0.427 0.426

Avg 0.356 0.387 0.366 0.390 0.370 0.389 0.350 0.383
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Table 21: Full results for applying SimMTM to four advanced time series forecasting models under
the in-domain setting. The gray mark represents negative transfer (↓).

Models
Transformer [39] Autoformer [47] Ns Transformer [24] PatchTST [26]

Random init. +SimMTM Random init. +SimMTM Random init. +SimMTM Random init. +Sub-serie Masking +SimMTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.847 0.731 0.775 0.691 0.536 0.548 0.526 0.536 0.513 0.491 0.490 0.489 0.375 0.399 0.366 0.398 0.373 0.399
192 1.084 0.841 0.918 0.763 0.543 0.551 0.523 0.548 0.534 0.504 0.517 0.499 0.414 0.421 0.431 0.443 0.406 0.428
336 1.350 0.956 1.079 0.845 0.615 0.592 0.595 0.591 0.588 0.535 0.552 0.520 0.431 0.436 0.450↓ 0.456↓ 0.422 0.431
720 1.069 0.817 0.935 0.761 0.599 0.600 0.600 0.597 0.643 0.616 0.614 0.598 0.449 0.466 0.472↓ 0.484↓ 0.436 0.452

Avg 1.088 0.836 0.927 0.761 0.573 0.573 0.561 0.568 0.570 0.537 0.543 0.527 0.417 0.431 0.430↓ 0.445↓ 0.409 0.428

E
T

T
h2

96 2.029 1.150 1.879 1.104 0.492 0.517 0.488 0.514 0.476 0.458 0.445 0.448 0.274 0.336 0.284↓ 0.343↓ 0.274 0.337
192 6.785 2.099 5.054 1.771 0.556 0.551 0.547 0.549 0.512 0.493 0.482 0.502 0.339 0.379 0.355↓ 0.387↓ 0.339 0.377
336 4.568 1.711 4.242 1.658 0.572 0.578 0.563 0.570 0.552 0.551 0.512 0.537 0.331 0.380 0.379↓ 0.411↓ 0.327 0.381
720 3.030 1.486 2.815 1.413 0.580 0.588 0.575 0.588 0.562 0.560 0.531 0.568 0.379 0.422 0.400↓ 0.435↓ 0.375 0.423

Avg 4.103 1.612 3.498 1.487 0.550 0.559 0.543 0.555 0.526 0.516 0.493 0.514 0.331 0.379 0.355↓ 0.394↓ 0.329 0.379

E
T

T
m

1

96 0.562 0.520 0.513 0.497 0.523 0.488 0.482 0.465 0.386 0.398 0.340 0.376 0.290 0.342 0.289↓ 0.344↓ 0.288 0.343
192 0.810 0.668 0.686 0.606 0.543 0.498 0.499 0.476 0.459 0.444 0.423 0.445 0.332 0.369 0.323 0.368 0.329 0.367
336 1.096 0.814 1.003 0.760 0.675 0.551 0.601 0.524 0.495 0.464 0.423 0.459 0.366 0.392 0.353 0.387 0.361 0.387
720 1.136 0.813 1.032 0.790 0.720 0.528 0.629 0.555 0.585 0.516 0.539 0.499 0.420 0.424 0.398 0.416 0.413 0.417

Avg 0.901 0.704 0.809 0.663 0.615 0.528 0.553 0.505 0.481 0.456 0.431 0.445 0.352 0.382 0.341 0.379 0.348 0.378

E
T

T
m

2

96 0.508 0.539 0.336 0.425 0.255 0.339 0.255 0.340 0.192 0.274 0.188 0.277 0.165 0.255 0.166↓ 0.256↓ 0.163 0.253
192 0.972 0.721 0.713 0.610 0.281 0.340 0.276 0.332 0.280 0.339 0.277 0.336 0.220 0.292 0.221↓ 0.295↓ 0.219 0.292
336 1.419 0.897 1.517 0.942 0.339 0.372 0.309 0.359 0.334 0.361 0.325 0.355 0.278 0.329 0.278 0.333↓ 0.275 0.328
720 3.598 1.445 2.720 1.254 0.422 0.419 0.420 0.410 0.417 0.413 0.414 0.412 0.367 0.385 0.365 0.388↓ 0.359 0.381

Avg 1.624 0.901 1.322 0.808 0.324 0.368 0.315 0.360 0.306 0.347 0.301 0.345 0.258 0.317 0.258 0.318↓ 0.254 0.313

Table 22: Full results for fine-tuning to limited data scenarios. We fine-tune the model pre-trained
from ETTh2 to ETTh1 with different data proportions {10%, 25%, 50%, 75%, 100%}.

Models SimMTM Random init. Ti-MAE[21] TST[56] LaST[42] TF-C[57] CoST[46] TS2Vec[55]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MAE MSE

ETTh2
↓

ETTh1

10% 0.591 0.523 0.653 0.558 0.660 0.517 0.783 0.588 0.645 0.507 0.799 0.783 0.784 0.604 0.655 0.550
25% 0.535 0.490 0.632 0.502 0.594 0.518 0.641 0.578 0.610 0.611 0.736 0.725 0.624 0.539 0.632 0.543
50% 0.491 0.473 0.512 0.479 0.550 0.504 0.525 0.509 0.540 0.513 0.731 0.704 0.540 0.499 0.599 0.526
75% 0.466 0.458 0.499 0.488 0.475 0.465 0.516 0.488 0.479 0.470 0.697 0.689 0.494 0.475 0.577 0.534

100% 0.415 0.430 0.431 0.448 0.466 0.456 0.469 0.459 0.443 0.471 0.635 0.634 0.428 0.433 0.517 0.486
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Table 23: In- and cross-domain settings of classification, where all the baselines are based on the
encoder utilized in their original papers. For in-domain setting, we pre-train and fine-tune on the
same dataset: Epilepsy. For cross-domain setting, we pre-train the model on SleepEEG and then
fine-tune it on different datasets: Epilepsy, FD-B, Gesture, and EMG.

Scenarios Models Accuracy (%) Precision (%) Recall (%) F1 (%) Avg (%)

In
-D

om
ai

n

Epilepsy
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00

TS2vec [55] 92.17 93.84 81.19 85.71 88.23
CoST[46] 88.07 91.58 66.05 69.11 78.70
LaST [42] 92.11 93.12 81.47 85.74 88.11
TST [56] 80.21 40.11 50.00 44.51 53.71
Ti-MAE [21] 90.09 93.90 77.24 78.21 84.86
TF-C [57] 93.96 94.87 85.82 89.46 91.03

SimMTM 94.75 95.60 89.93 91.41 92.92

C
ro

ss
-D

om
ai

n

SleepEEG
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00

TS2vec [55] 93.95 90.59 90.39 90.45 91.35
CoST[46] 88.40 88.20 72.34 76.88 81.45
LaST [42] 86.46 90.77 66.35 70.67 78.56
TST [56] 80.21 40.11 50.00 44.51 53.71
Ti-MAE [21] 89.71 72.36 67.47 68.55 74.52
TF-C [57] 94.95 94.56 89.08 91.49 92.52

SimMTM 95.49 93.36 92.28 92.81 93.49

SleepEEG
↓

FD-B

Random init. 47.36 48.29 52.35 49.11 49.28

TS2vec [55] 47.90 43.39 48.42 43.89 45.90
CoST[46] 47.06 38.79 38.42 34.79 39.76
LaST [42] 46.67 43.90 47.71 45.17 45.86
TST [56] 46.40 41.58 45.50 41.34 43.71
Ti-MAE [21] 60.88 66.98 68.94 66.56 65.84
TF-C [57] 69.38 75.59 72.02 74.87 72.97

SimMTM 69.40 74.18 76.41 75.11 73.78

SleepEEG
↓

Gesture

Random init. 42.19 47.51 49.63 48.86 47.05

TS2vec [55] 69.17 65.45 68.54 65.70 67.22
CoST[46] 68.33 65.30 68.33 66.42 67.09
LaST [42] 64.17 70.36 64.17 58.76 64.37
TST [56] 69.17 66.60 69.17 66.01 67.74
Ti-MAE [21] 71.88 70.35 76.75 68.37 71.84
TF-C [57] 76.42 77.31 74.29 75.72 75.94

SimMTM 80.00 79.03 80.00 78.67 79.43

SleepEEG
↓

EMG

Random init. 77.80 59.09 66.67 62.38 66.49

TS2vec [55] 78.54 80.40 67.85 67.66 73.61
CoST[46] 53.65 49.07 42.10 35.27 45.02
LaST [42] 66.34 79.34 63.33 72.55 70.39
TST [56] 78.34 77.11 80.30 68.89 76.16
Ti-MAE [21] 69.99 70.25 63.44 70.89 68.64
TF-C [57] 81.71 72.65 81.59 76.83 78.20

SimMTM 97.56 98.33 98.04 98.14 98.02
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Table 24: In- and cross-domain settings of classification based on the unified 1-D ResNet encoder.
For in-domain setting, we pre-train and fine-tune on the same dataset: Epilepsy. For cross-domain
setting, we pre-train on SleepEEG and fine-tune on different domain datasets: Epilepsy, FD-B,
Gesture, and EMG.

Scenarios Models Accuracy (%) Precision (%) Recall (%) F1 (%) Avg (%)

In
-D

om
ai

n

Epilepsy
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00

TS2vec [55] 92.33 94.53 81.11 86.33 88.58
CoST[46] 92.35 94.73 81.16 85.92 88.54
LaST [42] - - - - -
TST [56] 80.89 90.38 51.73 48.01 67.75
Ti-MAE [21] 80.34 90.16 50.33 45.20 66.51
TF-C [57] 93.96 94.87 85.82 89.46 91.03

SimMTM 94.75 95.60 89.93 91.41 92.92

C
ro

ss
-D

om
ai

n

SleepEEG
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00

TS2vec [55] 94.46 91.99 90.28 91.10 91.95
CoST[46] 93.66 91.39 88.08 89.60 90.68
LaST [42] - - - - -
TST [56] 82.89 86.15 79.02 80.44 82.13
Ti-MAE [21] 73.45 72.56 65.34 77.20 72.14
TF-C [57] 94.95 94.56 89.08 91.49 92.52

SimMTM 95.49 93.36 92.28 92.81 93.49

SleepEEG
↓

FD-B

Random init. 47.36 48.29 52.35 49.11 49.28

TS2vec [55] 60.74 59.60 64.27 61.07 61.42
CoST[46] 54.82 51.92 63.30 54.34 56.09
LaST [42] - - - - -
TST [56] 65.57 70.05 67.57 64.41 66.90
Ti-MAE [21] 67.98 62.83 64.45 63.36 64.66
TF-C [57] 69.38 75.59 72.02 74.87 72.97

SimMTM 69.40 74.18 76.41 75.11 73.78

SleepEEG
↓

Gesture

Random Init. 42.19 47.51 49.63 48.86 47.05

TS2vec [55] 73.33 70.88 73.33 71.56 72.27
CoST[46] 73.33 74.37 73.33 71.16 73.04
LaST [42] - - - - -
TST [56] 75.12 76.05 67.74 73.24 73.04
Ti-MAE [21] 75.54 69.32 72.42 69.32 71.65
TF-C [57] 76.42 77.31 74.29 75.72 75.94

SimMTM 80.00 79.03 80.00 78.67 79.43

SleepEEG
↓

EMG

Random init. 77.80 59.09 66.67 62.38 66.49

TS2vec [55] 80.92 69.63 67.65 67.90 71.52
CoST[46] 73.17 70.47 69.84 70.00 70.87
LaST [42] - - - - -
TST [56] 75.89 74.67 80.66 78.48 77.43
Ti-MAE [21] 63.52 67.77 70.55 58.32 65.04
TF-C [57] 81.71 72.65 81.59 76.83 78.20

SimMTM 97.56 98.33 98.04 98.14 98.02
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Table 25: Full ablation studies for in-domain and cross-domain settings of classification. Under the
Avg metric, the standard deviations of SimMTM are within 0.2% for Epilepsy, within 0.5% for FD-B,
within 0.6% for Gesture, and within 0.1% for EMG.

Scenarios Accuracy (%) Precision (%) Recall (%) F1 (%) Avg (%)

Epilepsy
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00
W/o Lreconstruction 93.80 96.11 86.11 89.45 91.37
W/o Lconstraint 90.99 92.81 79.86 84.13 86.95

SimMTM 94.75 95.60 89.93 91.41 92.92

SleepEEG
↓

Epilepsy

Random init. 89.83 92.13 74.47 79.59 84.00
W/o Lreconstruction 94.54 93.87 88.46 90.84 91.93
W/o Lconstraint 91.73 90.57 82.21 85.53 87.51

SimMTM 95.49 93.36 92.28 92.81 93.49

SleepEEG
↓

FD-B

Random init. 47.36 48.29 52.35 49.11 49.28
W/o Lreconstruction 66.11 67.97 74.70 70.01 69.70
W/o Lconstraint 53.71 69.48 62.67 50.86 59.18

SimMTM 69.40 74.18 76.41 75.11 73.78

SleepEEG
↓

Gesture

Random init. 42.19 47.51 49.63 48.86 47.05
W/o Lreconstruction 78.50 79.01 78.50 77.17 78.30
W/o Lconstraint 76.67 74.91 76.67 74.80 75.76

SimMTM 80.00 79.03 80.00 78.67 79.43

SleepEEG
↓

EMG

Random init. 77.80 59.09 66.67 62.38 66.49
W/o Lreconstruction 90.24 94.20 78.04 81.53 86.00
W/o Lconstraint 85.37 89.97 69.62 70.74 78.93

SimMTM 97.56 98.33 98.04 98.14 98.02
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