Supplementary Materials
MetaSets: Meta Learning on Point Sets for Generalizable Representations

Chao Huang*, Zhangjie Cao*, Yunbo Wang*, Jianmin Wang, Mingsheng Long (<)
School of Software, BNRist, Tsinghua University, China

{microhhh9, caczhangjield4, yunbo.thu}@gmail.com, {jimwang,mingsheng}@tsinghua.edu.cn

1. Experimental Details

We introduce additional experiment details including
dataset details and hyper-parameters details in this section.

1.1. Dataset Construction

1.1.1 Sim-to-Real dataset

Our Sim-to-Real dataset consists of three domains: Model-
Net, ShapeNet and ScanObjectNN.

ModelNet' is a comprehensive clean collection of 3D CAD
models of 40 common object categories in the world. The
CAD models are collected from online search engines by
querying for each object category term. The dataset has two
forms: ModelNet40 and ModelNet10. ModelNet40 contains
all the CAD models of all the categories while ModelNet10
contains 10 popular object categories from the 40 categories,
where models that did not belong to these categories are
manually deleted. We use ModelNet40 in the experiments,
and use the official training set as the meta-training set.
ShapeNet’ consists of several subsets: ShapeNetCore for
classification and ShapeNetSem for segmentation. We use
ShapeNetCore in the experiments. ShapeNetCore is a subset
of the full ShapeNet dataset with single clean 3D models
and manually verified category and alignment annotations.
It covers 55 common object categories with about 51,300
unique 3D models. We use the official split of training and
validation as our training and validation set.
ScanObjectNN? is a new real-world point cloud object
dataset based on scanned indoor scene data, which is built
on two popular scene meshes datasets: SceneNN [4] and
ScanNet [2]. It contains about 15,000 objects of 15 cat-
egories with 2,902 unique object instances. We use the
official split with about 80% training shapes and about 20%
testing shapes.
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Table 1. Selected categories for each domain generalization bench-
mark.

ModelNet— ScanObjNN ShapeNet— ScanObjNN
Bed Bag
Cabinet (Dresser, Wardrobe) Bed
Chair (Bench, Chair, Stool) Cabinet
Desk Chair
Display (Monitor) Display
Door Pillow
Shelf (Bookshelf) Shelf (Bookshelf)
Sink Sofa
Sofa Table
Table -
Toilet -

For both ModelNet40 and ShapeNet, we adopt the method
from Qi et al. [6] to generate the point clouds. The shared
categories in each dataset are shown in Table 1. As for data
pre-processing, we follow the work from Qin et al. [7] to
normalize the point clouds into a unit ball.

1.2. Hyperparameters for Transformed Point Sets

As stated in the main text, we first confirm a valid hyperpa-
rameter range that changes the geometry of the shape but still
make it recognizable, and then we randomly sample in the
range. We try different random sampling method. We find
that total random sampling sometimes samples similar hy-
perparameters, which decreases the diversity of the geometry
priors contained in each transformed dataset. Therefore, we
use a stratified sampling strategy that first evenly divides the
valid hyperparameter range into 3 sub-ranges, where 3 is the
number of specific transformations for each type of transfor-
mation. Then we randomly sample a hyperparameter in each
sub-range. We use the same transformation hyperparameters
for ModelNet—ScanObjNN and ShapeNet—ScanObjNN,
which are shown in Table 3.



Method bed cabinet chair desk display door shelf  sink sofa  table toilet Avg
PointNet [0] 4091 1.33 9744 50.00 61.90 100.00 61.22 3750 5238 51.85 29.41 53.09
MetaSets on PointNet | 63.64 18.67 94.87 53.33  69.05 95.24 75,51 3750 7143 74.07 6471 65.27

Table 2. Accuracy per class (%) and the average on ModelNet—ScanObjNN.

Table 3. Hyperparameters for different transformed point sets.

Transformation Param 1 Param 2 Param 3

Self-occlusion (grid size W)  0.035 0.022 0.017
Non-uniform density (gate g) 1.3 1.4 1.6
Dropping (drop ratio %) 24% 36% 45%

1.3. Training Hyperparameters

In all experiments, the validation convergence bound ¢ is
set to 0.1%, and the batch size is set to 128. We use Adam
optimizer [5]. For all benchmarks, 7 is 0.0003, /3 is 0.001.
We conduct experiments on a machine with 64 CPUs and 4
GeForce 2080ti GPUs. The total training of 18,000 iterations
uses about 16 hours.

2. More Experimental Results

In this section, we show more experiment results in-
cluding class-wise results in the ModelNet— ScanObjNN
dataset, variants of soft-sampling, variants of meta-training
and meta-objective, static or dynamic transformation and
hyper-parameter sensitivity.

2.1. Class-wise results.

Table 2 shows the class-wise classification accuracy. We
can observe that MetaSets outperforms the backbone net-
work PointNet remarkably on most classes. In particular, on
difficult classes such as cabinet, PointNet yields extremely
low accuracy due to the large domain shift, e.g., the cabinets
from the synthetic dataset has complex and detailed inner
structures that are probably invisible in the real dataset. How-
ever, the expanded tasks of MetaSets can induce a larger set
of geometry priors, which have a higher chance to include
geometry priors that are similar to those from the target do-
main. Such priors enable MetaSets to mitigate the domain
shift and perform still strongly for difficult cases of imper-
fect point clouds. Even though on some classes like chair
and door, MetaSets does not perform as well as PointNet.
We manually check the objects of these classes in ModelNet
and ScanObjectNN datasets and find that the objects are in
different shapes like different kinds of chairs. So the classes
suffer from huge domain shift but not geometric shift, which
can only be addressed by access to the target data and is not
the focus of the paper.

Table 4. Variants of Meta-Validation and Meta-Objective. ’Per-
batch D™ means meta-validation on a batch of meta-training set.
D" means meta-validation on the meta-training set D", *Per-
batch D!*"” means meta-validation on a batch of meta-validation
set. "D means meta-validation on the meta-validation set DY,
which is the proposed MetaSets.

Per-batch D" D" Per-batch D D! (Proposed)

63.16 64.42 66.53 68.28

2.2. Variants of Soft-sampling

We further explore the soft-sampling algorithm. We com-
pare performance of soft-sampling probabilities computed
by meta-validation based on different sets: a mini-batch of
Dlrin - the whole D", a mini-batch D}, and the whole
DY (the proposed MetaSets). As shown in Table 4, comput-
ing the soft-sampling probabilities based on the whole D}
outperforms all the other variants. This can be explained
by that computing the probability of a batch of data is un-
stable while meta-validation on D" causes the overfitting
problem.

Table 5. Variants of Meta-Training and Meta-Objective. "Mixture’
means mixing the data of all three transformations into a single
task and conduct meta-learning on the single task. *Maximum
Loss’ means minimizing the maximum meta-training loss among
all tasks.

MetaSets
68.28

Maximum Loss

61.89

Mixture

63.47

2.3. Variants of Meta-Training and Meta-Objective

One close variant of the proposed MetaSets is conduct
meta-learning on the mixture of the data from three trans-
formations, which uses no soft-sampling but combine the
sets of data from three transformations into one set. The
variant influences the gradient computation on Line 9-10 in
the algorithm. We show the result as "Mixture’ in Table 5,
where we observe that MetaSets outperforms Mixture’. The
result indicates that separating the different transformations
into different tasks is important to learning the knowledge
from different tasks while mixing the data from different
transformations may disentangle the knowledge.

According to [1], when minimizing the losses for differ-
ent tasks, a alternative is to maximizing the maximum of
all the losses, which may increase the convergence speed.
We compare MetaSets by minimizing all the losses with



MetaSets by minimizing the maximum loss of all the tasks
(’Maximum Loss’) in Table 5, we can observe that MetaSets
achieves higher accuracy than ’"Maximum Loss’, which in-
dicates the necessity of minimizing all the task losses. This
observation matches the claim in [8] that directly using dis-
tributionally robust optimization (DRO) [3] still achieves
low worst-group test accuracy.

Table 6. Time for each epoch (s) and accuracy (%) for Point-
Net/MetaSets based on the dynamic transformation and the static
transformation.

Transformation PointNet MetaSets
Time Acc Time Acc
Dynamic 358 63.16 1423 68.28
Static 334 45.89 1350 49.21

2.4. Static or Dynamic Transformation

In MetaSets, we need to randomize the parameters v, P;
and P; in every training iteration (dynamic transformation),
which needs an extra transformation cost in every iteration.
A more efficient way is using static transformation, where
we first transform each point cloud with one parameter into
a transformed point cloud and form a set of transformed
point clouds. We demonstrate that dynamic transformation
is necessary and does not introduce two much cost than static
transformation. We compare PointNet/MetaSets based on
dynamic transformation with PointNet/MetaSets based on
static transformation. As shown in Table 6, the dynamic
transformation approach achieves much higher performance
than static transformation in accuracy but only little more
cost time for each epoch for both PointNet and MetaSets.
Also, the number of epochs to converge is about 30 for all
experiments. Therefore, the dynamic transformation signifi-
cantly improves the performance with only little more time
cost.

2.5. Parameter Sensitivity

We test the classification accuracy for different learning
rates 7 and S on the ModelNet— ScanObjNN benchmark.
To find the best-performing value of 7, we fix the 5, and vice
versa. The results are shown in Figure 1, we can observe
that 7 is not sensitive in the range of [0.0001,0.001] and
B is not sensitive in the range of [0.001,0.003]. However,
even the accuracy drops out of these ranges. The trend of
the validation accuracy curve and the test accuracy curve are
similar, which indicates that the best learning rates can be
obtained by cross-validation on the source validation set.
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Figure 1. Sensitivity analyses about n and (3 on the

ModelNet—ScanObjNN benchmark.
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