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1 Full Benchmark on the ETT Datasets

As shown in Table 1, we build the benchmark on the four ETT datasets [14], which includes the
hourly recorded ETTh1 and ETTh2, 15-minutely recorded ETTm1 and ETTm2.

Autoformer achieves sharp improvement over the state-of-the-art on various forecasting horizons.
For the input-96-predict-336 long-term setting, Autoformer surpasses previous best results by 55%
(1.128→0.505) in ETTh1, 80% (2.544→0.471) in ETTh2. For the input-96-predict-288 long-term set-
ting, Autoformer achieves 40% (1.056→0.634) MSE reduction in ETTm1 and 66% (0.969→0.342)
in ETTm2. These results show a 60% average MSE reduction over previous state-of-the-art.

Table 1: Multivariate results on the four ETT datasets with predicted length as {24, 48, 168, 288, 336,
672, 720}. We fix the input length of Autoformer as 96. The experiments of the main text are on the
ETTm2 dataset.

Models Autoformer Informer [14] LogTrans [9] Reformer [7] LSTNet [8] LSTMa [1]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.384 0.425 0.577 0.549 0.686 0.604 0.991 0.754 1.293 0.901 0.650 0.624
48 0.392 0.419 0.685 0.625 0.766 0.757 1.313 0.906 1.456 0.960 0.702 0.675

168 0.490 0.481 0.931 0.752 1.002 0.846 1.824 1.138 1.997 1.214 1.212 0.867
336 0.505 0.484 1.128 0.873 1.362 0.952 2.117 1.280 2.655 1.369 1.424 0.994
720 0.498 0.500 1.215 0.896 1.397 1.291 2.415 1.520 2.143 1.380 1.960 1.322

E
T

T
h2

24 0.261 0.341 0.720 0.665 0.828 0.750 1.531 1.613 2.742 1.457 1.143 0.813
48 0.312 0.373 1.457 1.001 1.806 1.034 1.871 1.735 3.567 1.687 1.671 1.221

168 0.457 0.455 3.489 1.515 4.070 1.681 4.660 1.846 3.242 2.513 4.117 1.674
336 0.471 0.475 2.723 1.340 3.875 1.763 4.028 1.688 2.544 2.591 3.434 1.549
720 0.474 0.484 3.467 1.473 3.913 1.552 5.381 2.015 4.625 3.709 3.963 1.788

E
T

T
m

1

24 0.383 0.403 0.323 0.369 0.419 0.412 0.724 0.607 1.968 1.170 0.621 0.629
48 0.454 0.453 0.494 0.503 0.507 0.583 1.098 0.777 1.999 1.215 1.392 0.939
96 0.481 0.463 0.678 0.614 0.768 0.792 1.433 0.945 2.762 1.542 1.339 0.913

288 0.634 0.528 1.056 0.786 1.462 1.320 1.820 1.094 1.257 2.076 1.740 1.124
672 0.606 0.542 1.192 0.926 1.669 1.461 2.187 1.232 1.917 2.941 2.736 1.555

E
T

T
m

2

24 0.153 0.261 0.173 0.301 0.211 0.332 0.333 0.429 1.101 0.831 0.580 0.572
48 0.178 0.280 0.303 0.409 0.427 0.487 0.558 0.571 2.619 1.393 0.747 0.630
96 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365 2.041 1.073

288 0.342 0.378 1.047 0.804 1.090 0.806 2.441 1.190 2.856 1.329 0.969 0.742
672 0.434 0.430 3.126 1.302 2.397 1.214 3.090 1.328 3.409 1.420 2.541 1.239
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2 Hyper-Parameter Sensitivity

As shown in Table 2, we can verify the model robustness with respect to hyper-parameter c (Equation
6 in the main text). To trade-off performance and efficiency, we set c to the range of 1 to 3. It is also
observed that datasets with obvious periodicity tend to have a large factor c, such as the ETT and
Traffic datasets. For the ILI dataset without obvious periodicity, the larger factor may bring noises.

Table 2: Autoformer performance under different choices of hyper-parameter c in the Auto-
Correlation mechanism. We adopt the forecasting setting as input-36-predict-48 for the ILI dataset
and input-96-predict-336 for the other datasets.

Dataset ETT Electricity Exchange Traffic Weather ILI

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

c = 1 0.339 0.372 0.252 0.356 0.511 0.528 0.706 0.488 0.348 0.388 2.754 1.088
c = 2 0.363 0.389 0.224 0.332 0.511 0.528 0.673 0.418 0.358 0.390 2.641 1.072
c = 3 0.339 0.372 0.231 0.338 0.509 0.524 0.619 0.385 0.359 0.395 2.669 1.085
c = 4 0.336 0.369 0.232 0.341 0.513 0.527 0.607 0.378 0.349 0.388 3.041 1.178
c = 5 0.410 0.415 0.273 0.371 0.517 0.527 0.618 0.379 0.366 0.399 3.076 1.172

3 Model Input Selection

3.1 Input Length Selection

Because the forecasting horizon is always fixed upon the application’s demand, we need to tune the
input length in real-world applications. Our study shows that the relationship between input length
and model performance is dataset-specific, so we need to select the model input based on the data
characteristics. For example, for the ETT dataset with obvious periodicity, an input with length-96 is
enough to provide enough information. But for the ILI dataset without obvious periodicity, the model
needs longer inputs to discover more informative temporal dependencies.

Table 3: Autoformer performance under different input lengths. We fix the forecasting horizon as 48
for ILI and 336 for the others. The input lengths I of the ILI dataset are in the {24, 36, 48, 60}. And
for the ETT and Exchange datasets, the input lengths I are in the {96, 192, 336, 720}.

Dataset ETT Electricity Dataset ILI

Metric MSE MAE MSE MAE Metric MSE MAE

I = 96 0.339 0.372 0.231 0.338 I = 24 3.406 1.247
I = 192 0.355 0.392 0.200 0.316 I = 36 2.669 1.085
I = 336 0.361 0.406 0.225 0.335 I = 48 2.656 1.075
I = 720 0.419 0.430 0.226 0.346 I = 60 2.779 1.091

3.2 Past Information Utilization

For the decoder input of Autoformer, we attach the length- I2 past information to the placeholder. This
design is to provide recent past information to the decoder. As shown in Table 4, the model with
more past information will obtain a better performance, but it also causes a larger memory cost. Thus,
we set the decoder input as I

2 +O to trade off both the performance and efficiency.

Table 4: Autoformer performance under different lengths of input of the decoder. O, I
2 +O, I +O

corresponds to the decoder input without past information, with half past information, with full past
information respectively. We fix the forecasting setting as input-96-predict-336 on the ETT dataset.

Decoder input length O (without past) I
2
+O (with half past) I +O (with full past)

MSE 0.360 0.339 0.333
MAE 0.383 0.372 0.369

Memory Cost 3029 MB 3271 MB 3599 MB

2



4 Ablation of Decomposition Architecture

In this section, we attempt to further verify the effectiveness of our proposed progressive decomposi-
tion architecture. We adopt more well-established decomposition algorithms as the pre-processing
for separate prediction settings. As shown in Table 5, our proposed progressive decomposition
architecture consistently outperforms the separate prediction (especially the long-term forecasting
setting), despite the latter being with mature decomposition algorithms and twice bigger model.

Table 5: Ablation of decomposition architecture in ETT dataset under the input-96-predict-O setting,
where O ∈ {96, 192, 336, 720}. The backbone of separate prediction is canonical Transformer [12].
We adopt various decomposition algorithms as the pre-processing and use two Transformers to
separately forecast the seasonal and trend-cyclical parts. The result is the sum of two parts prediction.

Decomposition Predict O 96 192 336 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Separately

STL [10] 0.523 0.516 0.638 0.605 1.004 0.794 3.678 1.462
Hodrick-Prescott Filter [5] 0.464 0.495 0.816 0.733 0.814 0.722 2.181 1.173

Christiano-Fitzgerald Filter [2] 0.373 0.458 0.819 0.668 1.083 0.835 2.462 1.189
Baxter-King Filter [13] 0.440 0.514 0.623 0.626 0.861 0.741 2.150 1.175

Progressively Autoformer 0.255 0.339 0.281 0.340 0.339 0.372 0.422 0.419

5 Supplementary of Main Results

5.1 Multivariate Showcases

To evaluate the prediction of different models, we plot the last dimension of forecasting results that
are from the test set of ETT dataset for qualitative comparison (Figures 1, 2, 3, and 4). Our model
gives the best performance among different models. Moreover, we observe that Autoformer can
accurately predict the periodicity and long-term variation.

Figure 1: Prediction cases from the ETT dataset under the input-96-predict-96 setting. Blue lines are
the ground truth and orange lines are the model prediction. The first part with length 96 is the input.

Figure 2: Prediction cases from the ETT dataset under the input-96-predict-192 setting.

5.2 Performance on Data without Obvious Periodicity

Autoformer yields the best performance among six datasets, even in the Exchange dataset that does
not have obvious periodicity. This section will give some showcases from the test set of multivariate
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Figure 3: Prediction cases from the ETT dataset under the input-96-predict-336 setting.

Figure 4: Prediction cases from the ETT dataset under the input-96-predict-720 setting.

Exchange dataset for qualitative evaluation. We observed that the series in the Exchange dataset
show rapid fluctuations. And because of the inherent properties of economic data, the series does not
present obvious periodicity. This aperiodicity causes extreme difficulties for prediction. As shown in
Figure 5, compared to other models, Autoformer can still predict the exact long-term variations. It is
verified the robustness of our model performance among various data characteristics.

Figure 5: Prediction cases from the Exchange dataset under the input-96-predict-192 setting.

5.3 Univariate Forecasting Showcases

As shown in Figure 6, Autoformer gives the most accurate prediction. Compared to Informer [14],
Autoformer can precisely capture the periods of the future horizon. Besides, our model provides
better prediction in the center area than LogTrans [9]. Compared with Reformer [7], our prediction
series is smooth and closer to ground truth. Also, the fluctuation of DeepAR [11] prediction is getting
smaller as prediction length increases and suffers from the over-smoothing problem, which does not
happen in our Autoformer.

Figure 6: Prediction cases from the ETT dataset under the input-96-predict-720 univariate setting.
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Table 6: Quantitative results with fluctuations under different prediction lengths O for multivariate
forecasting. We set the input length I as 36 for ILI and 96 for the other datasets. A lower MSE or
MAE indicates a better performance.

Models Autoformer Informer[14] LogTrans[9] Reformer[7]

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T

96 0.255±0.020 0.339±0.020 0.365±0.062 0.453±0.047 0.768±0.071 0.642±0.020 0.658±0.121 0.619±0.021
192 0.281±0.027 0.340±0.025 0.533±0.109 0.563±0.050 0.989±0.124 0.757±0.049 1.078±0.106 0.827±0.012
336 0.339±0.018 0.372±0.015 1.363±0.173 0.887±0.056 1.334±0.168 0.872±0.054 1.549±0.146 0.972±0.015
720 0.422±0.015 0.419±0.010 3.379±0.143 1.388±0.037 3.048±0.140 1.328±0.023 2.631±0.126 1.242±0.014

E
le

ct
ri

ci
ty 96 0.201±0.003 0.317±0.004 0.274±0.004 0.368±0.003 0.258±0.002 0.357±0.002 0.312±0.003 0.402±0.004

192 0.222±0.003 0.334±0.004 0.296±0.009 0.386±0.007 0.266±0.005 0.368±0.004 0.348±0.004 0.433±0.005
336 0.231±0.006 0.338±0.004 0.300±0.007 0.394±0.004 0.280±0.006 0.380±0.001 0.350±0.004 0.433±0.003
720 0.254±0.007 0.361±0.008 0.373±0.034 0.439±0.024 0.283±0.003 0.376±0.002 0.340±0.002 0.420±0.002

E
xc

ha
ng

e 96 0.197±0.019 0.323±0.012 0.847±0.150 0.752±0.060 0.968±0.177 0.812±0.027 1.065±0.070 0.829±0.013
192 0.300±0.020 0.369±0.016 1.204±0.149 0.895±0.061 1.040±0.232 0.851±0.029 1.188±0.041 0.906±0.008
336 0.509±0.041 0.524±0.016 1.672±0.036 1.036±0.014 1.659±0.122 1.081±0.015 1.357±0.027 0.976±0.010
720 1.447±0.084 0.941±0.028 2.478±0.198 1.310±0.070 1.941±0.327 1.127±0.030 1.510±0.071 1.016±0.008

Tr
af

fic

96 0.613±0.028 0.388±0.012 0.719±0.015 0.391±0.004 0.684±0.041 0.384±0.008 0.732±0.027 0.423±0.025
192 0.616±0.042 0.382±0.020 0.696±0.050 0.379±0.023 0.685±0.055 0.390±0.021 0.733±0.013 0.420±0.011
336 0.622±0.016 0.337±0.011 0.777±0.009 0.420±0.003 0.733±0.069 0.408±0.026 0.742±0.012 0.420±0.008
720 0.660±0.025 0.408±0.015 0.864±0.026 0.472±0.015 0.717±0.030 0.396±0.010 0.755±0.023 0.423±0.014

W
ea

th
er 96 0.266±0.007 0.336±0.006 0.300±0.013 0.384±0.013 0.458±0.143 0.490±0.038 0.689±0.042 0.596±0.019

192 0.307±0.024 0.367±0.022 0.598±0.045 0.544±0.028 0.658±0.151 0.589±0.032 0.752±0.048 0.638±0.029
336 0.359±0.035 0.395±0.031 0.578±0.024 0.523±0.016 0.797±0.034 0.652±0.019 0.639±0.030 0.596±0.021
720 0.419±0.017 0.428±0.014 1.059±0.096 0.741±0.042 0.869±0.045 0.675±0.093 1.130±0.084 0.792±0.055

IL
I

24 3.483±0.107 1.287±0.018 5.764±0.354 1.677±0.080 4.480±0.313 1.444±0.033 4.400±0.117 1.382±0.021
36 3.103±0.139 1.148±0.025 4.755±0.248 1.467±0.067 4.799±0.251 1.467±0.023 4.783±0.138 1.448±0.023
48 2.669±0.151 1.085±0.037 4.763±0.295 1.469±0.059 4.800±0.233 1.468±0.021 4.832±0.122 1.465±0.016
60 2.770±0.085 1.125±0.019 5.264±0.237 1.564±0.044 5.278±0.231 1.560±0.014 4.882±0.123 1.483±0.016

5.4 Main Results with Standard Deviations

To get more robust experimental results, we repeat each experiment three times. The results are
shown without standard deviations in the main text due to the limited pages. Table 6 shows the main
results with standard deviations.

6 COVID-19: Case Study

We also apply our model to the COVID-19 real-world data [4]. This dataset contains the data
collected from countries, including the number of confirmed deaths and recovered patients of COVID-
19 recorded daily from January 22, 2020, to May 20, 2021. We select two anonymous countries in
Europe for the experiments. The data is split into training, validation and test set in chronological
order following the ratio of 7:1:2 and normalized. Note that this problem is quite challenging because
the training data is limited.

6.1 Quantitative Results

We still follow the long-term forecasting task and let the model predict the next week, half month, full
month respectively. The prediction lengths are 1, 2.1, 4.3 times the input length. As shown in Table 7,
Autoformer still keeps the state-of-the-art accuracy under the limited data and short input situation.

6.2 Showcases

As shown in Figure 7, compared to other models, our Autoformer can accurately predict the peaks
and troughs at the beginning and can almost predict the exact value in the long-term future. The
forecasting of extreme values and long-term trends are essential to epidemic prevention and control.
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Table 7: Quantitative results for COVID-19 data. We set the input length I as 7, which means that the
data in one week. The prediction length O is in {7, 15, 30}, which represents a week, half a month, a
month respectively. A lower MSE or MAE indicates a better prediction.

Models Autoformer Informer[14] LogTrans[9] Reformer[7] Transformer[12]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Country 1
7 0.110 0.213 0.168 0.323 0.190 0.311 0.219 0.312 0.156 0.254

15 0.168 0.264 0.443 0.482 0.229 0.361 0.276 0.403 0.289 0.382
30 0.261 0.319 0.443 0.482 0.311 0.356 0.276 0.403 0.362 0.444

Country 2
7 1.747 0.891 1.806 0.969 1.834 1.013 2.403 1.071 1.798 0.955

15 1.749 0.905 1.842 0.969 1.829 1.004 2.627 1.111 1.830 0.999
30 1.749 0.903 2.087 1.116 2.147 1.106 3.316 1.267 2.190 1.172

Figure 7: Prediction cases from the second country of COVID-19 under the input-7-predict-15 setting.

7 Autoformer: Implementation Details

7.1 Model Design

We provide the pseudo-code of Autoformer and Auto-Correlation mechanism in Algorithms 1 and 2
respectively. The tensor shapes and hyper-parameter settings are also included. Besides the above
standard version, we speed up the Auto-Correlation to a batch-normalization-style block for efficiency,
namely speedup version. All the experiment results of this paper are from the speedup version.
Here are the implementation details.

Speedup version Note that the gather operation in Algorithm 2 is not memory-access friendly.
We borrow the design of batch normalization [6] to speedup the Auto-Correlation mechanism. We
separate the whole procedure as the training phase and the inference phase. Because of the property
of the linear layer, the channels of deep representations are equivalent. Thus, we reduce the channel
and head dimension for both the training and inference phases. Especially for the training phase,
we average the autocorrelation within a batch to simplify the learned lags. This design speeds up
Auto-Correlation and performs as normalization to obtain a global judgment of the learned lags
because the series within a batch are samples from the same time-series dataset. The pseudo-code
for the training phase is presented in Algorithm 3. For the testing phase, we still use the gather
operation with respect to the simplified lags, which is more memory-access friendly than the standard
version. The pseudo-code for the inference phase is presented in Algorithm 4.

Complexity analysis Our model provides the series-wise aggregation for bc × logLc delayed
length-L series. Thus, the complexity is O(L logL) for both the standard version and the speedup
version. However, the latter is faster because it is more memory-access friendly.

7.2 Experiment Details

All these transformer-based models are built with two encoder layers and one decoder layer for the
sake of the fair comparison in performance and efficiency, including Informer [14], Reformer [7],
LogTrans [9] and canonical Transformer [12]. Besides, all these models adopt the embedding method
and the one-step generation strategy as Informer [14]. Note that our proposed series-wise aggregation
can provide enough sequential information. Thus, we do not employ the position embedding as other
baselines but keep the value embedding and time stamp embedding.
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Algorithm 1 Overall Autoformer Procedure
Input: Input past time series X ; Input Length I; Predict length O; Data dimension d; Hidden state

channel dmodel; Encoder layers number N ; Decoder layers number M ; Moving average window

size k. Technically, we set dmodel as 512, N as 2, M as 1, k as 25.

1: Xens,Xent = SeriesDecomp(X I
2 :I

) . X ∈ RI×d,Xens,Xent ∈ R I
2×d

2: X0,Xmean = Zeros([O, d]), Repeat
(
Mean(X I

2 :I
, dim=0), dim=0

)
. X0,Xmean ∈ RO×d

3: Xdes,Xdet = Concat(Xens,X0), Concat(Xent,Xmean) . Xdes,Xdet ∈ R( I
2+O)×d

4: X 0
en = Embed(X ) . X 0

en ∈ RI×dmodel

5: for l in {1, · · · , N}: . Autoformer Encoder

6: for Sl,1en , = SeriesDecomp
(
Auto-Correlation(X l−1

en ) + X l−1
en

)
. Sl,1en ∈ RI×dmodel

7: for Sl,2en , = SeriesDecomp
(
FeedForward(Sl,1en ) + Sl,1en

)
. Sl,2en ∈ RI×dmodel

8: for X l
en = Sl,2en . X l

en ∈ RI×dmodel

9: End for

10: X 0
de = Embed(Xdes), T 0

de = Xdet, . X 0
de ∈ R( I

2+O)×dmodel , T 0
de ∈ R( I

2+O)×d

11: for l in {1, · · · ,M}: . Autoformer Decoder

12: for Sl,1de , T
l,1
de = SeriesDecomp

(
Auto-Correlation(X l−1

de ) + X l−1
de

)
13: for Sl,2de , T

l,2
de = SeriesDecomp

(
Auto-Correlation(Sl,1de ,XN

en) + S
l,1
de

)
14: for Sl,3de , T

l,3
de = SeriesDecomp

(
FeedForward(Sl,2de ) + S

l,2
de

)
. Sl,·de, T

l,·
de ∈ R( I

2+O)×dmodel

15: for T l
de = T

l−1
de + MLP(T l,1

de ) + MLP(T l,2
de ) + MLP(T l,3

de ) . T l
de ∈ R( I

2+O)×d

16: for X l
de = S

l,3
de . X l

de ∈ R( I
2+O)×dmodel

17: End for

18: Xpred = MLP(XM
de ) + T M

de . Xpred ∈ R( I
2+O)×dmodel

19: Return Xpred I
2 :

I
2+O

. Return the prediction results

Algorithm 2 Auto-Correlation (multi-head standard version for a batch of data)
Input: Queries Q ∈ RB×L×dmodel ; Keys K ∈ RB×S×dmodel ; Values V ∈ RB×S×dmodel ; Number of

heads h; Hidden state channel dmodel; Hyper-parameter c. We set dmodel as 512, h as 8, 1 ≤ c ≤ 3.

1: K,V = Resize(K), Resize(V) . Resize is truncation or zero filling. K,V ∈ RB×L×dmodel

2: Q,K,V = Reshape(Q), Reshape(K), Reshape(V) . Q,K,V ∈ RL×h× dmodel
h

3: Q = FFT(Q, dim=0),K = FFT(K, dim=0), . Q,K ∈ CB×L×h× dmodel
h

4: Corr = IFFT
(
Q× Conj(K), dim=0

)
. Autocorrelation Corr ∈ RB×L×h× dmodel

h

5: Wtopk, Itopk = Topk(Corr, bc× logLc, dim=0) . Largest weights Wtopk and their indices Itopk

6: Wtopk = Softmax(Wtopk, dim=0) . Wtopk, Itopk ∈ RB×(bc×logLc)×h× dmodel
h

7: Index = Repeat
(
arange(L)

)
. Initialize series indices. Index ∈ RB×L×h× dmodel

h

8: V = Repeat(V) . V ∈ RB×(2L)×h× dmodel
h

9: R =
[
Wtopki,:,: × gather

(
V, (Itopki,:,: + Index)

)
for i in range(bc× logLc)

]
. Aggregation

10: R = Sum
(
Stack(R, dim=0), dim=0

)
.R ∈ RB×L×h× dmodel

h

11: ReturnR . Return transformed results
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Algorithm 3 Auto-Correlation (multi-head speedup version for the training phase)
Input: Queries Q ∈ RB×L×dmodel ; Keys K ∈ RB×S×dmodel ; Values V ∈ RB×S×dmodel ; Number of

heads h; Hidden state channel dmodel; Hyper-parameter c. We set dmodel as 512, h as 8, 1 ≤ c ≤ 3.

1: K,V = Resize(K), Resize(V) . Resize is truncation or zero filling. K,V ∈ RB×L×dmodel

2: Q,K,V = Reshape(Q), Reshape(K), Reshape(V) . Q,K,V ∈ RB×L×h× dmodel
h

3: Q = FFT(Q, dim=0),K = FFT(K, dim=0), . Q,K ∈ CB×L×h× dmodel
h

4: Corr = IFFT
(
Q× Conj(K), dim=0

)
. Autocorrelation Corr ∈ RB×L×h× dmodel

h

5: Corr = Mean(Corr, dim = 0, 2, 3) . Simplify lags. Corr ∈ RL

6: Wtopk, Itopk = Topk(Corr, bc× logLc, dim=0) . Largest weights Wtopk and their indices Itopk

7: Wtopk = Softmax(Wtopk, dim=0) . Wtopk, Itopk ∈ R(bc×logLc)

8: R =
[
Wtopki,:,: × Roll(V, Itopki,:,:, dim=1) for i in range(bc× logLc)

]
. Aggregation

9: R = Sum
(
Stack(R, dim=0), dim=0

)
.R ∈ RL×h× dmodel

h

10: ReturnR . Return transformed results

Algorithm 4 Auto-Correlation (multi-head speedup version for the inference phase)
Input: Queries Q ∈ RB×L×dmodel ; Keys K ∈ RB×S×dmodel ; Values V ∈ RB×S×dmodel ; Number of

heads h; Hidden state channel dmodel; Hyper-parameter c. We set dmodel as 512, h as 8, 1 ≤ c ≤ 3.

1: K,V = Resize(K), Resize(V) . Resize is truncation or zero filling. K,V ∈ RB×L×dmodel

2: Q,K,V = Reshape(Q), Reshape(K), Reshape(V) . Q,K,V ∈ RL×h× dmodel
h

3: Q = FFT(Q, dim=0),K = FFT(K, dim=0), . Q,K ∈ CB×L×h× dmodel
h

4: Corr = IFFT
(
Q× Conj(K), dim=0

)
. Autocorrelation Corr ∈ RB×L×h× dmodel

h

5: Corr = Mean(Corr, dim = 0, 2, 3) . Simplify lags. Corr ∈ RL

6: Wtopk, Itopk = Topk(Corr, bc× logLc, dim=0) . Largest weights Wtopk and their indices Itopk

7: Wtopk = Softmax(Wtopk, dim=0) . Wtopk, Itopk ∈ R(bc×logLc)

8: Index = Repeat
(
arange(L)

)
. Initialize series indices. Index ∈ RB×L×h× dmodel

h

9: V = Repeat(V) . V ∈ RB×(2L)×h× dmodel
h

10: R =
[
Wtopki,:,: × gather

(
V, (Itopki,:,: + Index)

)
for i in range(bc× logLc)

]
. Aggregation

11: R = Sum
(
Stack(R, dim=0), dim=0

)
.R ∈ RB×L×h× dmodel

h

12: ReturnR . Return transformed results
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8 Broader Impact

Real-world applications Our proposed Autoformer focuses on the long-term time series forecast-
ing problem, which is a valuable and urgent demand in extensive applications. Our method achieves
consistent state-of-the-art performance in five real-world applications: energy, traffic, economics,
weather and disease. In addition, we provide the case study of the COVID-19 dataset. Thus, people
who work in these areas may benefit greatly from our work. We believe that better time series
forecasting can help our society make better decisions and prevent risks in advance for various fields.

Academic research In this paper, we take the ideas from classic time series analysis and stochastic
process theory. We innovate a general deep decomposition architecture with a novel Auto-Correlation
mechanism, which is a worthwhile addition to time series forecasting models. Code is available at
this repository: https://github.com/thuml/Autoformer.

Model Robustness Based on the extensive experiments, we do not find exceptional failure cases.
Autoformer even provides good performance and long-term robustness in the Exchange dataset that
does not present obvious periodicity. Autoformer can progressively get purer series components by
the inner decomposition block and make it easy to discover the deeply hidden periodicity. However,
if the data is random or with extremely weak temporal coherence, Autoformer and any other models
may degenerate because the series is with poor predictability [3].

Our work only focuses on the scientific problem, so there is no potential ethical risk.
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