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1. MotionGRU: Implementation Details
In this section, we will give a detailed description of

the implementation details for MotionGRU from the tensor
view. We first recall the equations of MotionGRU:
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where subscript t denotes the time step, the superscript l ∈
{1, · · · , L} denotes the current layer, σ donates the sigmoid
function, ∗ and� denote the convolution and the Hadamard
product respectively.

Learned Motion. Hl
t ∈ RC×H×W donates the hidden

state of original predictive models. For memory efficiency,
we employ the Encoder-Decoder structure, the encoder use
the stride 2 convolution and Enc(Hl

t) ∈ RC
4 ×

H
2

W
2 . F ′t and

Dl
t present the learn transient variation and trending mo-

mentum respectively, which present the pixel-wise offsets
of the state. Here, F ′t,Dl

t ∈ R2k2×H
2 ×

W
2 , where k is the

filter size. (F ′t):,m,n is a 1-dim tensor with size 2k2 and
represent the vertical and horizontal offsets of the pixel at
(m,n) position and the adjacent area with size k2. Thus, the
motion filterF l

t ∈ R2k2×H
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W
2 donates the learned motion-

based state transition. With kernel Whm, the channel num-
ber of the tensor is change to k2. The Broadcast means the
operation to broadcast and transpose the k2× H
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is the mask for
the motion of the k × k filter area.

*Equal contribution

Warp. The Warp donates the warp operation with bilin-
ear interpolation in a unit square. It can select the pixels in
Enc(Hl

t), which point out to the k × k filter area by offset
F l

t . It can be formulated as follows:
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where i ∈ {1, 2, · · · , k2}, pix = [ ik ] − [k2 ], piy =

(i mod k) − [k2 ]. The value of select pixel is calculated
by the bilinear interpolation in the unit square as follows:
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where b·c and d·e donate the floor function and ceiling func-
tion respectively, m′′ = m′ − bm′c, n′′ = n′ − bn′c.

Gated Output. H′t ∈ RC
4 ×

H
2 ×

W
2 ×k

2

donates the
wrapped feature map. The decoder squeezes H′t to
RC

4 ×
H
2 ×

W
2 by 1 × 1 convolution and deconvolution to

RC×H×W . The output gate gt ∈ RC×H×W is calculated
from the concatenation of the input Hl

t and the decoded
feature Dec(H′t) by 1 × 1 convolution W1×1. The output
X l

t ∈ RC×H×W has the same shape asHl
t and presents the

motion-based transited state.

2. Visualization of Ablation Study
In addition to the intutive showcase in Figure 6 of the

main text, we will provide more visualization for the abla-
tion study to make each part’s effect of MotionRNN more
comprehensible.

Figure 1 visualizes more ablation cases. Without tran-
sient variation, the predictions lose pivotal details of hand
and leg movement. Without trending momentum, the model
fails to predict the human’s back position correctly.



Figure 1. Visualization of ablation study. Click to see the video.
Adobe reader is required to view the animation.

3. The Detail of Motion Trend Visualization
In this section, we will detail the visualization of learned

trending momentum Dl
t corresponding to Figure 9 in the

main text, which indicates the learned motion trend.
Take the Radar Shanghai dataset as an example. The in-

put frame is with the resolution of 64×64×1. Hidden states
have 64 channels. After the patch operation with 4 patch
number and the encoder with stride 2 inside the Motion-
GRU, the hidden state is converted to Enc(H)lt ∈ R16×8×8.
Dl

t ∈ R18×8×8 can be split into two tensors. Each of them is
in R9×8×8 and presents the learned offsets of 3×3 filter area
in vertical and horizontal respectively. The learned offsets
just present the motion. For visualization, we first calculate
the mean along the channel dimension and get the x-offset
and y-offset of every pixel of the Enc(Hl

t). After the length
regularization, we use the arrows to show the direction of
the offsets, which represents the motion tendency.

Following the above method, we can also visualize the
learned motion trend of the human case in Figure 1 of the
main text. As shown in Figure 2, the learned motion trend
indicates a left-to-right tendency, which is just the global
movement and matches our expectation.
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Figure 2. Visualization of learned motion trend in human case.

4. Guangzhou Benchmark
Besides the radar data from Shanghai, we also explore

another challenging radar dataset [5], which its radar echos
are collected every 6 minutes, from May 1st, 2014 to June
30th, 2014 in Guangzhou. The Guangzhou dataset is full of
rain, and it can be used as an example of weather forecasting
in rainy areas.

Setups. We also follow the experimental setting MIM [5],
which has achieved the state-of-the-art performance in the
Guangzhou dataset. We use the previous 10 frames to gen-
erate the future 10 frames. As for evaluation metrics, we
use the CSI with 30 dBZ, 40 dBZ, 50 dBZ as thresholds.

Results. As shown in Table 1, the predictive models can
get a consistent improvement in CSI with different thresh-

Table 1. Quantitative results of the Radar Echo dataset upon differ-
ent network backbones. A higher CSI means a better performance.

Method CSI30 CSI40 CSI50
TrajGRU[2] 0.251 0.201 0.150
E3D-LSTM[3] 0.350 0.309 0.254
+ MotionRNN 0.379 0.366 0.333
ConvLSTM[1] 0.385 0.360 0.315
+ MotionRNN 0.411 0.387 0.350
PredRNN[4] 0.401 0.378 0.306
+ MotionRNN 0.424 0.391 0.345
MIM[5] 0.429 0.399 0.317
+ MotionRNN 0.431 0.403 0.343
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Figure 3. Prediction examples on the Radar Echo.

olds, even in the state-of-the-art method MIM. Especially,
MotionRNN can significantly promote CSI50. It means we
can enhance the forecasts of severe weather through Mo-
tionRNN. Furthermore, as shown in Figure 3, the prediction
results are more precise, indicating that the MotionRNN are
better in detail prediction and more accurate on thick clouds
prediction.

5. More Qualitative Results
We will show more qualitative cases in this section. Ar-

eas to focus on are highlighted in red.
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Figure 4. Prediction examples on the Human3.6M.

In human motion prediction (Figure 4), MotionRNN
presents the details of human arms, while the predicted arms



by PredRNN are vanished. In Figure 5, with MotionRNN,
predictive models can generate the results with better sharp-
ness. In synthetic V-MNSIT dataset (Figure 6), our ap-
proach can generate eidetic results of number “3”. These
qualitative results show that MotionRNN can significantly
improve the accuracy and sharpness of the prediction.
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Figure 5. Prediction examples on the Radar Shanghai.
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Figure 6. Prediction examples on the V-MNIST.
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