
Journal of Machine Learning Research 23 (2022) 1-47 Submitted 10/21; Revised 3/22; Published 6/22

Ranking and Tuning Pre-trained Models:
A New Paradigm for Exploiting Model Hubs

Kaichao You1 ∗ youkaichao@gmail.com

Yong Liu1 ∗ liuyong21@mails.tsinghua.edu.cn

Ziyang Zhang2 zhangziyang11@huawei.com

Jianmin Wang1 jimwang@tsinghua.edu.cn

Michael I. Jordan3 jordan@cs.berkeley.edu

Mingsheng Long1 † mingsheng@tsinghua.edu.cn
1 School of Software, BNRist, Tsinghua University, Beijing 100084, China.
2 Advanced Computing and Storage Lab, Huawei Technologies Co. Ltd
3 Division of Computer Science and Department of Statistics, UC Berkeley, CA 94720-1776, USA

Editor: Stefan Harmeling

Abstract

Model hubs with many pre-trained models (PTMs) have become a cornerstone of deep
learning. Although built at a high cost, they remain under-exploited—practitioners usually
pick one PTM from the provided model hub by popularity and then fine-tune the PTM to
solve the target task. This näıve but common practice poses two obstacles to full exploitation
of pre-trained model hubs: first, the PTM selection by popularity has no optimality guarantee,
and second, only one PTM is used while the remaining PTMs are ignored. An alternative
might be to consider all possible combinations of PTMs and extensively fine-tune each
combination, but this would not only be prohibitive computationally but may also lead
to statistical over-fitting. In this paper, we propose a new paradigm for exploiting model
hubs that is intermediate between these extremes. The paradigm is characterized by two
aspects: (1) We use an evidence maximization procedure to estimate the maximum value of
label evidence given features extracted by pre-trained models. This procedure can rank all
the PTMs in a model hub for various types of PTMs and tasks before fine-tuning. (2) The
best ranked PTM can either be fine-tuned and deployed if we have no preference for the
model’s architecture or the target PTM can be tuned by the top K ranked PTMs via a
Bayesian procedure that we propose. This procedure, which we refer to as B-Tuning, not
only improves upon specialized methods designed for tuning homogeneous PTMs, but also
applies to the challenging problem of tuning heterogeneous PTMs where it yields a new
level of benchmark performance.

Keywords: Pre-trained Model Hub, Model Ranking, Model Tuning, Transfer Learning

1. Introduction

Deep neural networks (He et al., 2015, 2016; Devlin et al., 2019) trained on large-scale
datasets (Deng et al., 2009; Russakovsky et al., 2015; Merity et al., 2017) and specialized
computational devices (Jouppi et al., 2017) have achieved striking, human-level perfor-

∗. The first two authors contributed equally to the paper.
†. Mingsheng Long is the corresponding author.

c©2022 Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I. Jordan, Mingsheng Long.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1251.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1251.html

You, Liu, Zhang, Wang, Jordan, Long

Top 1 (BERT)

83

Top 10
Top 100
Top 1000

118 143 151

dow
nloads

(m
illions)

Figure 1: Monthly download statistics (in millions) for top popular models in the Hugging-
Face Transformer library. The most popular PTM (BERT) takes up more than a
half downloads, while other PTMs are much less exploited.

mance on many pattern recognition tasks in both computer vision and natural language
processing. Moreover, research has shown that deep neural networks trained on large-scale
pre-training tasks (Yang et al., 2019; Clark et al., 2020; Brown et al., 2020) can produce
generic representations (Donahue et al., 2014) that benefit downstream tasks such as object
detection (Girshick et al., 2014) and language understanding (Wang et al., 2019). These
trained neural networks are known as pre-trained models (PTMs). Readers can refer to
dedicated surveys (Han et al., 2021; Qiu et al., 2020; Bommasani et al., 2021) for a holistic
overview of pre-trained models. The power (Brown et al., 2020) of PTMs, together with
the transfer learning paradigm of “pre-training → fine-tuning” to exploit PTMs, has had
significant impact in both vision (Kornblith et al., 2019) and language (Devlin et al., 2019),
and the influence of PTMs is growing in nearby communities such as geometric learning (Hu
et al., 2020).

The cost of training PTMs varies from hundreds of GPU hours (He et al., 2016) to
hundreds of GPU days (Devlin et al., 2019), which can be prohibitively expensive for
individual researchers and academic labs. Most pre-trained models are provided by central
repositories, including PyTorch Hub,1 TensorFlow Hub,2 and HuggingFace Transformer
Models.3 Such collections of pre-trained models are called a “pre-trained model hubs” (PTM
hubs), and they have become very popular; for example, the HuggingFace Transformer
library (Wolf et al., 2020), the most popular BERT model (Devlin et al., 2019) is currently
being downloaded over 80 million times every month.

Although centralized repositories spend enormous resources to provide large-scale PTM
hubs to the public, it turns out that practitioners often pick the most popular PTM, meaning
that the whole PTM hub is insufficiently exploited. Figure 1 analyzes the monthly downloads
of PTMs in the HuggingFace Transformer hub. Beyond several popular models the remaining
PTMs in the hub are seldom downloaded. The statistics in PyTorch Hub and TensorFlow
Hub are essentially the same—several popular PTMs dominate the rest.

Näıvely picking the most popular PTM is far from optimal in two respects: (1) The PTM
selection is task-specific and one PTM cannot be optimal for all the tasks; different tasks

1. https://pytorch.org/hub/

2. https://www.tensorflow.org/hub

3. https://huggingface.co/models

2

https://pytorch.org/hub/
https://www.tensorflow.org/hub
https://huggingface.co/models

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

Fine-tune

Target Data

Top K

Top 1

Single PTM Tuning

PTM Hub

1

2

K
…

…

Transfer Rank

Target PTM

Multiple PTMs Tuning

B-Tuning

PTM Params

Tuned Params

…

PTMs

Ranking

Figure 2: The proposed paradigm of ranking and tuning pre-trained models. PTMs are
ranked by their transferability w.r.t. the target data, then either the best PTM is
fine-tuned, or the target PTM is tuned by top-K PTMs via the proposed B-Tuning.

generally favor different PTMs, depending on the compatibility between the pre-trained model
and the target task (You et al., 2021). (2) Only one PTM is exploited, and opportunities
to obtain benefits from ensembling or aggregation are put aside. Correspondingly, there
are two reasons why practitioners resort to the suboptimal näıve practice: (1) maximally
exploiting a PTM hub requires trying all combinations of PTMs and extensively fine-tuning
each PTM combination, which requires unaffordable computation; (2) even if the significant
computational cost can be paid, it is unclear how to exploit multiple PTMs in transfer
learning. As discussed in Section 2.4, Shu et al. (2021) studied the problem in a limited case,
but a general solution is lacking.

To fully exploit PTM hubs, we propose a new paradigm: ranking and tuning pre-trained
models. Figure 2 provides an overview of the paradigm. It consists of two parts: (1) PTMs
are ranked by a transferability metric; (2) top-ranked PTMs are tuned to meet downstream
applications’ requirements. Our preliminary work (You et al., 2021) proposed a method that
we referred to as “logarithm of maximum evidence” (LogME) to estimate the compatibility
between PTMs and downstream datasets. We demonstrated its effectiveness on a variety of
PTMs. With an effective transferability rank, the best ranked PTM can be fine-tuned if
there are no constraints on network architecture like inference time or hardware-friendly
operators. If these constraints are present, the qualified PTM with desired architecture
might not be the best-ranked one, but it can be tuned by top-K ranked PTMs via a novel
B-Tuning algorithm as discussed in Section 5.3.

Compared with picking the most popular PTM, our proposed new paradigm features
two significant advantages: (1) it provides a task-adaptive ranking of all PTMs in a PTM

3

You, Liu, Zhang, Wang, Jordan, Long

hub to enable optimal selection of PTMs; (2) it opens the new possibility to exploit multiple
PTMs for tuning, breaking the stereotype that fine-tuning must be tied up with a single
PTM. The new paradigm can be useful in a broad variety of scenarios, as pre-trained models
are increasingly important in deep learning.

Besides a new paradigm of exploiting PTM hubs, this paper brings novel theoretical
analyses and a new algorithm for multiple PTM tuning. (1) On the theoretical side, we
derive a sufficient condition for the evidence maximization algorithm (MacKay, 1992) to
converge and analyze the influence of dimensionality on LogME. The evidence maximization
algorithm (MacKay, 1992) has been used primarily as a heuristic; a rigorous convergence
condition has been lacking. (2) On the algorithm design side, we devise a method that we
refer to as “B-Tuning” for tuning multiple PTMs using Bayesian learning. We show that this
method surpasses the dedicated method (Shu et al., 2021) for homogeneous PTMs (PTMs
with the same architecture) and also works for the challenging scenario with heterogeneous
PTMs (PTMs with different architectures).

The contributions of this paper are summarized as follows:

1. We propose a new paradigm for exploiting PTM hubs, namely ranking and tuning
pre-trained models. It has significant advantages compared with the common practice
of näıvely fine-tuning a popular pre-trained model.

2. Concerning ranking PTMs, we propose LogME for transferability assessment and
develop a fast algorithm to accelerate the computation. LogME is easy to interpret
and is extremely efficient: it brings roughly 3700× speedup in wall-clock time and
requires just 1% memory footprint compared with brute-force fine-tuning. Theoretical
analyses confirm the rationality of LogME, and lay a theoretical foundation for a
heuristic algorithm in evidence maximization.

3. For tuning PTMs, two possible scenarios are studied. In the academic scenario without
specific requirements for the PTM architecture, the best ranked pre-trained model
according to the transferability rank can be selected for subsequent fine-tuning; in the
industrial scenario where a specific PTM architecture is required to meet the budget
of computation and energy, we propose B-Tuning to tune the given pre-trained model
with top-K ranked PTMs, even though these PTMs are heterogeneous.

Compared with our conference paper (You et al., 2021) that only proposed LogME for
transferability estimation, this paper extends LogME to a paradigm of ranking and tuning
pre-trained models. Additional theoretical analyses are available in the ranking part, and a
new algorithm is presented in the tuning part. Moreover, LogME is tested against additional
tasks like named entity recognition (Sang and De Meulder, 2003) in Section 6.2.5 and prompt
learning (Liu et al., 2021a) in Section 6.6.

We will need to make significant use of notation to describe our ideas; thus, for the
convenience of readers, all of the notation is collected in Table 9.

The basic problem setup contains a PTM hub with M pre-trained models, {φk}Mk=1, and
the transfer learning task is given by a labeled dataset, D = {(xi, Yi)}ni=1, with n labeled
data points. This paper focuses on classification and regression tasks, so the label Yi ∈ RC
is C dimensional.

The rest of the paper is organized as follows: Section 2 summarizes related work,
Section 3 focuses on ranking and describes the LogME transferability metric, Section 4
presents theoretical analyses for LogME, Section 5 focuses on tuning and introduces the

4

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

B-Tuning method for multiple PTM tuning, Section 6 presents all the experiments, and
finally Section 7 concludes the paper.

2. Related Work

2.1 Transfer learning

Transfer learning (Thrun and Pratt, 1998) consists of transductive transfer, inductive
transfer, task transfer, and so on. A well-known transductive paradigm is domain adapta-
tion (Quionero-Candela et al., 2009), which aims for reducing domain shifts by transferring
samples, hidden features (Long et al., 2015; Ganin and Lempitsky, 2015), and categorical
information (Cao et al., 2022). Inductive transfer, in particular fine-tuning in deep learn-
ing (Erhan et al., 2010; Yosinski et al., 2014), exploits prior knowledge (pre-trained models)
to improve the performance of target tasks. Task transfer learning (Zamir et al., 2018)
focuses on how to transfer tasks rather than pre-trained models. It aims to discover shared
relevance among tasks (Ben-David and Schuller, 2003) and to exploit the relationship for
improvement on the target task. In the context of deep learning, transfer learning usually
means inductive transfer with a pre-trained model, which is the focus of this paper.

Many previous works (Yosinski et al., 2014; Kornblith et al., 2019; Neyshabur et al., 2020)
have shown the benefit of initializing a deep neural network with a pre-trained model. Apart
from the vanilla method (i.e., the pre-trained model is just used for initialization), researchers
have recently proposed sophisticated fine-tuning techniques like regularization (Li et al.,
2018; Chen et al., 2019), additional supervision (You et al., 2020), and carefully designed
architectures (Kou et al., 2020). They can further improve transfer learning performance,
but empirically these fine-tuning methods do not change the ranking of pre-trained models
on downstream tasks. That is, if pre-trained model A is better than pre-trained model B
after vanilla fine-tuning, empirically A is better than B when those advanced techniques
are integrated. For example, on three datasets and four sampling rates in Table 2 of You
et al. (2020), better fine-tuning performance primarily indicates better Co-Tuning (their
proposed method) performance, implying that the transferability of a pre-trained model
might be task-specific rather than method-specific. Therefore, our experiments stick to the
vanilla fine-tuning during PTM ranking.

2.2 PTMs and PTM hubs

Pre-trained models (PTMs) are generalizable deep networks trained on large-scale data.
They can be transferred to a series of downstream tasks. They have become a cornerstone
in deep learning and sometimes are known as foundation models (Bommasani et al., 2021).
Typical categories of PTMs are summarized in the following.

Supervised PTMs. In the ImageNet classification challenge, He et al. (2015) developed
the first deep neural network that surpassed human performance. By supervised pre-
training on the ImageNet dataset, deep models marched towards higher accuracy, fewer
parameters, and lower computation. InceptionNet (Szegedy et al., 2015) made use of parallel
convolutional filters to extract different levels of features. ResNet (He et al., 2016) introduced
skip-connections to ease the vanishing gradient problem so that much deeper networks could
be trained. Inspired by ResNet, DenseNet (Huang et al., 2017) was equipped with dense

5

You, Liu, Zhang, Wang, Jordan, Long

skip-connections to reuse features in a parameter-efficient manner. MobileNet (Sandler et al.,
2018) was a low-parameter, mobile-friendly network structure which was further optimized
with the help of network architecture search to become MNASNet (Tan et al., 2019).

Unsupervised PTMs. Although supervised pre-training is the most common practice,
the labeling cost of large-scale data can be prohibitively expensive. As a large amount of
unlabeled data on the Internet are available but under-exploited, recently many researchers
have sought to apply self-supervised learning (Jing and Tian, 2020) on unlabeled data (Ma-
hajan et al., 2018) with contrastive loss (Gutmann and Hyvrinen, 2010). Accordingly, a
family of unsupervised deep models has emerged in recent years. He et al. (2020) proposed
Momentum Contrast with a creative queue structure to fully exploit the manifold structure
of unlabeled data. Chen et al. (2020a) significantly improved performance by exploring
data augmentation, multi-layer projection head, and empirical designs. Designing better
strategies for contrastive pre-training is still under active research (Tian et al., 2020).

Language PTMs. In recent years, natural language processing has been revolutionized
by language PTMs. Unsupervised pre-trained models have been well established by training
masked language models (Devlin et al., 2019) or autoregressive language models (Yang
et al., 2019) on large unlabeled corpora (Merity et al., 2017). Liu et al. (2019) explored
many practical aspects of the training of language models. Sanh et al. (2019) proposed
distillation to make PTMs smaller and faster. These pre-trained language models are very
common in winning submissions on important benchmarks like GLUE (Wang et al., 2018)
and SQuAD (Rajpurkar et al., 2016), and have established their profound influence in the
industry.

PTMs are grouped together to be hosted in PTM hubs like TorchVision and HuggingFace
Models. Industry labs have invested significant resources in training these PTMs, but
unfortunately, PTM hubs are under-exploited, as quantitatively measured in Figure 1 and
described in the introduction section. The goal of this paper is to develop a new paradigm
of exploiting PTM hubs, so that pre-trained models can be more widely exploited.

2.3 Assessing the transferability of pre-trained models

Assessing the transferability of PTMs has great significance in guiding the practice of deep
learning. It can be used to rank available PTMs and act as a criterion for pre-trained model
selection. Yosinski et al. (2014) studied the performance of transferring different layers of a
pre-trained model, and Kornblith et al. (2019) studied a wide variety of ImageNet PTMs with
modern network architectures. These papers aim for a deep understanding (Neyshabur et al.,
2020) of transfer learning by expensive and exhaustive fine-tuning with major computation
cost (see Section 6.5), which is hard for practitioners to afford. In most scenarios, practitioners
care most about PTMs’ relative ranking on target tasks to guide PTM selection, requiring
a practical assessment method that is efficient, accurate, and general : a transferability
assessment method should be efficient enough compared with brute-force fine-tuning (Zamir
et al., 2018), should be accurate enough to identify potentially best models, and should be
general enough to tackle a wide variety of common scenarios.

LEEP (Nguyen et al., 2020) and NCE (Tran et al., 2019) were the first two methods
to assess the transferability of pre-trained models. Nguyen et al. (2020) constructed an
empirical predictor from the joint distribution p(yt, ys) over pre-trained labels ys and target

6

https://pytorch.org/vision/stable/models.html
https://huggingface.co/models
https://huggingface.co/models

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

labels yt, and calculated the log expectation of the empirical predictor (LEEP) as the
transferability measure. The empirical predictor predicts the probability of the target class
yt as

∑
ys∈Ys p(yt|ys)p(ys), where p(ys) comes from the PTM’s prediction over pre-trained

categories. Negative Conditional Entropy (NCE) proposed by Tran et al. (2019) depended
on an information-theoretic quantity (Cover, 1999) to reveal the transferability and hardness
between different tasks. It estimated the joint distribution p(yt, ys) with one-hot labels and
predictions, and defined NCE as −H(yt|ys), i.e., the negative conditional entropy of target
labels yt given PTM’s predictions ys.

Table 1: Applicability of existing methods and LogME proposed in this paper.

Modality Pre-train Target
Method

LEEP NCE LogME

vision

classification classification 3 3 3

classification regression 7 7 3

contrastive classification 7 7 3

contrastive regression 7 7 3

language language modeling classification 7 7 3

All of these methods, however, had their limitations. As shown in Table 1, they can
only handle classification tasks with supervised pre-trained models. Increasingly popular
contrastive pre-trained models and language models are out of their scope. The LogME
algorithm proposed in this paper extends the applicability of transferability assessment to
these cases. LogME is fast to compute, less prone to over-fitting, and broadly applicable to
various pre-trained models/downstream tasks/data modalities. Its performance is validated
by extensive experiments. Prior to this paper, for most (four out of five) transfer learning
settings, task adaptive transferability assessment did not have a satisfactory solution.
In addition, LogME’s statistical rigor makes it extensible to multiple PTM tuning (see
Section 5.3), which further fleshes out the new paradigm of ranking and tuning pre-trained
models.

2.4 Multiple PTM tuning

A straightforward approach in transfer learning is to fine-tune models initialized from pre-
trained parameters, which we call “single PTM tuning” because it can only exploit a specific
pre-trained model during fine-tuning.

It is widely acknowledged that the success of transfer learning comes from the knowledge
in the pre-trained model. Considering that there are so many PTMs in a PTM hub, it
is appealing to transfer multiple PTMs simultaneously, a problem we call “multiple PTM
tuning.” We might expect multiple PTM tuning to outperform single PTM tuning.

Unfortunately, multiple PTM tuning is under-explored due to technical challenges.
If multiple PTMs are homogeneous, i.e., they share the same network architecture, the
problem becomes easier. Researchers in this area focused on how to align and merge multiple
homogeneous PTMs. Singh and Jaggi (2020) defined transportation cost between neural
representations and minimized the induced Wasserstein distance to align neurons from

7

You, Liu, Zhang, Wang, Jordan, Long

each PTM. Shu et al. (2021) developed a channel-wise alignment method dedicated to
convolutional neural networks with a learnable gating function to merge multiple PTMs.
Prior to this paper, Shu et al. (2021) held the state-of-the-art result in homogeneous PTMs
tuning.

Heterogeneous PTMs tuning is much more difficult than homogeneous PTMs tuning
and it is still unresolved how to address this general form of tuning. In practice, pre-trained
models in PTM hubs generally have different architectures and it has become increasingly
urgent to address the heterogeneity problem.

This paper proposes a methodology for exploiting general PTM hubs. In the proposed
paradigm, PTMs are first ranked by LogME, then the top-K ranked PTMs from the PTM
hub are selected for multiple PTM tuning. A Bayesian tuning method (B-Tuning, see
Section 5.3) is further proposed to solve the multiple PTM tuning problem. Overall the
method proposes a solution to the heterogeneous PTMs tuning problem, and it surpasses
the state-of-the-art method (Shu et al., 2021) dedicated to homogeneous PTM tuning.

3. Ranking Pre-Trained Models

The ranking of pre-trained models requires a transferability metric. But before introducing
the transferability metric in Section 3.2, we discuss how to quantify its fidelity to the reference
transferability performance, which is elaborated in the following Section 3.1.

3.1 How to measure the performance of a transferability metric?

A transfer learning task (in the form of a dataset D = {(xi, Yi)}ni=1) should have an evaluation
metric (accuracy, MAP, MSE, etc.) to measure the reference transfer performance Tk of
fine-tuning φk with sufficient hyper-parameter tuning. A practical assessment method should
produce a score Sk for each pre-trained model φk (ideally without fine-tuning φk on D), and
the scores {Sk}Mk=1 should well correlate with {Tk}Mk=1 so that top-performing pre-trained
models can be selected by simply evaluating the scores {Sk}Mk=1.

A perfect pre-trained model assessing method would produce {Sk}Mk=1 with precisely
the same order as {Tk}Mk=1. To measure the deviation from the perfect method, we can use
simple metrics like top-1 accuracy or top-K accuracy (whether the fraction among top-K in
{Sk}Mk=1 are also top-K in {Tk}Mk=1). Nevertheless, top-1 accuracy is too conservative and
top-K accuracy is not comparable across different values of M . Rank correlation (Fagin
et al., 2003) is a good alternative to directly measure the correlation between {Sk}Mk=1 and
{Tk}Mk=1. Prior work (Nguyen et al., 2020) adopted Pearson’s linear correlation coefficient,
but neither Pearson’s linear correlation nor its variant (Spearman’s rank correlation) has a
simple interpretation (see the interpretation of τ below). Therefore, they are not used in
this paper.

The rank correlation method we choose is Kendall’s τ coefficient (Kendall, 1938), which
counts concordant pairs to capture the possibility of Ti being better than Tj if Si is better
than Sj in choosing a good pre-trained model.

Without loss of generality, we assume larger values of transfer performance T and score S
are preferred (e.g., accuracy). If this is not the case (e.g., transfer performance is measured
by mean square error and small values are favored), the negation −T can be considered.
For a pair of measures (Ti, Si) and (Tj , Sj), the pair is concordant if Ti < Tj ∧ Si < Sj or

8

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

Ti > Tj ∧ Si > Sj (concisely speaking, sgn(Ti − Tj)sgn(Si − Sj) = 1). Kendall’s τ coefficient
is defined by the following equation, which enumerates all

(
M
2

)
pairs and counts the number

of concordant pairs minus the number of discordant pairs.

τ =

∑
1≤i<j≤M sgn(Ti − Tj)sgn(Si − Sj)(

M
2

) .

How to interpret τ (Fagin et al., 2003): The range of τ is [−1, 1]. τ = 1 means T and
S are perfectly correlated (Si > Sj ⇐⇒ Ti > Tj), and τ = −1 means T and S are inversely
correlated (Si > Sj ⇐⇒ Ti < Tj). If T and S have a correlation value of τ , the probability
of Ti > Tj is τ+1

2 when Si > Sj .

Pay attention to top-performing models. Since a major application of transfer-
ability metric is to select top-performing pre-trained models, discordant/concordant pairs
should be weighted more if Ti, Tj , Si, Sj are larger. This can be taken care of by τw (Vigna,
2015), a weighted variant of Kendall’s τ . The details of calculating τw can be found in
the SciPy implementation. With the weighting scheme, correlation value τw corresponds
to a proportion interval of concordant pairs rather than a unique proportion value τw+1

2 .
Nevertheless, the interval lies near the value τw+1

2 . Therefore, we can roughly use the
probability τw+1

2 of concordant pairs to interpret the correlation value τw.

In short, we measure the correlation between {Sk}Mk=1 and {Tk}Mk=1 by τw (Vigna, 2015).
Larger τw indicates a better correlation and better assessment.

3.2 The LogME approach

This section describes LogME in detail. Since a transferability metric measures the transfer-
ability of pre-trained models, it should produce a score Sk for each PTM φk independent of
the remaining PTMs. We thus drop the subscript k in this section.

An important goal of designing transferability metrics is to quickly assess many PTMs.
With that in mind, we set the minimization of assessment time as a priority. First, to
avoid expensive optimization of the whole PTM, PTM φ is regarded as a fixed feature
extractor. Note that Nguyen et al. (2020) were limited to supervised pre-trained models
because they used a pre-trained classification head h. In contrast, we only use the pre-trained
representation model φ so that the proposed method can be applied to any pre-trained model
(whether supervised pre-trained or unsupervised pre-trained).

With φ fixed, features {fi = φ(xi)}ni=1 and labels {Yi}ni=1 of the target task are the
ingredients we can use to assess pre-trained models. The rest of this section discusses how
to estimate the compatibility of features and labels as a transferability metric.

3.2.1 Evidence calculation

We first consider a simple case with D-dimensional features fi ∈ RD and scalar labels yi ∈ R.
Note that the actual label Yi can be non-scalar, and the way in which we extend from scalar
labels yi to vector labels Yi is explained in Section 3.2.2.

Let the feature matrix F ∈ Rn×D denote all the features and y ∈ Rn denote all the
labels. A direct measurement of the compatibility between features F and labels y is the
probability density p(y|F), which is intractable without a parameterized model. Since the

9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html

You, Liu, Zhang, Wang, Jordan, Long

rule-of-thumb transfer learning practice is to add a linear layer on top of the pre-trained
model, we use a linear model upon features parameterized by w.

A straightforward approach to deal with the linear model is to find the best w∗ by logistic
or linear regression under maximum likelihood estimation, and to assess pre-trained models
by the likelihood p(y|F,w∗). However, it is well known that maximum likelihood estimation
is prone to over-fitting (Bishop, 2006). Regularization techniques like `2-regularization may
alleviate over-fitting at the cost of additional hyper-parameters, which requires manual
intervention or grid search to tune those hyper-parameters. Even after extensive hyper-
parameter tuning, its performance is not satisfying as observed in Section 6.6, because
finding an optimal hyper-parameter is very difficult. Ideally, a transferability metric should
have no hyper-parameters so that it can be applied to downstream tasks without manual
intervention. Obviously, this approach does not satisfy the hyper-parameter-free property.

The disadvantage of the above approach can be overcome by the evidence approach
introduced below. Evidence (also known as marginalized likelihood) is defined as p(y|F) =∫
p(w)p(y|F,w)dw, which integrates over all possible values of w rather than taking one w∗

value. This evidence-based approach is an elegant model selection approach and has a rigorous
theoretical foundation (Knuth et al., 2015). p(w) and p(y|F,w) are modeled by a graphical
model (Figure 3) specified by two positive hyper-parameters α and β: the prior distribution
of the weight is an isotropic multivariate Gaussian w ∼ N (0, α−1I), and the distribution of
each observation is a one-dimensional normal distribution p(yi|fi, w, β) ∼ N (yi|wT fi, β−1).
Fortunately, hyper-parameters α and β can be automatically set to their optimal values as
described in Section 3.2.2.

<latexit sha1_base64="W4NsZ3UdMd3JSqHJ0nbSZyXsADw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjSePHQ==</latexit>↵
<latexit sha1_base64="ZOARUCS6WTMkfnwpQ7R31hfCNOk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeiwK4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WDGSfoR3QgecgZNVaq3/VKZbfizkCWiZeTMuSo9Upf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mh07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeG1n3GZpAYlmy8KU0FMTKZfkz5XyIwYW0KZ4vZWwoZUUWZsNkUbgrf48jJpnle8y4pbvyhXb/I4CnAMJ3AGHlxBFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHnBeMzw==</latexit>

F

<latexit sha1_base64="bGDTOKyV7GDRZrDob8GdoO8hXfo=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoQUsioi6LblxJhb6gScNkOmmHTh7MTJQQ8g1u/BU3LhRx68qdf+Ok7UJbD1w4nHMv997jRowKaRjfWmFpeWV1rbhe2tjc2t7Rd/faIow5Ji0cspB3XSQIowFpSSoZ6UacIN9lpOOOr3O/c0+4oGHQlElEbB8NA+pRjKSSHL2aOBRagvrQ8pEcYcTS26zy0G9Cz6HH0HKJRP30xMyqjl42asYEcJGYM1IGMzQc/csahDj2SSAxQ0L0TCOSdoq4pJiRrGTFgkQIj9GQ9BQNkE+EnU5eyuCRUgbQC7mqQMKJ+nsiRb4Qie+qzvxuMe/l4n9eL5bepZ3SIIolCfB0kRczKEOY5wMHlBMsWaIIwpyqWyEeIY6wVCmWVAjm/MuLpH1aM89rxt1ZuX41i6MIDsAhqAATXIA6uAEN0AIYPIJn8AretCftRXvXPqatBW02sw/+QPv8AW4mnKw=</latexit>

yi ⇠ N (wT fi,�
�1)

<latexit sha1_base64="B7fUqCAdlQp1h/X7NSf6fq9tvIA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vRAN7Vdrbt2dg6wSryA1KNDsV796g4RlMUrDBNW667mpCXKqDGcCp5VepjGlbEyH2LVU0hh1kM+PnZIzqwxIlChb0pC5+nsip7HWkzi0nTE1I73szcT/vG5mopsg5zLNDEq2WBRlgpiEzD4nA66QGTGxhDLF7a2EjaiizNh8KjYEb/nlVdK6qHtXdffhsta4LeIowwmcwjl4cA0NuIcm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AHFfI6p</latexit>

�
<latexit sha1_base64="IKyPjLKye36w45lJYuoHVfX9mvI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbMLuRimhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5luNAA==</latexit>w

<latexit sha1_base64="kqaWhWkGpN+GGGd2tveNu9R1hT0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0Io/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHkyXoR3QoecgZNVZqZP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/mh07JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeGNP+EySQ1KtlgUpoKYmMy+JgOukBmRWUKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD6WONAg==</latexit>y

f1

<latexit sha1_base64="yXRD1nNzvOEXT3QL/r3an1h8lPY=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9gVRY9BLx4TNA9IljA7mU2GzMwuM7NCWHL06MWDIl79iHyHN7/Bn3DyOGhiQUNR1U13VxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9NRogitkohHqhFgTTmTtGqY4bQRK4pFwGk96N+M/foDVZpF8t4MYuoL3JUsZAQbK92Fba+dL7hFdwK0SLwZKZQOR5Xvx6NRuZ3/bHUikggqDeFY66bnxsZPsTKMcDrMtRJNY0z6uEublkosqPbTyalDdGKVDgojZUsaNFF/T6RYaD0Qge0U2PT0vDcW//OaiQmv/JTJODFUkumiMOHIRGj8N+owRYnhA0swUczeikgPK0yMTSdnQ/DmX14ktbOid168qNg0rmGKLBzAMZyCB5dQglsoQxUIdOEJXuDV4c6z8+a8T1szzmxmH/7A+fgB38yRPQ==</latexit>

fi

<latexit sha1_base64="ku66BbFSgTNHNiM6GnrHv8zPKFM=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4Crui6DHoxWMC5gHJEmYns8mQmdllZlYIS45evXhQxKv/kO/w5jf4E84mOWhiQUNR1U13VxBzpo3rfjlLyyura+u5jfzm1vbObmFvv66jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLjN/MYDVZpF8t4MY+oL3JMsZASbTAo7LN8pFN2SOwFaJN6MFMtH4+r34/G40il8trsRSQSVhnCsdctzY+OnWBlGOB3l24mmMSYD3KMtSyUWVPvp5NYROrVKF4WRsiUNmqi/J1IstB6KwHYKbPp63svE/7xWYsJrP2UyTgyVZLooTDgyEcoeR12mKDF8aAkmitlbEeljhYmx8WQhePMvL5L6ecm7KF1WbRo3MEUODuEEzsCDKyjDHVSgBgT68AQv8OoI59l5c96nrUvObOYA/sD5+AFp+ZGJ</latexit>

yi

<latexit sha1_base64="/q3ywKtyqrX0Ydj+Rnx0XMH2GKc=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4Crui6DHoxWMC5gHJEmYns8mQmdllZlYIS45evXhQxKv/kO/w5jf4E84mOWhiQUNR1U13VxBzpo3rfjlLyyura+u5jfzm1vbObmFvv66jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLjN/MYDVZpF8t4MY+oL3JMsZASbTBp2WL5TKLoldwK0SLwZKZaPxtXvx+NxpVP4bHcjkggqDeFY65bnxsZPsTKMcDrKtxNNY0wGuEdblkosqPbTya0jdGqVLgojZUsaNFF/T6RYaD0Uge0U2PT1vJeJ/3mtxITXfspknBgqyXRRmHBkIpQ9jrpMUWL40BJMFLO3ItLHChNj48lC8OZfXiT185J3Ubqs2jRuYIocHMIJnIEHV1CGO6hADQj04Qle4NURzrPz5rxPW5ec2cwB/IHz8QOG/pGc</latexit>

y1

<latexit sha1_base64="RD1xn04MC7WlxqBn+M6h5pMV2R8=">AAAB63icbVDLSgNBEOz1GeMr6lGRwSB4Crui6DHoxWMC5gHJEmYns8mQmdllZlYIS45evXhQxKv/kO/w5jf4E84mOWhiQUNR1U13VxBzpo3rfjlLyyura+u5jfzm1vbObmFvv66jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLjN/MYDVZpF8t4MY+oL3JMsZASbTBp2vHynUHRL7gRokXgzUiwfjavfj8fjSqfw2e5GJBFUGsKx1i3PjY2fYmUY4XSUbyeaxpgMcI+2LJVYUO2nk1tH6NQqXRRGypY0aKL+nkix0HooAtspsOnreS8T//NaiQmv/ZTJODFUkumiMOHIRCh7HHWZosTwoSWYKGZvRaSPFSbGxpOF4M2/vEjq5yXvonRZtWncwBQ5OIQTOAMPrqAMd1CBGhDowxO8wKsjnGfnzXmfti45s5kD+APn4wcx5pFk</latexit>

yn

<latexit sha1_base64="f5WwfCooovRbr/S+1EhRe7/x4ok=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9ZX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBf0I1Cib5tNRLDU8oG9Mh71qqaMSNP5mfOiVnVhmQMNa2FJK5+ntiQiNjsiiwnRHFkVn2ZuJ/XjfF8NqfCJWkyBVbLApTSTAms7/JQGjOUGaWUKaFvZWwEdWUoU2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBsQo3m</latexit>

fn

<latexit sha1_base64="b52UVNSP/m4xByFNerwItvPLsM0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPZlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBPUI3T</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

...

<latexit sha1_base64="78L7YWuJHZKGaYKT1UAovUkSYVU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04Lpur1zxXG8Oskr8nFQgR71X/ur2E5bFKA0TVOuO76UmmFBlOBM4LXUzjSllIzrAjqWSxqiDyfzUKTmzSp9EibIlDZmrvycmNNZ6HIe2M6ZmqJe9mfif18lMdB1MuEwzg5ItFkWZICYhs79JnytkRowtoUxxeythQ6ooMzadkg3BX355lTQvXL/qXt5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBOfI0q</latexit>

<latexit sha1_base64="gyT4t2mRuz3c6wts8uu84k4Yz+o=">AAACDHicbVDLSgMxFM3UV62vqks3wSJU0DKjoi6LbnQjFewDOmO5k6ZtaOZBklHKMB/gxl9x40IRt36AO//GTDsLrR4IHM45l9x73JAzqUzzy8jNzM7NL+QXC0vLK6trxfWNhgwiQWidBDwQLRck5cyndcUUp61QUPBcTpvu8Dz1m3dUSBb4N2oUUseDvs96jIDSUqdYuse2ZB62PVADAjy+SsrmHraBhwO4jfet5HJXp8yKOQb+S6yMlFCGWqf4aXcDEnnUV4SDlG3LDJUTg1CMcJoU7EjSEMgQ+rStqQ8elU48PibBO1rp4l4g9PMVHqs/J2LwpBx5rk6mO8tpLxX/89qR6p06MfPDSFGfTD7qRRyrAKfN4C4TlCg+0gSIYHpXTAYggCjdX0GXYE2f/Jc0DirWceXw+qhUPcvqyKMttI3KyEInqIouUA3VEUEP6Am9oFfj0Xg23oz3STRnZDOb6BeMj2+iCZoV</latexit>

w ⇠ N (0,↵�1I)

Figure 3: The directed graphical model for calculating evidence.

According to the causal structure in Figure 3 and the basic principles in graphical
models (Koller and Friedman, 2009), the evidence can be calculated analytically as follows:

p(y|F, α, β) =
∫
p(w|α)

∏n
i=1 p(yi|fi, w, β)dw = (β2π)

n
2 (α2π)

D
2

∫
e−

α
2
wTw−β

2
||Fw−y||2dw. (1)

Equation 1 can be simplified by the identity
∫
e−

1
2

(wTAw+bTw+c) dw =
√

(2π)D

|A| e
− 1

2
c+ 1

8
bTA−1b.

Taking the logarithm for simplicity, Equation 2 shows the logarithm of the evidence L as a
function of α, β, where A = αI + βF TF,m = βA−1F T y.

L(α, β) = log p(y|F, α, β) = n
2 log β + D

2 logα− n
2 log 2π − β

2 ||Fm− y||22 − α
2m

Tm− 1
2 log |A|. (2)

10

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

3.2.2 Evidence maximization and LogME

An unresolved issue in Equation 2 is how to choose α, β. Gull (1989) suggested choosing
α, β to maximize the evidence, i.e., use (α∗, β∗) = arg maxα,β L(α, β). Because m and A are
coupled, it is a difficult problem to directly maximize L(α, β). To address this, MacKay (1992)
proposed a heuristic algorithm to solve the maximization problem: (1) set initial value of

α, β; (2) evaluate A,m, γ with given α, β: A = αI+βF TF,m = βA−1F T y, γ =
∑D

i=1
βσ2

i

α+βσ2
i
,

where σi are singular values of F ; (3) maximize α, β by solving ∂L
∂α = 0, ∂L∂β = 0 with m, γ

fixed, which yields α← γ
mTm

, β ← n−γ
||Fm−y||22

. The algorithm is called MacKay’s algorithm

(Algorithm 2). Section 4.1 gives a theoretical convergence guarantee for the algorithm.
Interestingly, the fixed point iteration used for the convergence analysis can also be used
in practice to obtain a new and faster algorithm for evidence maximization (Algorithm 3).
Please refer to Section 4.1 for details.

After the convergence of evidence maximization, the logarithm maximum evidence
L(α∗, β∗) is used to evaluate the compatibility between features and labels. Because

L(α∗, β∗) scales linearly with n, we normalize it as L(α∗,β∗)
n and term it LogME (logarithm

of maximum evidence). Discussion on the influence of dimensionality D is presented in
Section 4.2. LogME can be intuitively interpreted as the logarithm of maximum label
evidence given pre-trained features.

Extending LogME to complex cases. The LogME approach starts from a single-
target regression. If the target problem is a multivariate regression task, i.e., Y ∈ Rn×C ,
we can calculate LogME for each dimension c (1 ≤ c ≤ C) and average them over the
C dimensions. If the target problem is a classification task with C classes, Equation 1
cannot be calculated analytically (Daunizeau, 2017) with a categorical prior distribution.
State-of-the-art approximation methods like Laplace approximation (Immer et al., 2021)
work well in toy data, but perform unsatisfyingly in realistic tasks, as mentioned later in
Section 6.1. Therefore, we turn to an alternative solution: convert the classification labels
to one-hot labels and treat the problem as multivariate regression. This approach also
works for multi-label classification. This way, LogME can be used in both (single-label and
multi-label) classification and regression tasks.

The overall algorithmic specification of LogME is presented in Algorithm 1.

3.2.3 Computational speedup

Although the Bayesian approach of maximum evidence has a rigorous theoretical explana-
tion (Knuth et al., 2015), it inherits the drawback of Bayesian methods with respect to
high computational complexity. A näıve implementation of Algorithm 2 results in a total
complexity of O(CD3 + nCD2). For typical usage with D ≈ 103, n ≈ 104, C ≈ 103, the
computational cost is 1013, with the wall-clock time comparable to fine-tuning PTM φ.

Our conference paper (You et al., 2021) accelerated the computation by avoiding matrix
inversion and matrix-matrix multiplication, as shown in Line 8 of Algorithm 2. In this paper,
we present a convergence analysis of MacKay’s algorithm by fixed point iteration. It turns
out that the analysis implies a faster algorithm for evidence maximization. The algorithm is
presented in Algorithm 3 and its rationale is explained in Section 4.1.

11

You, Liu, Zhang, Wang, Jordan, Long

Algorithm 1 LogME

1: Input: Pre-trained model φ and target dataset D = {(xi, Yi)}ni=1

2: Output: Logarithm of Maximum Evidence (LogME)
3: Extract features using pre-trained model φ: F ∈ Rn×D, fi = φ(xi), Y ∈ Rn×C
4: Compute SVD of F : F = UΣV T . Then F TF = V diag{σ2}V T

5: for dimension c = 1 to C do
6: Let y = Y (c) ∈ Rn,
7: Calculate the LogME value Lc by evidence maximization (Algorithm 2 or Algorithm 3).
8: end for
9: Return LogME 1

C

∑C
c=1 Lc

Algorithm 2 Evidence Maximization by MacKay’s Algorithm

1: Input: Extracted features F ∈ Rn×D and corresponding labels y ∈ Rn
2: Output: Logarithm of Maximum Evidence (LogME)
3: Note: F has been pre-decomposed into F = UΣV T

4: Initialize α = 1, β = 1
5: while α, β not converge do

6: Compute γ =
∑D

i=1
βσ2

i

α+βσ2
i
,Λ = diag{(α+ βσ2)}

7: Näıve: A = αI + βF TF,m = βA−1F T y
8: Optimized by You et al. (2021): m = β(V (Λ−1(V T (F T y))))
9: Update α← γ

mTm
, β ← n−γ

||Fm−y||22
10: end while
11: Compute and return L = 1

nL(α, β) using Equation 2

Algorithm 3 Evidence Maximization by Optimized Fixed Point Iteration

1: Input: Extracted features F ∈ Rn×D and corresponding labels y ∈ Rn
2: Output: Logarithm of Maximum Evidence (LogME)
3: Require: Truncated SVD of F : F = UrΣrV

T
r , with Ur ∈ Rn×r,Σr ∈ Rr×r, Vr ∈ RD×r.

4: Compute the first r entries of z = UTr y
5: Compute the sum of remaining entries ∆ =

∑n
i=r+1 z

2
i =

∑n
i=1 y

2
i −

∑r
i=1 z

2
i

6: Initialize α = 1, β = 1, t = α
β = 1

7: while t not converge do

8: Compute mTm =
∑r

i=1
σ2
i z

2
i

(t+σ2
i)2

, γ =
∑r

i=1
σ2
i

t+σ2
i
, ||Fm− y||22 =

∑r
i=1

z2i
(1+σ2

i /t)
2 + ∆

9: Update α← γ
mTm

, β ← n−γ
||Fm−y||22

, t = α
β

10: end while
11: Compute m = VrΣ

′z, where Σ′ii = σi
t+σ2

i
(1 ≤ i ≤ r).

12: Compute and return L = 1
nL(α, β) using Equation 2

12

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

Table 2: The complexity of Algorithm 1 with three implementations of evidence maximiza-
tion. n,C are the number of samples and the number of classes in classification (or
the number of target variables in regression) in downstream tasks, and D is the
dimension of features produced by a pre-trained model.

Evidence maximization method Complexity per while-loop Overall complexity

näıve implementation O(D3 + nD2) O(nCD2 + CD3)
optimized by You et al. (2021) O(D2 + nD) O(nD2 + nCD + CD2 +D3)

fixed point iteration (this paper) O(n) O(nD2 + nCD)

Table 2 compares the complexity of calculating LogME with three implementations of
evidence maximization. The näıve implementation is biquadratic, You et al. (2021) made it
cubic, and this paper further reduces the number of cubic terms. The optimized algorithm
makes a time-consuming Bayesian approach fast enough, reducing the wall-clock time by
order of 102 (see Section 6.5 for a quantitative measurement). Note that three implementation
methods are functionally equivalent and only differ in computational complexity. Therefore,
the fixed point iteration proposed in this paper is used by default in our implementation.

4. Theoretical Analyses of LogME

In this section, we analyze two theoretical aspects of the proposed LogME, which further
explains the rationale behind the LogME algorithm and helps provide insight into why
LogME works.

4.1 Convergence analysis of evidence maximization

Historical remarks: The evidence maximization procedure in Section 3.2.2 was proposed
by MacKay (1992) as a heuristic method to maximize the evidence of given data, following
the spirit of empirical Bayesian learning (Bishop, 1995). Theoretical analysis is missing
and it has been employed as a heuristic in modern machine learning practice. Progress was
made in the theoretical justification by Li et al. (2016) who noted that if the predictive
uncertainty β is known, the maximization over model uncertainty α can be viewed as a
special instantiation of the EM algorithm (Dempster et al., 1977). However, pre-determining
β is suboptimal, and in practice α, β are simultaneously maximized. In this paper we provide
an analysis of MacKay’s algorithm in which α, β are jointly optimized.

We collect necessary notation here: n is the number of data examples; D is the size of
feature dimensionality; F ∈ Rn×D is the feature matrix, with r = rank(F) being its rank;
y ∈ Rn is the label vector of data examples. We have that r ≤ min{n,D}.

The key in our analysis is to take full advantage of the singular value decomposition of
the feature matrix F = UΣV T , where U ∈ Rn×n, V ∈ RD×D, and Σ ∈ Rn×D. Note that Σ
only has r non-zero entries: Σii = σi > 0 (1 ≤ i ≤ r) where σ2

i is the i-th largest eigenvalue
of F TF and σi = 0 (r+ 1 ≤ i ≤ max(n,D)). To simplify the expression, let z = UT y be the
transformed y under orthogonal bases U , i.e., y = Uz.

13

You, Liu, Zhang, Wang, Jordan, Long

MacKay’s algorithm (Algorithm 2) consists of a while-loop which is presented in Al-
gorithm 4. The key to analyzing the whole algorithm is to analyze each iteration of the
while-loop. During each iteration, new values α′, β′ are computed based on old values α, β,
which can be regarded as evaluating a vector-valued function (α′, β′) = g(α, β).

Algorithm 4 One iteration of evidence maximization in Algorithm 2.

1: Input: α, β; Output: α′, β′ for the next iteration.

2: Compute A = αI + βF TF,m = βA−1F T y, γ =
∑D

i=1
βσ2

i

α+βσ2
i

3: Return α′ = γ
mTm

, β′ = n−γ
||Fm−y||22

MacKay’s algorithm converges if and only if (α′, β′) = (α, β) in Algorithm 4. With F, y
as constants, the convergence of Algorithm 2 is equivalent to the existence of the fixed point
of the vector-valued function g, i.e., the existence of α, β such that (α, β) = g(α, β).

In general, fixed points of vector-valued functions are difficult to analyze and visualize.
Fortunately, we find that the vector-valued function (α′, β′) = g(α, β) is homogeneous:
g(kα, kβ) = kg(α, β),∀k > 0. Let t = α/β, and t′ = α′/β′, the vector-valued function
(α′, β′) = g(α, β) induces a scalar function t′ = f(t), whose explicit form can be derived in
Theorem 1. Evaluating g(α, β) is equivalent to calculating f(αβ), which is easier to analyze.

Theorem 1 Algorithm 4 induces a scalar function (Equation 3) with t = α
β and t′ = α′

β′ .

t′ = f(t) =

 n

n−∑D
i=1

σ2
i

t+σ2
i

− 1

 t2

∑n
i=1

z2i
(t+σ2

i)2∑n
i=1

σ2
i z

2
i

(t+σ2
i)2

. (3)

The proof is in Appendix B. Although f(t) seems very complicated and completely
understanding its behavior is difficult, surprisingly, the existence of a fixed point of f(t) can
be guaranteed with an interpretable condition, as presented in the following Theorem 2.

Theorem 2 If r < n and
∑

1≤i,j≤n(z2
i − z2

j)(σ2
i − σ2

j) > 0, then f(t) has a fixed point and
thus MacKay’s algorithm will converge.

The proof is in Appendix C. Theorem 2 requires two conditions to guarantee the fixed
point: r < n and

∑
1≤i,j≤n(z2

i − z2
j)(σ

2
i − σ2

j) > 0. The first condition is easy to interpret
and can be easily satisfied: usually n > D, and n > D ≥ r naturally holds. The condition∑

1≤i,j≤n(z2
i − z2

j)(σ
2
i − σ2

j) > 0 is new in this paper. Note that z = UT y and zi = UTi y,
where Ui (the i-th column of U) is the left-singular vector of the singular value σi, which
means that zi is the projection of label vector y in the direction of the left-singular vector
for the singular value σi. Intuitively speaking,

∑
1≤i,j≤n(z2

i − z2
j)(σ

2
i − σ2

j) > 0 requires z2
i

to share roughly the same descending order as σ2
i . For larger σ2

i (i.e., smaller i), it means
the projection of y in the corresponding left-singular vector should be larger, which can
be interpreted as a rigorous way to say that labels y are meaningful with respect to the
features F . We would like to emphasize that the requirement on the order of z2

i is soft :
strict order z2

i ≥ z2
j ⇐⇒ i ≤ j ⇐⇒ σ2

i ≥ σ2
j certainly assures the convergence condition

14

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

∑
1≤i,j≤n(z2

i − z2
j)(σ2

i − σ2
j) > 0, but as long as most z2

i follow the order, the condition can
be satisfied. We find that all experiments in this paper admit the convergence condition, i.e.,
the evidence maximization algorithm is guaranteed to converge if the data is meaningful.
For example, Figure 4 plots f(t) on the CIFAR10 dataset, which clearly shows cross points
of f(t) and t, so the convergence condition

∑
1≤i,j≤n(z2

i − z2
j)(σ2

i − σ2
j) > 0 holds.

Make the fixed point iteration faster. Note that the fixed point iteration Equation 3
requires explicitly computing z = UT y with O(n2) storage and computation, which would
be undesirable if n is very large. To obtain a practical algorithm, we take advantage of the
fact that σi = 0 for i > r, and optimize the fixed point iteration as follows:

t′ = f(t) =

 n

n−∑D
i=1

σ2
i

t+σ2
i

− 1

 t2

∑n
i=1

z2i
(t+σ2

i)2∑n
i=1

σ2
i z

2
i

(t+σ2
i)2

=

 n

n−∑r
i=1

σ2
i

t+σ2
i

− 1

 t2

∑r
i=1

z2i
(t+σ2

i)2
+ 1

t2
∑n

i=r+1 z
2
i∑r

i=1
σ2
i z

2
i

(t+σ2
i)2

=

 n

n−∑r
i=1

σ2
i

t+σ2
i

− 1

 t2

∑r
i=1

z2i
(t+σ2

i)2
+ 1

t2
(
∑n

i=1 y
2
i −

∑r
i=1 z

2
i)∑r

i=1
σ2
i z

2
i

(t+σ2
i)2

.

Therefore, we can derive a faster algorithm (Equation 4) for the fixed point iteration, which
only requires the first r entries of z without computing the full U matrix or the full z vector.
This is the algorithm we implement in Algorithm 3, setting:

t′ = f(t) =

 n

n−∑r
i=1

σ2
i

t+σ2
i

− 1

 t2

∑r
i=1

z2i
(t+σ2

i)2
+ 1

t2
(
∑n

i=1 y
2
i −

∑r
i=1 z

2
i)∑r

i=1
σ2
i z

2
i

(t+σ2
i)2

. (4)

4.2 Influence of dimensionality

In Section 3.2.2, we normalize the LogME value by the number of examples because
Equation 2 scales linearly with n. The influence of feature dimension D is, however, unclear.
In this section, we find two cases (feature duplicate and feature padding) where LogME
value remains unchanged when the feature dimension goes up without introducing more
information. The two cases show the existence of infinitely many features with arbitrary
feature dimensions that share the same LogME value, therefore removing the necessity of
dimensionality normalization.

Corollary 3 (feature duplicate) LogME value will remain the same if the feature consists
of arbitrary replicas of the original feature. Formally speaking, if the LogME value for
F ∈ Rn×D and y ∈ Rn is L, then the LogME value for F̃ = [F, ..., F] ∈ Rn×qD and y ∈ Rn
is also L. (q ∈ N is a natural number to represent the number of replicas.)

Corollary 4 (feature padding) LogME value will remain the same if the feature is padded
with an arbitrary number of zeros. Formally speaking, if the LogME value for F ∈ Rn×D
and y ∈ Rn is L, then the LogME value for F̃ = [F,0] ∈ Rn×(D+d) and y ∈ Rn is also
L. (d ∈ N is a natural number and 0 ∈ Rn×d is a matrix with all zero entries.)

15

You, Liu, Zhang, Wang, Jordan, Long

0 100 200 300
0

50

100

150

200

250

300

R
es

N
et

-5
0

Class 1

0 100 200 300
0

50

100

150

200

250

300

Class 2

0 100 200 300
0

50

100

150

200

250

300

Class 3

0 100 200 300
0

50

100

150

200

250

300

Class 4

0 100 200 300
0

50

100

150

200

250

300

In
ce

pt
io

n
v1

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300 400
0

100

200

300

400

M
ob

ile
N

et
 v

2

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300
0

50

100

150

200

250

300

N
A

SN
et

-A
 M

ob
ile

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

t'=f(t) t'=t

Figure 4: Fixed points of f(t) in Equation 3 for the first four classes in CIFAR10 with four
pre-trained models. The full figure for all the ten classes in CIFAR10 with five
pre-trained models can be found in Figure 13, which is omitted here to prettify
the layout. We plot t′ = f(t) (in blue) and t′ = t (in orange), whose intersections
are fixed points f(t) = t. The existence of fixed points guarantees the convergence
of MacKay’s algorithm for evidence maximization.

16

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

The proofs of Corollary 3 and Corollary 4 are in Appendix D and Appendix E, respectively.
The core idea is to find the closed-form relationship between decompositions of F̃ and F .

Corollary 3 and Corollary 4 imply that duplicating features or padding features with
zeros will not change the value of LogME. LogME is capable of filtering out redundant
information in features, explaining its excellent empirical performance in You et al. (2021).

5. Tuning Pre-Trained Models

The new paradigm we propose consists of ranking and tuning pre-trained models. Sections 3
and 4 described technical background for ranking pre-trained models, including the trans-
ferability metric LogME and its theoretical analyses. In this section we focus on tuning
pre-trained models, completing the overall paradigm.

We identify two possible scenarios in the tuning of pre-trained models: single best
PTM tuning and multiple PTM tuning. (1) Single best PTM tuning is suitable if there are
no constraints on the network architecture, parameter count, or FLOPs of computation.
These constraints are common in industrial applications, but are less important in academic
research. Therefore, single best PTM tuning is common in academic research. Intuitively, the
remaining PTMs are considered inferior to the best ranked PTM so they are not considered
worth the effort to identify and deploy. We refer readers to dedicated papers (Chen et al.,
2019; Kou et al., 2020; You et al., 2020) on how to fine-tune a single PTM. (2) When we
deploy neural networks in industrial applications, typically there are strict constraints on
the budget of memory footprint or power consumption. Therefore, the pre-trained model
φt satisfying these constraints is probably not the best ranked. The current state of the
art is that practitioners can only fine-tune φt, and the overall knowledge of the PTM hub
{φi}Mi=1 cannot be exploited. In this paper, we show that it is possible to transfer knowledge
from several teacher PTMs {φk}Kk=1 to the target pre-trained model φt during fine-tuning, a
paradigm which we call “multiple PTM tuning.”

A side issue in tuning multiple PTMs is how to select the teacher PTMs. Typically,
K < M , i.e., not all PTMs are necessary, since some PTMs may not be suitable for the target
task and would hinder the transfer learning procedure. However, for M pre-trained models,
the possible number of teacher combinations is O(2M), which is impractical to enumerate.
To overcome the exponential complexity, we avail ourselves of the PTM ranking. With the
PTM ranking, we can greedily select teacher PTMs according to the rank. For example, if
we want to choose K teacher PTMs, then the top-K ranked PTMs {φk}Kk=1 are the teacher
for knowledge transfer. As for how to choose the hyper-parameter K (1 ≤ K ≤M), we give
empirical guidelines in Section 6.3.

Multiple PTM tuning offers a unique advantage over simply fine-tuning the target pre-
trained model φt: if the specified target pre-trained model φt is not the best-ranked, we can
still improve it by transferring knowledge from top-performing PTMs {φk}Kk=1.

5.1 Problem setup for multiple PTM tuning

Now suppose we have selected K pre-trained models {φk}Kk=1, with each pre-trained model
φk transforming input x into a Dk-dimensional feature vector. In general, pre-trained models
{φk}Kk=1 have various network architectures, and dimensionality of features {Dk}Kk=1 can
vary. Let φt be the target architecture, which transforms the input into Dt dimensional

17

You, Liu, Zhang, Wang, Jordan, Long

feature vector. Formally, the multiple PTM tuning problem is to fine-tune a pre-trained
model φt by leveraging selected pre-trained models {φk}Kk=1, as shown in Figure 2.

To fine-tune a model φt in a target task, a new output head would be attached after φt,
where a target-specific loss is calculated. The target-specific head and loss are necessary for
every possible solution to multiple PTM tuning, which is taken care of by a loss function
Ltask. We will not elaborate on Ltask as it varies with tasks. Next, in Section 5.2, we
summarize existing approaches to the problem and introduce our method in Section 5.3.

5.2 Existing approaches to the problem of multiple PTM tuning

A baseline approach is to fine-tune φt without considering teacher PTMs {φk}Kk=1. This
can serve as a baseline to measure the improvement brought by multiple PTM tuning.

The knowledge distillation approach to multiple PTM tuning is knowledge
distillation (Hinton et al., 2015) in the feature space via mean-square error. Since the
feature dimensions may differ between φt and {φk}Kk=1, a transformation module is necessary.
The knowledge distillation (KD) method takes advantage of selected pre-trained models by
adding a regularization term. LKD = 1

n

∑n
i=1

1
K

∑K
k=1 ||φk(xi)−Wkφt(xi)||22, where Wk is

learnable parameter to transform a Dt-dimensional feature φt(xi) into a Dk-dimensional
vector compatible with φk(xi). Even if Dk = Dt, the semantics of each dimension in φt and
φk may vary, making it necessary to introduce the transformation parameter Wk. The final
loss is Ltask + λLKD, with hyper-parameter λ trading the two terms. The KD method is
another simple but general baseline in multiple PTM tuning. It can be applied to various
PTMs but the performance improvement is limited.

Zoo-tuning for homogeneous PTMs tuning. In the special case when φt and
{φk}Kk=1 all share the same network architecture, Zoo-tuning proposed by Shu et al. (2021)
adaptively aggregates parameters of {φk}Kk=1 into φt in a layer-wise fashion. It does not
modify the loss Ltask, but changes the training process by model aggregation. Zoo-tuning is
the current state-of-the-art method for homogeneous PTM tuning, but it fails to deal with
the heterogeneous scenario when architectures of φt and {φk}Kk=1 are different.

5.3 B-Tuning: A Bayesian approach to multiple PTM tuning

We draw lessons from the shortcomings of the aforementioned knowledge distillation approach
and the Zoo-tuning approach. Knowledge distillation operates at the level of output features,
which works for heterogeneous PTMs but aligning features across PTMs is not easy. Zoo-
tuning operates at the level of parameters (layers), thereby limiting itself to the homogeneous
case. Taking the positive aspects of both frameworks, we design our approach to operate at
the level of features to hide the heterogeneity among PTMs, and we go beyond features to
avoid explicitly aligning features from various pre-trained models. Inspired by the ranking
metric (LogME), we propose an approach that builds on posterior predictive distributions
from Bayesian regression.

A posterior predictive distribution is p(y′|f, F, y) =
∫
w p(y

′|w, f)p(w|F, y)dw, which
predicts the label y′ of incoming feature f conditioned on all the available training features F
and labels y rather than just using f . With pre-computed α∗, β∗,m (byproducts of the LogME

algorithm), p(y′|w, f) ∼ N (wT f, β∗−1) by definition, and p(w|F, y) = p(w)p(F,y|w)∫
w′ p(w

′)p(F,y|w′)dw′

18

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

by Bayes’ theorem. Rasmussen (2003) shows that p(w|F, y) ∼ N (β∗A−1F T y,A−1) with
A = α∗I + β∗F TF . Plugging in the distributions of p(y′|w, f) and p(w|F, y), Rasmussen
(2003) shows that p(y′|f, F, y) ∼ N (fTm, fTA−1f + β∗−1) with m = β∗A−1F T y. In short,
for extracted features F ∈ Rn×D and labels y ∈ Rn, the LogME algorithm gives α∗, β∗,m,
and the posterior predictive distribution is p(y′|f, F, y) ∼ N (fTm, fTA−1f + β∗−1). For a
full derivation of the posterior predictive distribution please see Rasmussen (2003).

𝑓1
𝜙1 𝑦1

′
𝐹1

𝜙𝑡

𝜙𝐾 𝑓𝐾
𝐹𝐾

𝑓𝑡
𝐹𝑡

ത𝑦′
Weighted Avg

𝐿𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛

𝐿𝑡𝑎𝑠𝑘

𝑦

𝑥

Training data Labels

Input

Predicted distribution

X

Training features

PTMs (fixed) Input features

𝑚𝐾

𝑚1

𝑚𝑡

P
o

steo
rio

r P
red

ictiv
e D

istrib
u

tio
n

 E
stim

atio
n

𝑦𝐾
′

𝑦𝑡
′

Expectation

Alignment

𝑝 𝑦′ ∣ 𝑓, 𝐹, 𝑦 ∼ 𝒩 𝑓𝑇𝑚, 𝑓𝑇𝐴−1𝑓 + 𝛽∗−1

Target model

ℎ𝑡

Figure 5: Illustration of B-Tuning. Dashed lines are pre-calculated before tuning.

The posterior predictive distribution depends on the training data (F, y) and input
features f . Let Fk be features extracted by the pre-trained model φk, fk = φk(x) be the
output features of the current data point extracted by the pre-trained model φk, then
each pre-trained model can produce a posterior predictive distribution p(y′k|fk, Fk, y) ∼
N (fTk mk, f

T
k A
−1
k fk + β∗k

−1). How to combine these distributions? We propose to mix them

according to their LogME values {Lk}Kk=1 as a mixture of Gaussians, ȳ′ =
∑K

k=1 πky
′
k where

πk = exp(Lk/t)∑K
j=1 exp(Lj/t)

, where t is a temperature hyper-parameter (Hinton et al., 2015) that can

be adjusted according to the difference of LogME values. Although {y′k}Kk=1 admit simple
Gaussian distributions, the exact distribution of mixed ȳ′ is intractable because the features
Fk come from the same dataset and {y′k}Kk=1 are dependent. Nevertheless, according to the

linearity property of expectation, Eȳ′ =
∑K

k=1 πkEy′k =
∑K

k=1 πkf
T
k mk, the expectation of ȳ′

is known.

For the target model φt, the posterior predictive distribution is defined as p(y′t|ft, Ft, y) ∼
N (fTt mt, f

T
t A
−1
t ft + β∗t

−1). Since ȳ′ can be regarded as prior knowledge from pre-trained
models {φk}Kk=1, we can align the expectation of y′t and ȳ′ as a regularization term, LBayesian =
1
n

∑n
i=1 ||Eȳ′ − Ey′t||22. Note that the expectation is taken over the predictive distributions

and can be calculated analytically. Extending the formula to multiple classes, the final

19

You, Liu, Zhang, Wang, Jordan, Long

expression of the regularization term is

LBayesian =
1

n

n∑
i=1

1

C

C∑
c=1

(

K∑
k=1

πkf
T
k mk,c − fTt mt,c)

2, (5)

where mk,c,mt,c are calculated by the LogME algorithm and are fixed during training. The
final loss is Ltask+λLBayesian, with λ introduced to trade off two terms. Because the method
depends on the Bayesian approach of calculating posterior predictive distribution, we call it
Bayesian Tuning, or B-Tuning. Figure 5 describes the method and the computation graph.
Only φt is updated during B-Tuning while the teacher PTMs {φk}Kk=1 are fixed.

B-Tuning has two advantages over previous methods: (1) It hides the heterogeneity
among PTMs by operating at the level of features, yielding a general solution to multiple
PTM tuning for both the homogeneous and heterogeneous cases. (2) B-Tuning has a simple
interpretation: it aligns features adaptively with m serving as an attention-like mechanism,
removing the necessity of learning to transform features into a shared space as in the
knowledge distillation approach. The superiority of B-Tuning in multiple PTM tuning is
empirically demonstrated in Section 6.3.

6. Experiments

This section presents comprehensive experiments. Section 6.1 illustrates the behavior of
LogME on toy problems. Experiments on ranking PTMs and tuning PTMs are in Section 6.2
and Section 6.3 respectively, demonstrating the power of the proposed new paradigm.
Section 6.5 quantitatively measures the efficiency of LogME and Section 6.6 compares LogME
against a common approach of re-training the head over a fixed feature extractor, providing
a comprehensive understanding of LogME. Original data for some figures are available in
the appendix. Code for LogME is available at https://github.com/thuml/LogME.

6.1 Illustration with toy data

To give an intuitive sense of how LogME works, we generate features with increasing noise
to mimic the features extracted by pre-trained models with decreasing transferability and to
check if LogME can measure the quality of features.

For classification (Figure 6 left), three clusters in a 2-D plane are generated, with colors
representing the categories. Initially, the features are well separated so LogME has a large
value. Then we add Gaussian noise with increasing variance to the data and the clustering
structure in feature space disappears, leading to smaller LogME values as expected.

For regression (Figure 6 right), x is uniformly distributed (x ∼ U [0, 1]) and the output
y = 2x + ε with observation error ε ∼ N (0, 0.12). By adding noise to the feature x′ =
x+N (0, t2), the quality of feature x′ becomes worse and it is harder to predict y from x′.
With larger t (the standard deviation of noise), LogME becomes smaller as expected.

These toy experiments on synthesized data show that LogME is an effective measure of
the feature quality, and therefore can provide a ranking for PTMs in a pre-trained model
hub.

Figure 6 also shows the LogME value calculated by Immer et al. (2021) using Laplace
approximation. In this toy experiment, both LogME and Laplace approximation correctly

20

https://github.com/thuml/LogME

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

0 5 10 15 20 25

Standard deviation of noise

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

L
og

M
E

LogME

Laplace Approximation

0 1 2 3 4

Standard deviation of noise

−4

−3

−2

−1

0

1

2

L
og

M
E

LogME

Laplace Approximation

Figure 6: Experiments with toy data demonstrate that LogME values go down with de-
creasing feature quality. “Laplace Approximation” means that the LogME value
calculated by Immer et al. (2021) use the Laplace approximation.

measure the trend of feature quality. In regression, the Laplace Approximation is strictly
lower than LogME; in classification, Laplace approximation uses a categorical prior and
approximates the marginal likelihood, while LogME converts classification labels to one-hot
labels (with a Gaussian prior) and calculates the exact value without approximation. The
left plot in Figure 6 confirms that both approaches can reflect the trend of feature quality.
However, we notice that Laplace approximation has larger fluctuations than LogME, and the
Laplace approximation requires more computation than LogME. In addition, its performance
in realistic data (Section 6.2.1) is not satisfactory. Therefore, when dealing with classification
data, we convert classification labels to one-hot labels and treat the problem as a multivariate
regression problem in LogME. How to analytically calculate the value with a categorical
prior is left as a future research question.

6.2 Ranking pre-trained models

This section focuses on the first part of the proposed paradigm: ranking pre-trained models.
The goal is to rank pre-trained models so that potentially best PTMs can be selected for
the subsequent tuning process. This section attaches great importance to the diversity of
pre-trained models and downstream tasks. Section 6.2.1 and Section 6.2.2 transfer supervised
pre-trained models to classification and regression tasks, respectively; Section 6.2.3 explores
unsupervised pre-trained models on both classification and regression; Section 6.2.4 and
Section 6.2.5 study pre-trained language models on language understanding tasks and a
sequential tagging task, respectively. These extensive experiments demonstrate the generality
and effectiveness of the proposed LogME method in ranking pre-trained models.

6.2.1 Ranking supervised pre-trained models in classification tasks

We use 12 ImageNet pre-trained models available from PyTorch: Inception V1 (Szegedy et al.,
2015), Inception V3 (Szegedy et al., 2016), ResNet 34 (He et al., 2016), ResNet 50 (He et al.,
2016), ResNet 101 (He et al., 2016), ResNet 152 (He et al., 2016), Wide ResNet 50 (Zagoruyko
and Komodakis, 2016), DenseNet 121 (Huang et al., 2017), DenseNet 169 (Huang et al., 2017),
DenseNet 201 (Huang et al., 2017), MobileNet V2 (Sandler et al., 2018), and NASNet-A
Mobile (Tan et al., 2019). These pre-trained models cover most of the supervised pre-trained
models in transfer learning that practitioners frequently use.

21

You, Liu, Zhang, Wang, Jordan, Long

Inception v1

Incetpion v3

ResNet 34

ResNet 50

ResNet 101

ResNet 152

Wide ResNet 50

DenseNet 121

DenseNet 169

DenseNet 201

MobileNet v2

NASNet A Mobile
L

E
E

P

75 80 85
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Aircraft (0.13)

60 65 70 75

−2.4

−2.2

−2.0

−1.8

−1.6

Birdsnap (0.19)

90 92 94

−2.6

−2.4

−2.2

−2.0

Caltech (0.30)

88 90 92

−2.0

−1.8

−1.6

−1.4

Cars (0.26)

96.0 96.5 97.0 97.5 98.0

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

CIFAR10 (0.72)

82 84 86

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

CIFAR100 (0.66)

70 72 74 76

−4.1

−4.0

−3.9

−3.8

−3.7

DTD (−0.06)

90 92 94

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

Pets (0.66)

62 64 66

−3.1

−3.0

−2.9

−2.8

−2.7

−2.6

−2.5

SUN (0.54)

N
C

E

75 80 85
−0.45

−0.40

−0.35

−0.30

−0.25

Aircraft (0.39)

60 65 70 75

−1.8

−1.7

−1.6

−1.5

−1.4

Birdsnap (0.51)

90 92 94

−2.00

−1.95

−1.90

−1.85

−1.80

−1.75

Caltech (0.69)

88 90 92

−1.30

−1.25

−1.20

−1.15

−1.10
Cars (0.36)

96.0 96.5 97.0 97.5 98.0

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1

CIFAR10 (0.51)

82 84 86

−3.4

−3.3

−3.2

−3.1

−3.0

CIFAR100 (0.53)

70 72 74 76

−3.250

−3.225

−3.200

−3.175

−3.150

−3.125

−3.100

−3.075
DTD (−0.35)

90 92 94

−1.15

−1.10

−1.05

−1.00

−0.95

−0.90

−0.85
Pets (0.83)

62 64 66

−2.575

−2.550

−2.525

−2.500

−2.475

−2.450

SUN (0.68)

L
og

M
E

75 80 85

0.930

0.935

0.940

0.945

0.950

Aircraft (0.59)

60 65 70 75
0.80

0.81

0.82

0.83

0.84

0.85
Birdsnap (0.66)

90 92 94
1.35

1.40

1.45

1.50

1.55

1.60

Caltech (0.66)

88 90 92

1.2450

1.2475

1.2500

1.2525

1.2550

1.2575

1.2600

Cars (0.69)

96.0 96.5 97.0 97.5 98.0

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475
CIFAR10 (0.82)

82 84 86

1.04

1.06

1.08

1.10

1.12

CIFAR100 (0.77)

70 72 74 76

0.71

0.72

0.73

0.74

0.75

0.76

DTD (0.50)

90 92 94

0.9

1.0

1.1

1.2

Pets (0.61)

62 64 66

1.71

1.72

1.73

1.74

1.75

SUN (0.71)

Figure 7: Correlation values (τw) between fine-tuned accuracy (X-axis) and scores produced
by three methods (Y-axis) for ranking PTMs on 9 datasets with 12 pre-trained
models. One row for each method, one column for each dataset (with τw in the
parenthesis near the dataset name), and one marker for each pre-trained model.
The best τw in each dataset is marked in bold.

For downstream classification tasks, we take nine commonly used datasets: Aircraft (Maji
et al., 2013), Birdsnap (Berg et al., 2014), Caltech (Fei-Fei et al., 2004), Cars (Krause et al.,
2013), CIFAR10 (Krizhevsky and Hinton, 2009), CIFAR100 (Krizhevsky and Hinton, 2009),
DTD (Cimpoi et al., 2014), Pets (Parkhi et al., 2012), and SUN (Xiao et al., 2010). The
description of each dataset and data statistics are listed in Appendix F.

For all the datasets we use, we respect the official train/val/test splits if they exist,
otherwise we use 60% data for training, 20% data for validation (searching hyper-parameters
to measure the reference transfer learning performance) and 20% data for testing. Models
are trained with a fixed number of epochs, and the best model in the validation split is used
as the final model to be tested in the test split.

To compute the reference transfer learning performance, {Tm}Mm=1 (M = 12), we carefully
fine-tune pre-trained models with grid-search of hyper-parameters. Li et al. (2020) pointed
out that learning rate and weight decay are the two most important hyper-parameters.
Hence, we grid-search the learning rate and weight decay (seven learning rates from 10−1

to 10−4, and seven weight decays from 10−6 to 10−3, all logarithmically spaced) to select
the best hyper-parameter on the validation split and compute the accuracy on the test
split as the reference transfer learning performance. It is noteworthy that LogME requires
neither fine-tuning nor grid search. Here we fine-tune pre-trained models to see how well
the LogME values correlate with the reference transfer performance, but practitioners can
straightforwardly use LogME to evaluate pre-trained models without fine-tuning.

We compare LogME against LEEP (Nguyen et al., 2020) and NCE (Tran et al., 2019).
Results of calculating the evidence using Laplace approximation (Immer et al., 2021) are

22

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

not shown but are listed in the appendix, where we document that its performance is
unsatisfactory. Before this paper, LEEP and NCE were the only two methods to rank PTMs
without fine-tuning, and they can only rank supervised pre-trained models in classification
tasks. We use LEEP, NCE, and LogME to compute scores {Sm}Mm=1 by applying 12 pre-
trained models to the datasets. The correlation values τw between scores and fine-tuned
accuracies are presented in Figure 7.

We can find that LogME has consistently better correlation than LEEP, and outperforms
NCE on most datasets (7 datasets out of 9 datasets). Note that LEEP and NCE even
show negative correlation values in DTD (Cimpoi et al., 2014), because they rely on the
relationship between classes of the pre-trained task and the target task but DTD classes
(textures) are very different from ImageNet categories (objects). In contrast, LogME still
performs reasonably well for DTD.

According to the interpretation of τw in Section 3.1, correlation value τw can be roughly
translated into τw+1

2 probability of correct comparison (concordant pairs). The smallest τw
of LogME in Figure 7 is around 0.5, so the probability of a pre-trained model φA transferring
better than φB is about 75% if φA has a larger LogME. For most tasks τw of LogME is 0.7
or 0.8, so the probability of correct selection is 85% or 90%, sufficient for practical usage.

6.2.2 Ranking supervised pre-trained models in a regression task

We now turn to an evaluation of how well LogME can assess pre-trained models for a regression
task. The two prior methods (LEEP and NCE) depend on a categorical relationship between
pre-trained categories and downstream categories, therefore they do not apply to regression
tasks.

0.025 0.030 0.035 0.040 0.045
MSE

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L
og

M
E

ResNet 34

ResNet 50

ResNet 101

ResNet 152

Wide ResNet 50

DenseNet 121

DenseNet 169

DenseNet 201

Inception v1

Incetpion v3

MobileNet v2

NASNet-A Mobile

Figure 8: Supervised pre-trained models transferred to dSprites.

The regression task we use is the dSprites (Matthey et al., 2017) dataset from the Visual
Task Adaptation Benchmark (Zhai et al., 2020), a common benchmark for evaluating the
quality of learned representations. The input is an image containing a sprite (heart, square,
and ellipse) with varying scale/orientation/position. Pre-trained models are transferred
to predict four scalars (scale, orientation, and (x, y) positions) together, and mean square
error (MSE) on the test data is reported. The supervised pre-trained models and the
hyper-parameter tuning scheme are the same as in Section 6.2.1.

23

You, Liu, Zhang, Wang, Jordan, Long

Results are plotted in Figure 8. It is clear that LogME and MSE are well correlated
and the correlation coefficient τw = 0.79 is very large: if a pre-trained model φA has larger
LogME than φB, with roughly 89.5% probability φA is better (has smaller MSE) than φB
after actually fine-tuning.

6.2.3 Ranking contrastive pre-trained models in downstream tasks

Unsupervised pre-trained models have attracted much attention due to their potential
ability to exploit massive unlabeled datasets on the Internet (He et al., 2020). They use a
contrastive loss (Gutmann and Hyvrinen, 2010) to inject supervision signals into pre-training
with unlabeled data, and they feature a projection head with continuous output. Ranking
contrastive pre-trained models is an important emerging challenge, and unfortunately current
models such as LEEP and NCE cannot be extended to deal with the projection head of
contrastive-based unsupervised pre-trained models because they rely on discrete categorical
relationships.

Since LogME only requires features extracted from pre-trained models, it can be applied
to contrastive pre-trained models. To demonstrate this, we use four popular models pre-
trained with various training schemes: MoCo V1 (He et al., 2020) with momentum contrast,
MoCo V2 (Chen et al., 2020b) with an MLP projection head and strong data augmentation,
MoCo 800 trained with 800 epochs as suggested by Chen et al. (2020a), and SimCLR (Chen
et al., 2020a) trained by a carefully designed training scheme (Chen et al., 2020a).

For classification, we use Aircraft (Maji et al., 2013), the first dataset (alphabetically) in
Section 6.2.1; for regression, we use dSprites (Matthey et al., 2017), the only regression task
in this paper. Results are shown in Table 3. SimCLR on dSprites is not reported as it does
not converge after several trials, possibly because it is heavily tailored to classification tasks.
LogME gives a perfect ordering of both accuracy and MSE. Note that the reference order on
transfer learning performance in Aircraft (MoCo V1 < MoCo V2 < MoCo 800) is different
from the order in dSprites (MoCo V1 < MoCo 800 < MoCo V2), emphasizing that ranking
pre-trained models is task adaptive. We also observe that LogME values of unsupervised
pre-trained models are similar (the difference is smaller than their supervised counterparts
in Section 6.2.1), mainly because unsupervised features are not very discriminative.

Table 3: Use LogME to rank unsupervised pre-trained models.

PTM
Aircraft dSprites

Accuracy (%) LogME MSE LogME

MoCo V1 81.68 0.934 0.069 1.52
MoCo V2 84.16 0.941 0.047 1.64
MoCo 800 86.99 0.946 0.050 1.58
SimCLR 88.10 0.950 - -

τw: 1.0 τw: 1.0

24

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

6.2.4 Ranking pre-trained language models in the GLUE benchmark

To further demonstrate the generality of LogME, we show how LogME can work for pre-
trained language models. Again, existing methods (LEEP and NCE) cannot deal with these
pre-trained language models.

L
og

M
E

80 82 84 86

−0.66

−0.64

−0.62

−0.60

−0.58

MNLI (0.66)

88 89 90 91 92

−0.52

−0.51

−0.50

−0.49

−0.48

−0.47

QQP (0.73)

88 90 92
−0.62

−0.61

−0.60

−0.59

−0.58

−0.57

QNLI (1.00)

91 92 93 94 95

−0.50

−0.45

−0.40

−0.35

SST-2 (0.68)

50 55 60

−0.56

−0.54

−0.52

−0.50

CoLA (1.00)

86 88 90

−0.60

−0.59

−0.58

MRPC (0.53)

60 65 70 75

−0.725

−0.720

−0.715

−0.710

RTE (1.00)

P
op

u
la

ri
ty

80 82 84 86
0.000

1.000

2.000

3.000

4.000

5.000

6.000

MNLI (0.28)

88 89 90 91 92

1.000

2.000

3.000

4.000

5.000

6.000

QQP (0.00)

88 90 92

1.000

2.000

3.000

4.000

5.000

6.000

QNLI (0.00)

91 92 93 94 95
1.000

2.000

3.000

4.000

5.000

6.000

SST-2 (0.38)

50 55 60

1.000

2.000

3.000

4.000

5.000

6.000

CoLA (0.00)

86 88 90

1.000

2.000

3.000

4.000

5.000

6.000

MRPC (0.33)

60 65 70 75

1.000

2.000

3.000

4.000

5.000

6.000

RTE (−0.29)

RoBERTa RoBERTa-D uncased BERT-D cased BERT-D ALBERT-v1 ALBERT-v2 ELECTRA-base ELECTRA-small

Figure 9: Correlation values (τw) between fine-tuned accuracy (X-axis) and LogME value /
Popularity value (Y-axis) in seven GLUE tasks with eight popular PTMs. One
sub-figure for each task (with its τw in the parenthesis), and one marker for each
PTM.

Here we take another approach to evaluating the reference transfer performance {Tm}Mm=1.
We do not fine-tune pre-trained models, but directly take fine-tuned results from HuggingFace
Models, and check if LogME values can correlate well with the results. Specifically, we take
pre-trained models that have GLUE performance tuned by the HuggingFace organization,
and select the top eight downloaded models: RoBERTa (Liu et al., 2019), RoBERTa-D,
uncased BERT-D, cased BERT-D, ALBERT-v1 (Lan et al., 2020), ALBERT-v2 (Lan et al.,
2020), ELECTRA-base (Clark et al., 2020), and ELECTRA-small (Clark et al., 2020) (“D”
means distilled version). The LogME values on seven GLUE tasks together with fine-tuned
accuracies are plotted in Figure 9. Some models only have results for certain tasks and we
keep them as they are. Even though these accuracy numbers are tuned by the HuggingFace
organization, LogME perfectly estimates the ranking of transfer performance for three tasks
(with τw = 1), showing the surprising effectiveness of LogME in ranking pre-trained models.

One may wonder how well a pre-trained model’s popularity indicates its transfer learning
performance, because it is a common belief that PTMs with consistent improvements
across many tasks may tend to become popular. To address this question, a quantitative
measurement of popularity is required. We consider two possible quantities: the citation
number of the paper proposing the pre-trained model, and the download count of the
pre-trained model. The paper citation number is not a proper metric for assessing individual
PTM’s transferability, because one paper can contain many PTMs. For example, the BERT
paper (Devlin et al., 2019) contains BERT-base and BERT-large, which have the same
citation number but are in different transferability levels. Download count is a PTM-wise
well-defined metric, hence we can use it as a proxy for popularity.

Thanks to the public data from HuggingFace, each PTM’s download count (measured in
millions) is available to approximate the popularity. The bottom figure in Figure 9 shows

25

https://huggingface.co/models
https://huggingface.co/models
https://huggingface.co/models

You, Liu, Zhang, Wang, Jordan, Long

how well popularity performs when it is used as a transferability metric. It is clear that
popularity does not correlate well with transfer learning performance: the τw values of
popularity are significantly lower than LogME’s τw values, and negative correlation values
occur in the RTE task. Note that BERT models are the most popular but RoBERTa is
the best among these tasks, revealing a mismatch between popularity and transfer learning
performance. These experiments provide further justification for the motivation of this
paper—practitioners usually select the most popular pre-trained model due to the lack of a
satisfying selection strategy, and LogME can come to their rescue.

6.2.5 Ranking pre-trained language models in a sequential tagging task

So far, we have only considered simple classification and regression tasks. It would be
valuable to extend LogME to tasks with structured output such as object detection and
semantic segmentation. Next we show how LogME can be used in a sequential tagging task
where both the input and the output are structured. How to deal with a general task with
structured output is left as future work.

The specific task we consider in this section is named entity recognition (Sang and
De Meulder, 2003). It requires the model to predict the entity label (person, location, orga-
nization, etc.) of every token in a sentence, therefore the output is structured. Considering
that the named entity recognition task is sometimes referred to as “token-level classification,”
we can flatten the token dimension to apply LogME. The only change is that n represents
the number of tokens rather than the number of sentences.

We use the same PTMs as in Section 6.2.4, and the dataset is CoNLL-2003 (Sang and
De Meulder, 2003) whose performance is measured by F-1 score. Table 4 holds the results.
The rank correlation value τw is 0.20, smaller than results in previous sections. The small
τw is caused by an outlier PTM named RoBERTa (Liu et al., 2019), which has the largest
F-1 score with a relatively small LogME value. We conjecture that RoBERTa has a small
LogME value because it is trained much longer than BERT in the masked language modeling
task, which might make its representation tailored to the task, lowering its LogME score in
the dissimilar task of named entity recognition. On the other hand, RoBERTa is robustly
optimized, so it can be easily fine-tuned to downstream tasks with competitive results.

If we select the best PTM by the largest LogME value, ALBERT-v1 will be used and its
performance is comparable to the best (97.0% vs. 97.4%). From this perspective, LogME is
reasonably useful. In general, how to deal with structured tasks better is a research problem
requiring further effort.

Table 4: Ranking pre-trained models in named entity recognition (CoNLL-2003 task).

PTM RoBERTa RoBERTa-D uncased BERT-D cased BERT-D ALBERT-v1 ALBERT-v2 ELECTRA-base ELECTRA-small τw

F-1 score (%) 97.4 96.6 96.8 95.5 97.0 97.4 97.2 91.9

LogME 0.685 0.723 0.783 0.623 0.834 0.809 0.746 0.646 0.20

6.3 Tuning pre-trained models

This section turns to the second part of the proposed paradigm: tuning pre-trained models.
As mentioned in Section 5, most academic researchers are not constrained by the inference

26

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

cost of deployed models, and they can use the best-ranked (according to the LogME value)
PTM straightforwardly. This paper is concerned with the practical usage scenario, where
computational constraints require us to use a specific PTM but we still want to leverage the
knowledge from other PTMs in the pre-trained model hub.

The experiments in this section are designed to compare three methods of tuning multiple
PTMs: the knowledge distillation approach, the Zoo-tuning approach and the proposed
B-Tuning method. We first conduct experiments with multiple homogeneous PTMs where all
three methods are applicable, then we dive into the practical case of multiple heterogeneous
PTMs. By default, the temperature scaling hyper-parameter t is set to 0.1 in Equation 5.

6.3.1 Tuning multiple homogeneous PTMs

We use five homogeneous pre-trained models following the experimental setup of Zoo-
tuning (Shu et al., 2021). They are ResNet-50 models trained by different pre-training tasks:
(1) Supervised pre-trained on ImageNet (He et al., 2016); (2) Unsupervised pre-trained by
MoCo (He et al., 2020); (3) MaskRCNN model (He et al., 2017); (4) DeepLab V3 (Chen et al.,
2017); (5) KeyPoint detection model pre-trained on COCO (Lin et al., 2014). The dataset
we use is Aircraft (Maji et al., 2013), the first dataset (alphabetically) in Section 6.2.1. The
target model is ResNet-50 pre-trained in ImageNet, following the setting of Shu et al. (2021).

To demonstrate the effectiveness of B-Tuning, we use all five PTMs as the teacher
models, and report the performance of three methods (B-Tuning, knowledge distillation, and
Zoo-tuning) on multiple PTM tuning in the first row of Table 5. Zoo-tuning performs better
than vanilla knowledge distillation, but the new B-Tuning method surpasses Zoo-tuning,
setting a new state-of-the-art benchmark for multiple PTM tuning.

Table 5: Accuracy (%) of multiple PTM tuning in Aircraft, with different teacher models
and tuning methods. As a baseline, single PTM fine-tuning yields 82.99% accuracy.

teacher models
method

Knowledge Distillation Zoo-tuning B-Tuning

all PTMs from the PTM hub 82.97± 0.27 83.32± 0.32 83.49± 0.17
top-3 PTMs (ranked by LogME) 84.29± 0.30 - 85.12± 0.15

To demonstrate the effectiveness of LogME selection in multiple PTM tuning, we rank
five PTMs by LogME, and select the top-K PTMs as the teacher models in the subsequent
tuning. Shu et al. (2021) used all five PTMs to tune the target PTM, since they do not
investigate how to select PTMs. To sufficiently test the effect of selection, we choose K =
arg max3≤K≤5(5

K) = 3, so that there are many possible selections and later we can explore
how optimal LogME selection is. The results are in the second row of Table 5. Surprisingly,
selecting top-3 PTMs brings a significant performance improvement, demonstrating the
effectiveness of the “ranking and tuning pre-trained models” paradigm.

To evaluate the optimality of LogME selection, we try all the (5
3) = 10 combinations

of selecting three PTMs from five PTMs. Vanilla knowledge distillation is used to avoid
confounders. Results are shown in Figure 10, with the accuracy of fine-tuning a single
ResNet-50 as the baseline. We have two observations from Figure 10: (1) Transferring the
knowledge from multiple PTMs consistently outperforms fine-tuning a single pre-trained

27

You, Liu, Zhang, Wang, Jordan, Long

82.5

82.99

A
cc

u
ra

cy
/

% 84.41 84.29
84.12

83.95
83.78 83.66 83.66

83.48 83.43
83.24

ResNet-50 Fine-tune

ImageNet Sup. 0.947 X X X X X X
MaskRCNN PT. 0.936 X X X X X X
MoCo PT. 0.934 X X X X X X
KeyPoint PT. 0.914 X X X X X X
DeepLab PT. 0.913 X X X X X X

PTM name LogME

Figure 10: Accuracy of knowledge distillation with three PTM teachers. All (5
3) = 10 combi-

nations of selecting 3 PTM teachers are reported. Selecting top-3 PTMs according
to LogME achieves the second best performance among ten combinations.

model (82.99%), which adheres to our intuition that utilizing the rich knowledge from various
PTMs is better than fine-tuning alone. (2) The best combination achieves 84.41% accuracy,
but usually it is too expensive to try all the combinations (10 trials). Instead, we can use
LogME to select the top-3 PTMs, which achieves 84.29% accuracy and is the second best.
Moreover, we can select the top-3 PTMs by LogME and then perform B-Tuning, which even
surpasses the best combination and has an accuracy of 85.12%.

We can draw three conclusions from experiments in this section: (1) multiple PTM
tuning is better than single PTM fine-tuning; (2) it is better (near-optimal among all the
possible selections) to select top-ranked PTMs according to LogME than to use all the
PTMs; (3) B-Tuning is superior to knowledge distillation and Zoo-tuning.

It is important to point out that selection based on LogME value is a greedy procedure,
and this procedure could fail to capture complicated high-order interactions among PTMs.
For example, in Figure 10, DeepLab pre-trained model has the lowest LogME value, but it
appears in the best combination. How to analyze the high-order interactions among PTMs
would be a worthwhile research question in the future.

6.3.2 Tuning multiple heterogeneous PTMs

Section 6.3.1 studies multiple PTM tuning with homogeneous models, which follows the
setting of Shu et al. (2021) and demonstrates the superiority of B-Tuning. Nonetheless,
compared with tuning multiple homogeneous PTMs, a more general and more attractive
application of multiple PTM tuning is to transfer knowledge from a large hub of heterogeneous
PTMs. This section focuses on the latter setting, and provides some guidelines on how to
select a proper number of PTMs (i.e., the hyper-parameter K) as teachers.

The alphabetically first and second datasets (Aircraft and Birdsnap) are chosen and the
PTM hub consists of the 12 PTMs used in Section 6.2.1. The 12 PTMs are ranked by their

28

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

1 2 3 4 5 6 7 8 9 10 11 12

Number of Teachers (K)

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

A
cc

u
ra

cy
/

%

Single Model Fine-tune

85.9

85.5
85.2

Aircraft

1 2 3 4 5 6 7 8 9 10 11 12

Number of Teachers (K)

67.00

68.00

69.00

70.00

71.00

72.00

73.00

74.00

A
cc

u
ra

cy
/

%

Single Model Fine-tune

72.3
73.0

73.3

72.2

Birdsnap

Figure 11: A study on the number of PTMs (K) to use in B-Tuning with two datasets (Top:
Aircraft; Bottom: Birdsnap).

LogME values, and the target PTM φt is the most common ResNet-50. Top-K PTMs are
used in B-Tuning to fine-tune the target model, with K varying from 1 to 12. Results are
plotted in Figure 11, where the X-axis is the value of K.

We make the following observations based on Figure 11: (1) B-Tuning with multiple
PTMs is consistently better than single PTM fine-tuning. (2) B-Tuning with all the 12
PTMs does not yield the best accuracy, which emphasizes the importance of selecting proper
PTMs. (3) The trend of accuracy with respect to K is complicated, and how to select an
optimal K is a worthwhile topic for future research.

For practitioners, there are two concerns about the choice of K: (1) choosing the optimal
K can yield the best accuracy; (2) but larger K incurs a much larger computational cost, since
a forward pass of each PTM during tuning is required. Considering the results in Figure 11
and the trade-off between the computational cost and the performance improvement, we
recommend choosing K from {2, 3, 4} in practice.

6.4 Using ImageNet-1K as the downstream task

The above experiments focus on small-scale and medium-scale downstream tasks, which are
common in transfer learning research. This section takes a step further to use the large-
scale ImageNet-1K (Deng et al., 2009) as the downstream dataset. In this case, a dataset
larger than ImageNet-1K should be used for pre-training. JFT-300M (Sun et al., 2017),
Instagram-1B (Mahajan et al., 2018), and ImageNet-21K (Deng et al., 2009) are commonly-
used datasets that are larger than ImageNet-1K. Among them, ImageNet-21K is the only
publicly available dataset, which serves as the pre-training dataset here. ImageNet-21K
pre-trained models are provided by the timm project. It mainly contains models pre-trained
on ImageNet-1K, but also has three models pre-trained on ImageNet-21K and fine-tuned

29

https://github.com/rwightman/pytorch-image-models

You, Liu, Zhang, Wang, Jordan, Long

on ImageNet-1K, including MLP-Mixer (Tolstikhin et al., 2021), ViT (Dosovitskiy et al.,
2021), and Swin-T (Liu et al., 2021b). With ImageNet-1K as the downstream dataset, their
LogME score and fine-tuned reference transfer learning performance are presented in Table 6.
LogME is perfectly aligned with the reference performance, with a correlation value τw = 1.
Then we use B-Tuning to tune the commonly used ResNet-50 trained in ImageNet-1K, with
ViT and Swin-T as teacher models. The accuracy is increased from 76.15% to 76.50%.

Experiments in this section demonstrate that LogME and B-Tuning work for not only
small-scale and medium-scale datasets but also for large-scale datasets.

Table 6: Ranking models pre-trained on ImageNet-21K transferred to ImageNet-1K.

PTM pre-trained on ImageNet-21K MLP-Mixer ViT Swin-T τw

Fine-tuned Accuracy on ImageNet-1K (%) 76.61 84.53 85.25
1.00

LogME value 2.075 2.085 2.134

6.5 Efficiency of LogME

A theoretically sound algorithm is often complex and computationally expensive, and this
is the case for LogME without optimization. Fortunately, we successfully reduced the
computational complexity after analyzing the theoretical convergence of LogME by the
fixed point iteration (see Section 4.1). We present a summary of the algorithmic complexity
in Table 2, and present empirical results in Table 7, where we show the wall-clock-time
speedup measured in Aircraft with ResNet-50. The näıve implementation is very slow. Our
conference paper (You et al., 2021) proposed an optimization scheme for matrix multiplication
and matrix inversion, which brings 61.7× speedup. This paper further proposes the fixed
point iteration algorithm, which results in a much larger speedup (131.5×). Thanks to the
optimized method, LogME is not only theoretically sound but also computationally efficient.

Table 7: Quantitative measurement of computational speedup in evidence maximization.

Wall-clock time (second) Speedup

evidence maximization (näıve implementation) 802.5± 5.6 -
evidence maximization (optimized by You et al. (2021)) 13.1± 0.7 61.7×
evidence maximization (fixed point iteration, proposed) 6.1± 0.7 131.5×

Next, we quantitatively measure the wall-clock and memory footprint of LogME in
both computer vision and natural language processing; see Table 8. ResNet 50 on Aircraft
is used for computer vision, and RoBERTa-D on MNLI task is used for NLP. The cost
for the rest of the models and datasets varies, but the proportion is similar. The cost of
computing reference transferability Tm (fine-tuning with hyper-parameter search) serves
as the upper bound of ranking pre-trained models. Note that, because carelessly tuned
hyper-parameters cannot tell good models apart from bad models, it is necessary to attribute
the cost of hyper-parameter search to fine-tuning. We also list the cost of extracting features
by pre-trained models, which is the lower bound of ranking pre-trained models.

30

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

Table 8: Computational cost and memory footprint of LogME.

wall-clock time memory footprint

Computer Vision

fine-tune (upper bound) 161000s fine-tune (upper bound) 6.3 GB
extract feature (lower bound) 37s extract feature (lower bound) 43 MB
LogME 43s LogME 53 MB
benefit 3700 ↑ benefit 120 ↑

Natural Language Processing

fine-tune (upper bound) 100200s fine-tune (upper bound) 88 GB
extract feature (lower bound) 1130s extract feature (lower bound) 1.2 GB
LogME 1136s LogME 1.2 GB
benefit 88 ↑ benefit 73 ↑

Based on Table 8, we have the following observations: (1) brute-force fine-tuning is
computationally expensive, requiring about a day for one dataset with one pre-trained
model. Selecting the best pre-trained model out of 12 models would cost 12 GPU-days. (2)
Extracting features is very cheap and costs much less than fine-tuning. (3) The additional
time-cost of LogME compared to feature extraction is rather small, which means that
LogME’s cost is very close to the lower bound. In computer vision, LogME is 3700× faster
than fine-tuning, with 120× less memory footprint. In the NLP domain, feature extraction
is much slower than that in computer vision, and therefore the wall-clock time speedup
(88×) is not that striking.

In summary, LogME is efficient in terms of both wall-clock time and memory footprint,
thanks to the optimized algorithm (fixed point iteration) inspired by the theoretical analysis.

6.6 Comparing LogME to re-training head

A straightforward way to measure the relationship between features and labels is to train
a linear classification/regression head for the downstream task, and to use the head’s
performance as a metric, which is known as “linear probing” or “linear protocol evaluation.”
Empirically, we find that re-training the head does not work well. In the following, we
summarize why re-training the head is inferior to LogME from three perspectives, which
partially explains why the important problem of ranking and tuning PTMs was under-
explored in the past.

(1) LogME is more efficient than re-training head. In linear protocol evaluation,
parameters in the head are learned by maximum likelihood estimation, which is prone to
over-fitting. To alleviate over-fitting, grid search for its hyper-parameters (such as the
strength of L2 regularization) should be tuned extensively on a validation set, making
head re-training inefficient. For example, in the Caltech dataset, we extract features from
12 PTMs, train softmax regressors with tuned hyper-parameters (the L2 regularization
strength), and plot the correlation τw between the best head accuracy and the reference
transfer performance with respect to the number of hyper-parameter trials in Figure 12.
The correlation of LogME is plotted as a reference. Computing LogME requires 3× less
time than re-training a head with one fixed hyper-parameter, and re-training a head with
exhaustive hyper-parameter search is still much inferior to LogME.

(2) Re-training head does not work well with limited training data. Because
re-training the head follows a supervised learning paradigm, it suffers in low-shot learning

31

You, Liu, Zhang, Wang, Jordan, Long

0.65

0.70

0.75

5 10 15 20 25

0.25

0.30

0.35

Number of hyper-parameter trials

τ w

LogME

1

Figure 12: The correlation of re-training the head with respect to the number of hyper-
parameter trials.

scenarios. For example, prompt learning (Liu et al., 2021a) is an active research area
in natural language processing, where researchers try to exploit the potential of frozen
pre-trained models with only a few training data points. In the sentiment classification
task SST-2 (Socher et al., 2013), prompt learning (Liu et al., 2021a) extracts the sentence
embedding ES for each sentence S, and compares ES with word embeddings EP , EN of a
positive anchor word P (such as “good” and “fantastic”) and a negative anchor word N (such
as “bad” and “awful”). The decision rule is: sentence S contains positive sentiment

⇐⇒ ETSEP > ETSEN . In this case, searching for proper anchor words on validation data
yields 61.4% accuracy (complete results are available in Table 13). Re-training the head
(i.e., training a simple classification head with limited training data on the frozen sentence
embedding ES and tuning the weight-decay hyper-parameter on a validation set) only
achieves 51.64% accuracy with 10 sentences for training. Meanwhile, we can apply LogME
(or to be specific, the posterior predictive distribution introduced in Section 5.3) to this
problem, which does not require any hyper-parameter tuning. This way, we can combine
training data with validation data to compute the predictive weight m for each class, and
use m as the embedding of a virtual “anchor word,” which results in 79.24% accuracy, a
huge improvement over re-training head and manually selected anchor words. Moreover, the
superior performance of LogME is interpretable: we analyzed the predictive weight m for
the negative sentiment class, and find that it is closest to the embedding of “dump,” “:(,”
“doomed,” “Worse,” and “worse.” Interestingly, it can discover that “:(,” a cyber word used
to express unhappy emotion, contains negative sentiment.

(3) Re-training the head does not have a clear metric. As a side issue, even if
we re-train a head for a downstream task, it is unclear which quantity should be used as
the ranking metric. When the performance of a downstream task is evaluated by accuracy
or MSE, is it over-fitting to use the accuracy or MSE of the re-trained head? Indeed, in
Figure 12, when the number of hyper-parameter trials increases, the correlation can even
go down, confirming the concern of over-fitting. In contrast, LogME is based on unified
modeling of label evidence, which has clear statistical support.

32

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

7. Conclusions

Pre-trained models are universally acknowledged as a foundation of deep learning. Re-
searchers have explored many ways to create and exploit PTMs. In this paper, we change
the focus from individual PTMs to PTM hubs, and study how to sufficiently exploit PTM
hubs within a new paradigm of ranking and tuning pre-trained models. The ranking part
introduces a theoretically sound and computationally efficient transferability metric named
LogME. LogME is then further extended to be a multiple PTM tuning method that we refer
to as B-Tuning, which completes the tuning part of the paradigm.

We presented extensive experiments that confirm the effectiveness of the proposed
methods in ranking (LogME vs. brute-force fine-tuning/LEEP/NCE), selection (top-K
PTMs by LogME vs. exponentially many combinations), and tuning (B-Tuning vs. Zoo-
tuning and Knowledge Distillation), showing that the new paradigm of exploiting PTM
hubs is attractive for practitioners.

Acknowledgments

We would like to present our thanks to Ximei Wang, Xinyang Chen, Yang Shu at Ts-
inghua University, Yi Zeng at Peking University, and Yonglong Tian at MIT for helpful
discussions. Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long are supported
by the National Key Research and Development Project (2021YFB1715200), the National
Natural Science Foundation of China (62022050 and 62021002), the Beijing Nova Program
(Z201100006820041), the BNRist Scholar Fund (BNR2021RC01002), and the Tsinghua-
Huawei Innovation Fund.

References

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In
COLT, pages 567–580, Berlin, Heidelberg, 2003.

T. Berg, J. Liu, S. Woo Lee, M. L. Alexander, D. W. Jacobs, and P. N. Belhumeur.
Birdsnap: Large-scale fine-grained visual categorization of birds. In CVPR, pages 2011–
2018, Columbus, Ohio, 2014.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon,
N. Chatterji, A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya,
E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale,
L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson,
J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri,
S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Kohd, M. Krass, R. Krishna,
R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X. L. Li,

33

You, Liu, Zhang, Wang, Jordan, Long

X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa,
S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan,
J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts,
A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. R,
D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W.
Thomas, F. Tramr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga,
J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and
P. Liang. On the Opportunities and Risks of Foundation Models. arXiv:2108.07258 [cs],
2021.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language Models are Few-Shot Learners. In NeurIPS, pages 1877–1901, 2020.

Z. Cao, K. You, Z. Zhang, J. Wang, and M. Long. From Big to Small: Adaptive Learning
to Partial-Set Domains. TPAMI, 2022. early access.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for
semantic image segmentation. arXiv:1706.05587 [cs], 2017.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In ICML, pages 1597–1607, 2020a.

X. Chen, S. Wang, B. Fu, M. Long, and J. Wang. Catastrophic Forgetting Meets Negative
Transfer: Batch Spectral Shrinkage for Safe Transfer Learning. In NeurIPS, page 19061916,
Vancouver, Canada, 2019.

X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv:2003.04297 [cs], 2020b.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the
wild. In CVPR, page 36063613, Columbus, Ohio, 2014.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. ELECTRA: Pre-training text encoders
as discriminators rather than generator. In ICLR, 2020.

T. M. Cover. Elements of Information Theory. John Wiley & Sons, 1999.

J. Daunizeau. Semi-analytical approximations to statistical moments of sigmoid and softmax
mappings of normal variables. arXiv preprint arXiv:1703.00091, 2017.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):122, 1977.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, page 248255, Miami Beach, Florida, 2009.

34

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, page 41714186, Minneapolis,
Minnesota, 2019.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In ICML, page
647655, Beijing, China, 2014.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsupervised pre-training
help deep learning? In AISTATS, page 201208, Sardinia, Italy, 2010.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA, page 2836,
Baltimore, Maryland, 2003.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In CVPR
Workshops, page 178178, Washington D.C., 2004.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, pages 1180–1189, Lille, France, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR, page 580587, Columbus, Ohio,
2014.

S. F. Gull. Developments in maximum entropy data analysis. In Maximum Entropy and
Bayesian Methods. 1989.

M. Gutmann and A. Hyvrinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In AISTATS, pages 297–304, Sardinia, Italy, 2010.

X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, L. Zhang, W. Han, M. Huang,
Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan, W. X.
Zhao, and J. Zhu. Pre-trained models: past, present and future. arXiv:2106.07139 [cs],
2021.

G. H. Hardy, J. E. Littlewood, G. Plya, and G. Plya. Inequalities, volume 30. Springer
Science & Business Media, 1952.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV, page 10261034, Santiago, Chile, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, page 770778, Las Vegas, Nevada, 2016.

K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask R-CNN. In ICCV, pages 2980–2988,
Venice, Italy, 2017.

35

You, Liu, Zhang, Wang, Jordan, Long

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, pages 9729–9738, 2020.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for
pre-training graph neural networks. In ICLR, 2020.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. In CVPR, pages 4700–4708, Hawaii, USA, 2017.

A. Immer, M. Bauer, V. Fortuin, G. Rtsch, and K. M. Emtiyaz. Scalable marginal likelihood
estimation for model selection in deep learning. In ICML, page 45634573, 2021.

L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural networks: A
survey. TPAMI, 43(11):4037–4058, 2020.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, and A. Borchers. In-datacenter performance analysis of a tensor processing
unit. In ISCA, pages 1–12, Toronto, Canada, 2017.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1):8193, 1938.

K. H. Knuth, M. Habeck, N. K. Malakar, A. M. Mubeen, and B. Placek. Bayesian evidence
and model selection. Digital Signal Processing, 47:50–67, 2015.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, Cambridge, Massachusetts, 2009.

S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? In CVPR,
page 26612671, Los Angeles, California, 2019.

Z. Kou, K. You, M. Long, and J. Wang. Stochastic normalization. In NeurIPS, pages
16304–16314, 2020.

J. Krause, J. Deng, M. Stark, and L. Fei-Fei. Collecting a large-scale dataset of fine-grained
cars. Technical report, 2013.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, 2009.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT: A lite
BERT for self-supervised learning of language representations. In ICLR, 2020.

C. Li, Y. Mao, R. Zhang, and J. Huai. On hyper-parameter estimation in empirical Bayes:
a revisit of the MacKay algorithm. In UAI, page 477486, Arlington, Virginia, 2016.

H. Li, P. Chaudhari, H. Yang, M. Lam, A. Ravichandran, R. Bhotika, and S. Soatto.
Rethinking the hyperparameters for fine-tuning. In ICLR, 2020.

36

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

X. Li, Y. Grandvalet, and F. Davoine. Explicit inductive bias for transfer learning with
convolutional networks. In ICML, pages 2825–2834, Stockholm, Sweden, 2018.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L.
Zitnick. Microsoft coco: Common objects in context. In ECCV, page 740755, Zurich,
Switzerland, 2014.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, Prompt, and
Predict: A systematic survey of prompting methods in natural language processing.
arXiv:2107.13586 [cs], 2021a.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer:
Hierarchical Vision Transformer Using Shifted Windows. In ICCV, pages 10012–10022,
Montreal, Canada, 2021b.

M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep
adaptation networks. In ICML, pages 97–105, Lille, France, 2015.

D. J. MacKay. Bayesian interpolation. Neural Computation, 4(3):415447, 1992.

D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten. Exploring the limits of weakly supervised pretraining. In ECCV, page
181196, Munich, Germany, 2018.

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual classification
of aircraft. arXiv:1306.5151 [cs], 2013.

L. Matthey, I. Higgins, D. Hassabis, and A. Lerchner. dSprites: Disentanglement testing
Sprites dataset. Technical report, 2017.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In ICLR,
Toulon, France, 2017.

B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning? In
NeurIPS, pages 512–523, 2020.

C. Nguyen, T. Hassner, M. Seeger, and C. Archambeau. LEEP: A new measure to evaluate
transferability of learned representations. In ICML, pages 7294–7305, 2020.

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
pages 3498–3505, Providence, Rhode Island, 2012.

X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. Pre-trained models for natural
language processing: A survey. Science China Technological Sciences, 63(10):1872–1897,
2020.

37

You, Liu, Zhang, Wang, Jordan, Long

J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence. Dataset Shift in
Machine Learning. MIT Press, Cambridge, Massachusetts, 2009.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. In EMNLP, page 23832392, Austin, Texas, 2016.

C. E. Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pages 63–71, Berlin, Heidelberg, 2003.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, and M. Bernstein. Imagenet large scale visual recognition challenge. IJCV,
115(3):211–252, 2015.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2: inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520, Salt Lake City, Utah, 2018.

E. T. K. Sang and F. De Meulder. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In NAACL, page 142147, Edmonton, Canada,
2003.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. arXiv:1910.01108, 2019.

Y. Shu, Z. Kou, Z. Cao, J. Wang, and M. Long. Zoo-Tuning: Adaptive transfer from a zoo
of models. In ICML, pages 9626–9637, 2021.

S. P. Singh and M. Jaggi. Model fusion via optimal transport. In NeurIPS, pages 22045–22055,
2020.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In EMNLP, page
16311642, Seattle, USA, 2013.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of
data in deep learning era. In ICCV, page 843852, Venice, Italy, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. pages 1–9, Boston, Massachusetts,
2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception
Architecture for Computer Vision. In CVPR, pages 2818–2826, Las Vegas, Nevada, 2016.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In CVPR, page 28202828, Los
Angeles, California, 2019.

S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview. In Learning to
Learn, pages 3–17, Boston, Massachusetts, 1998.

38

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good
views for contrastive learning? In NeurIPS, pages 6827–6839, 2020.

I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung,
A. Steiner, D. Keysers, and J. Uszkoreit. Mlp-mixer: An all-mlp architecture for vision.
In NeurIPS, pages 24261–24272, 2021.

A. T. Tran, C. V. Nguyen, and T. Hassner. Transferability and hardness of supervised
classification tasks. In ICCV, page 13951405, Seoul, Korea, 2019.

S. Vigna. A weighted correlation index for rankings with ties. In WWW, pages 1166–1176,
Florence, Italy, 2015.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding. In EMNLP,
page 353355, Brussels, Belgium, 2018.

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. SuperGLUE: A stickier benchmark for general-purpose language understanding
systems. In NeurIPS, Vancouver, Canada, 2019.

T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac, M. Funtowicz,
J. Davison, and S. Shleifer. Transformers: State-of-the-art natural language processing.
In EMNLP, pages 38–45, 2020.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, pages 3485–3492, San Francisco, California,
2010.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. In NeurIPS, Vancouver, Canada,
2019.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? In NeurIPS, page 33203328, Montreal, Canada, 2014.

K. You, Z. Kou, M. Long, and J. Wang. Co-tuning for transfer learning. In NeurIPS, pages
17236–17246, 2020.

K. You, Y. Liu, J. Wang, and M. Long. LogME: Practical assessment of pre-trained models
for transfer learning. In ICML, pages 12133–12143, 2021.

S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, York, UK, 2016.

A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese. Taskonomy:
Disentangling Task Transfer Learning. In CVPR, pages 3712–3722, Salt Lake City, Utah,
2018.

X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J. Djolonga, A. S.
Pinto, M. Neumann, A. Dosovitskiy, L. Beyer, O. Bachem, M. Tschannen, M. Michalski,
O. Bousquet, S. Gelly, and N. Houlsby. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv:1910.04867 [cs, stat], 2020.

39

You, Liu, Zhang, Wang, Jordan, Long

A. Notation Table

Notation used in this paper is listed in the following table. We endeavored to avoid notational
conflicts, but the following conflicts are worth noting: (1) fi represents features of xi and
f(t) represents the fixed point iteration function. (2) w represents parameters in the linear
head while the weighted Kendall’s rank correlation τw uses w as its subscript. (3) t is used
in the convergence proof and also used for the temperature hyper-parameter in B-Tuning.

Table 9: Notations used in this paper.

notation dimensionality meaning

i, j, k N running subscripts

M,n N the number of PTMs and samples

K N the number of selected PTMs for subsequent tuning

C,D N the dimension of label and extracted feature

φ − a pre-trained model

xi − an input sample

fi = φ(xi) RD extracted feature of an input example

F = [f1, . . . , fn]T Rn×D stacked features of fi
Yi RC label of xi
yi R a component of Yi
y Rn the label component for all n samples

y′ − predictive distribution of an input sample

πk = exp(Lk/t)∑K
j=1 exp(Lj/t)

R weighted coefficient for each teacher model φk

ȳ′ =
∑K
k=1 πky

′
k − weighted average of y′

T R reference transfer performance

S R score produced by a transferability metric

τ R Kendall’s rank correlation

τw R weighted Kendall’s rank correlation

w RD parameter in linear head

α, β R hyper-parameter of the Bayesian linear model

A = αID + βFTF RD×D a quantity in calculating LogME

m = βA−1FT y RD a quantity in calculating LogME

γ R a quantity in calculating LogME

L = L(α, β) R log evidence given α, β

α∗, β∗ R α, β to achieve maximum evidence

U,Σ, V − matrices in SVD (F = UΣV T)

σ R diagonal entries in Σ

r N the rank of matrix F

z = UT y Rn transformation of y under U

t = α
β R a quantity in convergence proof

t′, α′, β′ R the value of t, α, β after an iteration

f(t) − the fixed point iteration function

L̃, F̃ − L, F for duplicated or padded features

W − transformation matrix in knowledge distillation

40

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

B. Proof of Theorem 1

Theorem 1: Algorithm 4 induces a scalar function t′ = f(t) =

 n

n−
∑D
i=1

σ2
i

t+σ2
i

− 1

 t2
∑n
i=1

z2i
(t+σ2

i
)2∑n

i=1

σ2
i
z2
i

(t+σ2
i
)2

.

Proof Let’s express all symbols in a unified form with respect to α, β,Σ, z, U, V :

• A = αI + βF TF = V (αI + βΣTΣ)V T

• A−1 = V ΣinvV
T where (Σinv)ii = 1

α+βσ2
i

(1 ≤ i ≤ D)

• m = βA−1F T y = βV ΣinvΣ
T z

• mTm = zTΣmz with Σm = β2ΣΣ2
invΣ

T and (Σm)ii =
β2σ2

i

(α+βσ2
i)2

, somTm =
∑n

i=1
β2σ2

i z
2
i

(α+βσ2
i)2

• Fm = βUΣΣinvΣ
T z, Fm−y = UΣresz with Σres = βΣΣinvΣ

T −I, (Σres)ii = − α
α+βσ2

i

• ||Fm− y||22 = (Fm− y)T (Fm− y) = zT (Σres)
2z =

∑n
i=1

α2z2i
(α+βσ2

i)2

• γ =
∑D

i=1
βσ2

i

α+βσ2
i

=
∑D

i=1
σ2
i

t+σ2
i

Putting them together, we have

t′ =
α′

β′
=

γ

n− γ
||Fm− y||22
mTm

=

 n

n−∑D
i=1

σ2
i

t+σ2
i

− 1

 t2

∑n
i=1

z2i
(t+σ2

i)2∑n
i=1

σ2
i z

2
i

(t+σ2
i)2

= f(t)

C. Proof of Theorem 2

Theorem 2: If r < n and
∑

1≤i,j≤n(z2
i − z2

j)(σ
2
i − σ2

j) > 0, then f(t) has a fixed point and
thus MacKay’s algorithm will converge.

Proof The theorem can be proved by studying the behavior of f(t) near 0 and ∞.

We have limt→0 f(t) = r
n−r

∑n
i=r+1 z

2
i∑r

i=1 z
2
i
> 0, which is a constant and positive number.

When t approaches infinity, we find that limt→∞
f(t)
t =

∑n
i=1 σ

2
i

n

∑n
i=1 z

2
i∑n

i=1 σ
2
i z

2
i

is constant,

which means f(t) behaves linearly when t is large enough.
Exploiting a trick used in proving the Chebyshev’s Sum Inequality (Hardy et al., 1952),

we obtain
∑

1≤i,j≤n(z2
i −z2

j)(σ2
i −σ2

j) = 2n
∑n

i=1 σ
2
i z

2
i −2(

∑n
i=1 σ

2
i)(
∑n

i=1 z
2
i). The condition∑

1≤i,j≤n(z2
i − z2

j)(σ2
i − σ2

j) > 0 thus translates into
∑n
i=1 σ

2
i

n

∑n
i=1 z

2
i∑n

i=1 σ
2
i z

2
i
< 1, which means f(t)

increases linearly with a slope smaller than 1 (i.e., limt→∞
f(t)
t =

∑n
i=1 σ

2
i

n

∑n
i=1 z

2
i∑n

i=1 σ
2
i z

2
i
< 1).

In summary, when t approaches 0, it is assured that limt→0 f(t) > t = 0; when t is
large enough, it is assured that f(t) < t. Putting these two conditions together, we
conclude the existence of a fixed point t0 > 0 such that f(t0) = t0.

41

You, Liu, Zhang, Wang, Jordan, Long

D. Proof of Corollary 3

Corollary 3: The LogME value will remain the same if the feature consists of arbitrary
replicas of the original feature. Formally speaking, if the LogME value for F ∈ Rn×D and
y ∈ Rn is L, then the LogME value for F̃ = [F, ..., F] ∈ Rn×qD and y ∈ Rn is also L. (q ∈ N
is a natural number to represent the number of replicas.)

Proof Since LogME is calculated via an iterative algorithm, we prove the corollary by an
iterative invariant (a quantitative relation that holds after every while-loop iteration).

Preliminary: SVD of F̃ . We have already known the SVD of F is F = UΣV T ,
and σi is the i-th largest eigenvalue of FF T . Since F̃ F̃ T = qFF T , duplicated feature

F̃ has singular values σ̃2
i =

{
qσ2

i 1 ≤ i ≤ D
0 D + 1 ≤ i ≤ qD

, and its left orthogonal matrix is the

same as F : Ũ = U . The right orthogonal matrix of F̃ is somewhat complicated. Let’s find
an orthogonal matrix Qq×q, whose entries in the first column are 1√

q . Entries in the other

columns do not matter, as long as Qq×q is a valid orthogonal matrix. For example, we can

use Q2×2 =

[
1√
2
− 1√

2
1√
2

1√
2

]
, and Q3×3 =

1√
3
− 1√

6
− 1√

2
1√
3

2√
6

0
1√
3
− 1√

6
1√
2

. Then the right orthogonal

matrix of F̃ is Ṽ = Qq×q⊗V , where ⊗ is the Kronecker product of two matrices. Using the

block matrix form of Kronecker product, we can write down Ṽ as Ṽ =

1√
pV
...

. . .
...

1√
pV

 ∈
RqD×qD, with the first D columns of Ṽ corresponding to singular values

√
qσi, 1 ≤ i ≤ D,

and the other (q− 1)×D columns of Ṽ are orthogonal basis with respect to singular values
σi = 0. In summary, if the SVD of F is F = UΣV T , then the SVD of F̃ = [F, ..., F] is

F̃ = Ũ Σ̃Ṽ T , where Ũ = U, Σ̃ = [
√
qΣ, 0, ..., 0], Ṽ =

1√
qV
...

. . .
...

1√
qV

 = Qq×q ⊗ V .

Iterative invariant: if we apply Algorithm 2 to both F̃ and F , with a small change that
we initialize α̃ = q, β̃ = 1, then α̃ = qα, β̃ = β holds before Line 5. Suppose α̃ = qα, β̃ = β
holds before a while-loop, then we obtain:

γ̃ =

qD∑
i=1

β̃σ̃2
i

α̃+ β̃σ̃2
i

=

D∑
i=1

qβσ2
i

qα+ qβσ2
i

=

D∑
i=1

βσ2
i

α+ βσ2
i

= γ

Λ̃ = diag
{
α̃+ β̃σ̃2

i

}
, α̃+ β̃σ̃2

i =

{
q(α+ βσ2

i) 1 ≤ i ≤ D
qα D + 1 ≤ i ≤ qD

42

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

m̃ = β̃Ã−1F̃ T y = βṼ Λ̃−1Ṽ T Ṽ Σ̃T ŨT y = βṼ Λ̃−1Σ̃TUT y

= β

1√
qV
...

. . .
...

1√
qV

[

1
qΛ−1

1
qαI(q−1)×D

]
√
qΣT

0
. . .
0

UT y

=

 1
qV Λ−1UT y

· · ·
1
qV Λ−1UT y

 =

 1
qm

. . .
1
qm

 .
Therefore m̃T m̃ = 1

qm
Tm, F̃ m̃ = [F, . . . , F]

 1
qm

. . .
1
qm

 = Fm.

After the while-loop iteration, α̃′ = γ̃
m̃T m̃

= γ
1
q
mTm

= qα′, β̃′ = n−γ̃
||F̃ m̃−y||22

= n−γ
||Fm−y||22

= β′,

then the iterative invariant α̃ = qα, β̃ = β still holds. Therefore we know that when the
algorithm converges, α̃∗ = qα∗, β̃∗ = β∗. The corresponding maximum evidence is

L̃ =
n

2
log β̃∗ +

qD

2
log α̃∗ − n

2
log 2π − β̃∗

2
||F̃ m̃− y||22 −

α̃∗

2
m̃T m̃− 1

2
log
∣∣∣Ã∗∣∣∣

=
n

2
log β∗ +

qD

2
log(qα∗)− n

2
log 2π − β∗

2
||Fm− y||22 −

α∗

2
mTm− 1

2
log
∣∣∣Λ̃∗∣∣∣

=
n

2
log β∗ +

qD

2
log (qα∗)− n

2
log 2π − β∗

2
||Fm− y||22 −

α∗

2
mTm

− 1

2
log |Λ∗| − 1

2
log
(
qD (qα∗)(q−1)D

)
= L − D

2
logα∗ +

qD

2
log(qα∗)− 1

2
log
(
qD (qα∗)(q−1)D

)
= L.

By the convergence analysis in Section 4.1, initialization of α, β only changes the initial
value of t, which does not impact the convergence value of the fixed point iteration. Therefore,
we can conclude that duplicating features will not change the value of LogME.

Although the above proof targets Algorithm 2, it is straightforward to adapt the proof
to Algorithm 3.

43

You, Liu, Zhang, Wang, Jordan, Long

E. Proof of Corollary 4

Corollary 4: The LogME value will remain the same if the feature is padded with arbitrary
number of zeros. Formally speaking, if the LogME value for F ∈ Rn×D and y ∈ Rn is L,
then the LogME value for F̃ = [F,0] ∈ Rn×(D+d) and y ∈ Rn is also L. d ∈ N is a natural
number and 0 ∈ Rn×d is a matrix with all zero entries.
Proof The proof follows the same idea as Corollary 3, but the SVD of F̃ is simpler than
Corollary 3. If the SVD of F is F = UΣV T , then the SVD of F̃ = [F,0] is F̃ = Ũ Σ̃Ṽ T ,

where Ũ = U, Σ̃ = [Σ,0], Ṽ =

[
V

W

]
, with W ∈ Rd×d an orthogonal matrix that

satisfies W TW = Id. Note that Σ̃ = [Σ,0] translates into σ̃2
i =

{
σ2
i 1 ≤ i ≤ D

0 D + 1 ≤ i ≤ D + d
.

Iterative invariant: if we apply Algorithm 2 to both F̃ and F , with the same initial-
ization α̃ = 1, β̃ = 1, then α̃ = α, β̃ = β holds before Line 5. Suppose α̃ = α, β̃ = β holds
before a while-loop, then we have:

γ̃ =
D+d∑
i=1

β̃σ̃2
i

α̃+ β̃σ̃2
i

=
D∑
i=1

βσ2
i

α+ βσ2
i

= γ

Λ̃ = diag
{
α̃+ β̃σ̃2

i

}
, α̃+ β̃σ̃2

i =

{
α+ βσ2

i 1 ≤ i ≤ D
α D + 1 ≤ i ≤ D + d

m̃ = β̃Ã−1F̃ T y = β

[
V

W

] [
Λ−1

1
αId

] [
V T

W T

] [
F T

0Tn×d

]
y =

[
m

0d×1

]
m̃T m̃ = mTm, F̃ m̃ = [F,0n×d]

[
m

0d×1

]
= Fm.

After the while-loop iteration, α̃′ = γ̃
m̃T m̃

= γ
mTm

= α′, β̃′ = n−γ̃
||F̃ m̃−y||22

= n−γ
||Fm−y||22

= β′,

then the iterative invariant α̃ = α, β̃ = β still holds. Therefore, we know that when the
algorithm converges, α̃∗ = α∗, β̃∗ = β∗. The corresponding maximum evidence is

L̃ =
n

2
log β̃∗ +

D + d

2
log α̃∗ − n

2
log 2π − β̃∗

2
||F̃ m̃− y||22 −

α̃∗

2
m̃T m̃− 1

2
log
∣∣∣Ã∗∣∣∣

=
n

2
log β∗ +

D + d

2
logα∗ − n

2
log 2π − β∗

2
||Fm− y||22 −

α∗

2
mTm− 1

2
log
∣∣∣Λ̃∗∣∣∣

=
n

2
log β∗ +

D + d

2
logα∗ − n

2
log 2π − β∗

2
||Fm− y||22 −

α∗

2
mTm

− 1

2
log |Λ∗| − 1

2
log (α∗)d

= L+
d

2
logα∗ − d

2
logα∗

= L.

44

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

F. Detailed Descriptions of the Datasets

Aircraft: The dataset contains fine-grained classification of 10,000 aircraft pictures which
belong to 100 classes, with 100 images per class.

Birdsnap: The dataset contains 49,829 images of 500 species of North American birds.
Caltech: The dataset contains 9,144 pictures of objects belonging to 101 categories.

There are about 40 to 800 images per category. Most categories have about 50 images.
Cars: The dataset contains 16,185 images of 196 classes of cars. The data is split into

8,144 training images and 8,041 testing images.
CIFAR 10: The dataset consists of 60,000 32×32 colorful images in 10 classes, with

6,000 images per class. There are 50,000 training images and 10,000 test images.
CIFAR 100: The dataset is just like the CIFAR 10, except it has 100 classes containing

600 images each.
DTD: The dataset contains a collection of 5,640 textural images in the wild, annotated

with a series of human-centric attributes. It has 47 classes and 120 images per class.
Pets: The dataset contains 7,049 images of cat and dog species which belong to 47

classes, with around 200 images per class.
SUN: The dataset contains 39,700 scenery pictures with 397 classes and 100 samples

per class.

G. Original Results in Figures

Original results in figures are shown in the Table 10, Table 11, and Table 12.

Table 10: Original results in Figure 4.
task ResNet-34 ResNet-50 ResNet-101 ResNet-152 WideResNet-50 DenseNet-121 DenseNet-169 DenseNet-201 Inception v1 Inception v3 MobileNet v2 NASNet-A Mobile τw

Aircraft

Accuracy 79.9 86.6 85.6 85.3 83.2 85.4 84.5 84.6 82.7 88.8 82.8 72.8 -
Laplace -2.864 -3.127 -3.080 -3.158 -3.721 -2.235 -1.906 -1.754 -2.382 -2.822 -2.217 -1.481 -0.32
LEEP -0.497 -0.412 -0.349 -0.308 -0.337 -0.431 -0.340 -0.462 -0.795 -0.492 -0.515 -0.506 0.13
NCE -0.364 -0.297 -0.244 -0.214 -0.248 -0.296 -0.259 -0.322 -0.348 -0.250 -0.411 -0.444 0.39
LogME 0.930 0.946 0.948 0.950 0.934 0.938 0.943 0.942 0.934 0.953 0.941 0.948 0.59

Birdsnap

Accuracy 59.5 74.7 73.8 74.3 63.1 73.2 71.4 72.6 73.0 77.2 69.3 68.3 -
LEEP -1.758 -1.647 -1.553 -1.481 -1.554 -1.729 -1.756 -1.645 -2.483 -1.776 -1.951 -1.835 0.19
NCE -1.640 -1.538 -1.479 -1.417 -1.399 -1.566 -1.644 -1.493 -1.807 -1.354 -1.815 -1.778 0.51
LogME 0.802 0.829 0.836 0.839 0.825 0.810 0.815 0.822 0.806 0.848 0.808 0.824 0.66

Caltech

Accuracy 90.2 91.8 93.1 93.2 91.0 91.9 92.5 93.4 91.7 94.3 89.1 91.5 -
LEEP -2.249 -2.195 -2.067 -1.984 -2.179 -2.159 -2.039 -2.122 -2.718 -2.286 -2.373 -2.263 0.30
NCE -1.899 -1.820 -1.777 -1.721 -1.828 -1.807 -1.774 -1.808 -1.849 -1.722 -2.009 -1.966 0.69
LogME 1.362 1.509 1.548 1.567 1.505 1.365 1.417 1.428 1.440 1.605 1.365 1.389 0.66

Cars

Accuracy 86.4 91.7 91.7 92.0 89.7 91.5 91.5 91.0 91.0 92.3 91.0 88.5 -
LEEP -1.534 -1.570 -1.370 -1.334 -1.406 -1.562 -1.505 -1.687 -2.149 -1.637 -1.695 -1.588 0.26
NCE -1.203 -1.181 -1.142 -1.128 -1.183 -1.111 -1.192 -1.319 -1.201 -1.195 -1.312 -1.334 0.36
LogME 1.245 1.253 1.255 1.260 1.250 1.249 1.252 1.251 1.246 1.259 1.250 1.254 0.69

CIFAR10

Accuracy 97.1 96.8 97.7 97.9 97.7 97.2 97.4 97.4 96.2 97.5 95.7 96.8 -
LEEP -3.418 -3.407 -3.184 -3.020 -3.335 -3.651 -3.345 -3.458 -4.074 -3.976 -3.624 -3.467 0.72
NCE -3.398 -3.395 -3.232 -3.084 -3.348 -3.541 -3.427 -3.467 -3.338 -3.625 -3.511 -3.436 0.51
LogME 0.323 0.388 0.463 0.469 0.398 0.302 0.343 0.369 0.293 0.349 0.291 0.304 0.82

CIFAR100

Accuracy 84.5 84.5 87.0 87.6 86.4, 84.8 85.0 86.0 83.2 86.6 80.8 83.9 -
LEEP -3.531 -3.520 -3.330 -3.167 -3.391 -3.715 -3.525 -3.643 -4.279 -4.100 -3.733 -3.560 0.66
NCE -3.230 -3.241 -3.112 -2.980 -3.158 -3.304 -3.313 -3.323 -3.253 -3.447 -3.336 -3.254 0.53
LogME 1.036 1.099 1.130 1.133 1.102 1.029 1.051 1.061 1.037 1.070 1.039 1.051 0.77

DTD

Accuracy 70.0 75.2 76.2 75.4 70.1 74.9 74.8 74.5 73.6 77.2 72.9 72.8 -
LEEP -3.670 -3.663 -3.718 -3.653 -3.764 -3.847 -3.646 -3.757 -4.124 -4.096 -3.805 -3.691 -0.06
NCE -3.104 -3.119 -3.199 -3.138 -3.259 -3.198 -3.218 -3.203 -3.082 -3.261 -3.176 -3.149 -0.35
LogME 0.704 0.761 0.757 0.766 0.731 0.710 0.730 0.730 0.727 0.746 0.712 0.724 0.50

Pets

Accuracy 92.3 92.5 94.0 94.5 92.8 92.9 93.1 92.8 91.9 93.5 90.5 89.4 -
LEEP -1.174 -1.031 -0.915 -0.892 -0.945 -1.100 -1.111 -1.108 -1.520 -1.129 -1.228 -1.150 0.66
NCE -1.094 -0.956 -0.885 -0.862 -0.900 -0.987 -1.072 -1.026 -1.076 -0.893 -1.156 -1.146 0.83
LogME 0.835 1.029 1.061 1.084 1.016 0.839 0.874 0.908 0.913 1.191 0.821 0.833 0.61

SUN

Accuracy 63.1 64.7 64.8 66.0 67.4 62.3 63.0 64.7 62.0 65.7 60.5 60.7 -
LEEP -2.727 -2.611 -2.531 -2.513 -2.569 -2.713 -2.570 -2.618 -3.153 -2.943 -2.764 -2.687 0.54
NCE -2.573 -2.469 -2.455 -2.444 -2.457 -2.500 -2.480 -2.465 -2.534 -2.529 -2.590 -2.586 0.68
LogME 1.704 1.744 1.749 1.755 1.750 1.704 1.716 1.718 1.715 1.753 1.713 1.721 0.71

45

You, Liu, Zhang, Wang, Jordan, Long

Table 11: Original results in Figure 5.
task ResNet-34 ResNet-50 ResNet-101 ResNet-152 WideResNet-50 DenseNet-121 DenseNet-169 DenseNet-201 Inception v1 Inception v3 MobileNet v2 NASNet-A Mobile τw

dSprites
MSE 0.037 0.031 0.028 0.028 0.034 0.039 0.035 0.036 0.045 0.044 0.037 0.035 -
LogME 1.05 1.53 1.64 1.63 1.31 1.35 1.25 1.34 1.18 1.22 1.18 1.39 0.79

Table 12: Original results in Figure 9. (Popularity is measured by download count in millions.)

task RoBERTa RoBERTa-D uncased BERT-D cased BERT-D ALBERT-v1 ALBERT-v2 ELECTRA-base ELECTRA-small τw

MNLI
Accuracy 87.6 84.0 82.2 81.5 81.6 84.6 79.7 85.8 -
LogME -0.568 -0.599 -0.603 -0.612 -0.614 -0.594 -0.666 -0.621 0.66
Popularity 3.78 0.61 6.01 1.09 0.11 1.25 0.13 0.23 0.28

QQP
Accuracy 91.9 89.4 88.5 87.8 - - - - -
LogME -0.465 -0.492 -0.488 -0.521 - - - - 0.73
Popularity 3.78 0.61 6.01 1.09 - - - - 0.00

QNLI
Accuracy 92.8 90.8 89.2 88.2 - - - - -
LogME -0.565 -0.603 -0.613 -0.618 - - - - 1.00
Popularity 3.78 0.61 6.01 1.09 - - - - 0.00

SST-2
Accuracy 94.8 92.5 91.3 90.4 90.3 92.9 - - -
LogME -0.312 -0.330 -0.331 -0.353 -0.525 -0.447 - - 0.68
Popularity 3.78 0.61 6.01 1.09 0.11 1.25 - - 0.38

CoLA
Accuracy 63.6 59.3 51.3 47.2 - - - - -
LogME -0.499 -0.536 -0.568 -0.572 - - - - 1.00
Popularity 3.78 0.61 6.01 1.09 - - - - 0.00

MRPC
Accuracy 90.2 86.6 87.5 85.6 - - - - -
LogME -0.573 -0.586 -0.605 -0.604 - - - - 0.53
Popularity 3.78 0.61 6.01 1.09 - - - - 0.33

RTE
Accuracy 78.7 67.9 59.9 60.6 - - - - -
LogME -0.709 -0.723 -0.725 -0.725 - - - - 1.00
Popularity 3.78 0.61 6.01 1.09 - - - - -0.29

H. Complete Results in Prompt Learning

Table 13: Complete results in prompt learning with manually selected anchor words.

anchor P

accuracy anchor N
negative bad ill evil poor

positive 49.8 52.8 49.1 49.1 60.9
good 51.0 50.9 49.0 52.4 50.9
fine 51.7 51.0 49.1 54.5 50.9
great 55.4 53.1 49.1 61.4 51.0
nice 51.6 50.6 49.1 51.0 50.8

46

Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs

I. Full Figure in Convergence Analysis

0 100 200 300
0

50

100

150

200

250

300

R
es

N
et

-5
0

Class 1

0 100 200 300
0

50

100

150

200

250

300

Class 2

0 100 200 300
0

50

100

150

200

250

300

Class 3

0 100 200 300
0

50

100

150

200

250

300

Class 4

0 100 200 300
0

50

100

150

200

250

300

Class 5

0 100 200 300
0

50

100

150

200

250

300

Class 6

0 100 200 300
0

50

100

150

200

250

300

Class 7

0 100 200 300
0

50

100

150

200

250

300

Class 8

0 100 200 300
0

50

100

150

200

250

300

Class 9

0 100 200 300
0

50

100

150

200

250

300

Class 10

0 100 200 300
0

50

100

150

200

250

300

In
ce

pt
io

n
v1

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 250 500 750 1000
0

200

400

600

800

1000

D
en

se
N

et
-1

21

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 250 500 750 1000
0

200

400

600

800

1000

0 100 200 300 400
0

100

200

300

400

M
ob

ile
N

et
 v

2

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

0 100 200 300
0

50

100

150

200

250

300

N
A

SN
et

-A
 M

ob
ile

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

0 100 200 300
0

50

100

150

200

250

300

t'=f(t) t'=t

Figure 13: Fixed points of f(t) in Equation 3 for all 10 classes in CIFAR10 with 5 pre-trained
models. We plot t′ = f(t) (in blue) and t′ = t (in orange), whose intersections
are fixed points. The existence of fixed points guarantees the convergence of the
evidence maximization procedure in LogME.

47

	Introduction
	Related Work
	Transfer learning
	PTMs and PTM hubs
	Assessing the transferability of pre-trained models
	Multiple PTM tuning

	Ranking Pre-Trained Models
	How to measure the performance of a transferability metric?
	The LogME approach
	Evidence calculation
	Evidence maximization and LogME
	Computational speedup

	Theoretical Analyses of LogME
	Convergence analysis of evidence maximization
	Influence of dimensionality

	Tuning Pre-Trained Models
	Problem setup for multiple PTM tuning
	Existing approaches to the problem of multiple PTM tuning
	B-Tuning: A Bayesian approach to multiple PTM tuning

	Experiments
	Illustration with toy data
	Ranking pre-trained models
	Ranking supervised pre-trained models in classification tasks
	Ranking supervised pre-trained models in a regression task
	Ranking contrastive pre-trained models in downstream tasks
	Ranking pre-trained language models in the GLUE benchmark
	Ranking pre-trained language models in a sequential tagging task

	Tuning pre-trained models
	Tuning multiple homogeneous PTMs
	Tuning multiple heterogeneous PTMs

	Using ImageNet-1K as the downstream task
	Efficiency of LogME
	Comparing LogME to re-training head

	Conclusions
	Notation Table
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 3
	Proof of Corollary 4
	Detailed Descriptions of the Datasets
	Original Results in Figures
	Complete Results in Prompt Learning
	Full Figure in Convergence Analysis

