Data Dependencies in the Presence of Difference

Shaoxu Song

Tsinghua University
sxsong@tsinghua.edu.cn
Outline

Introduction

Application

Foundation

Discovery

Conclusion and Future Work
Motivation

Data Dependencies traditionally for quality of Schema:
schema design, integrity constraints, query optimization, etc.

Data Dependencies recently for quality of Data:
data cleaning, data repairing, record matching, etc.

Table: Example instance of Employee

<table>
<thead>
<tr>
<th>name</th>
<th>institute</th>
<th>title</th>
<th>salary</th>
<th>ssn</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>John Depp</td>
<td>Tech. Univ.</td>
<td>Professor</td>
<td>60</td>
</tr>
<tr>
<td>t_2</td>
<td>J. Depp</td>
<td>Technical Univ.</td>
<td>Professor</td>
<td>60</td>
</tr>
<tr>
<td>t_3</td>
<td>J.C. Depp</td>
<td>Tech. University</td>
<td>Prof.</td>
<td>3</td>
</tr>
<tr>
<td>t_4</td>
<td>R. Depp</td>
<td>Western Univ.</td>
<td>Lecturer</td>
<td>30</td>
</tr>
</tbody>
</table>
Motivation

Identification function in schema-oriented issues,

- in conventional dependencies, e.g., FDs
- title → salary
- t_1[title] : $Professor = t_2$[title] : $Professor$
- t_1[salary] : $60 = t_2$[salary] : 60

Difference semantics in data-oriented practice,

- on numerical values or text values, e.g., similar or dissimilar.
- title : $Professor \approx Prof$
- salary: 60k v.s. 3k
Differential Dependencies: Syntax

We propose a novel type of dependencies

- *differential dependencies* (DDS)
- in the form of $\phi_L[X] \rightarrow \phi_R[Y]$
- $\phi_L[X]$ and $\phi_R[Y]$ are differential functions, which specify distance constraints on attributes X and Y of R, respectively.

Constraints on difference

- for any two tuples (t_1, t_2) from an instance of R
- if their value differences (measured by certain distance metric) on attributes X agree with the differential function $\phi_L[X]$, $(t_1, t_2) \simeq \phi_L[X]$
- then their value differences on Y should also agree with the differential function $\phi_R[Y]$, $(t_1, t_2) \simeq \phi_R[Y]$
Example

A \(\mathbb{DD} \) in a credit card transaction database can be

- \(\mathbb{DD}_1 \): \([\text{cardno}(=0) \land \text{position}(\geq 60)] \rightarrow [\text{transtime}(\geq 20)] \)
- \(\text{cardno}(=0) \) states that two transactions have the same credit card no (the difference on attribute cardno is 0)
- \(\text{position}(\geq 60), \text{transtime}(\geq 20) \) are differential functions specified on attribute position, transtime, respectively

Constraints on difference

- If the distance of two transaction positions of a same cardno is \(\geq 60 \) km (e.g., two different cities)
- they are probably two transactions happening at different time
- the difference between transtime should be \(\geq 20 \) mins.

If two card transactions do not satisfy \(\mathbb{DD}_1 \), one of the transactions could be a fraud.
Example

A DD in a price database of a flight, in decision support systems

- \(\text{DD}_2 \quad \text{[date(\leq 7)]} \rightarrow \text{[price(\leq 100)]} \)

 states that the price difference of any two days in a week length should be less than 100 \\

Instead of a week length, another DD may specify

- \(\text{DD}_3 \quad \text{[date(> 7, \leq 30)]} \rightarrow \text{[price(> 100, \leq 900)]} \)

 the price difference constraint of two days not in a week length but in a month length

Both \(\text{DD}_2 \) and \(\text{DD}_3 \) specify

- on the same embedded attributes date \(\rightarrow \) price

- but with different constraint semantics, i.e., week and month.
Related Work

Conditional functional dependencies (CFDs)

- \((X \rightarrow A, t_p)\)
 - make the FDs, originally hold for the whole table, valid only for a set of tuples specified by the conditions
 - \(([\text{country, zip}] \rightarrow [\text{street}], < \text{Finland}, _ \parallel _ >)\)

Metric functional dependencies (MFDs)

- \(X \overset{\delta}{\rightarrow} A\)
 - similarity metrics in the right-hand-side, for violation detection
 - name \(\overset{2}{\rightarrow}\) address

Matching dependencies (MDs)

- \([X \approx] \rightarrow [A \Leftarrow]\)
 - “similar” semantics in the left-hand-side, for record matching
 - \([\text{name } \approx] \land [\text{addr } \approx] \rightarrow [\text{tel } \Leftarrow]\)
Comparison

CFDs introduce condition extension, which is still on identification semantics.

MFDs, MDs consider the “similar” semantics, on either determinant attributes \(X \) or dependent attributes \(Y \).

Our differential dependencies \(\text{DDS} \)

- \(\phi_L[X] \rightarrow \phi_R[Y] \)
- address more general difference constraints with various semantics
 - “similar” (e.g., \(\text{price}(\leq 100) \) in \(\text{DD}_2 \))
 - “dissimilar/different” (e.g., \(\text{transtime}(\geq 20) \) in \(\text{DD}_1 \)),
 - or even more complicated ones (e.g., \(\text{date}(> 7, \leq 30) \) in \(\text{DD}_3 \))
- allow setting difference constraints on both determinant attributes \(X \) and dependent attributes \(Y \)
Outline

Introduction

Application

Foundation

Discovery

Conclusion and Future Work
Example: Violation Detection

To find the tuples that violate dependencies

- according to $\text{DD}_2 \ [\text{date}(\leq 7)] \rightarrow [\text{price}(\leq 100)]$
- t_3, t_4 are detected as violations to DD_2

FDs cannot express such constraints on difference

- t_3, t_4 cannot be detected by a FD $\text{date} \rightarrow \text{price}$
- t_1, t_2 are detected as violations to FD by mistake

<table>
<thead>
<tr>
<th>Tuple</th>
<th>Date</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>2010.06.01</td>
<td>1,000</td>
</tr>
<tr>
<td>t_2</td>
<td>2010.06.01</td>
<td>1,050</td>
</tr>
<tr>
<td>t_3</td>
<td>2010.08.02</td>
<td>2,000</td>
</tr>
<tr>
<td>t_4</td>
<td>2010.08.03</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Evaluation: Violation Detection

DDs compared with FDs with identification functions
- differential functions in the right-hand-side Y
 - detect violations more accurately
 - the detection precision is higher than FDs
- differential functions in the left-hand-side X
 - address more tuples with violations
 - the detection recall by using DDs is higher than FDs

Figure: Violation detection accuracy
Example: Data Partition

To optimize data partition queries

- Integrity constraints (e.g., FDs or candidate keys) can be utilized to optimize the evaluation of queries
- known as the semantic query optimization

Consider a group-by query on distance conditions

```
SELECT * FROM Employee
GROUP BY institute(≤ 5) ∧ title(≤ 6)
```

- according to \([institute(\leq 5)] \rightarrow [institute(\leq 5) \wedge title(\leq 6)]\)
- rewrite the query by using institute(≤ 5) only

```
SELECT * FROM Employee
GROUP BY institute(≤ 5)
```
Evaluation: Data Partition

Using candidate differential key dependencies, CDK dependencies

- In x-axis, each element \(a/b \) corresponds to a pair of reduced/original differential functions for partitioning queries
 - \(a \) denotes the cardinality of CDK
 - \(b \) denotes the cardinality of original partition scheme
- the smaller the rate \(a/b \) is, the more the performance can be improved
Example: Record Linkage

To identify duplicate record, a.k.a. record matching, merge-purge

- use DDs as matching rules

 $\text{DD}_1 \quad [\text{name}(\leq 5) \land \text{institute}(\leq 7)] \rightarrow [\text{ssn}(= 0)]$

 t_1, t_2, whose name distance is ≤ 5, and institute distance is ≤ 7, probably denote the same employee with identical ssn

- another valid matching rule on same attributes

 $\text{DD}_2 \quad [\text{name}(\leq 3) \land \text{institute}(\leq 15)] \rightarrow [\text{ssn}(= 0)]$

 t_2, t_3 detected as duplicates by DD_2, not detected by DD_1

Table: Example instance of Employee

<table>
<thead>
<tr>
<th>name</th>
<th>institute</th>
<th>title</th>
<th>salary</th>
<th>ssn</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>John Depp</td>
<td>Tech. Univ.</td>
<td>60</td>
<td>111</td>
</tr>
<tr>
<td>t_2</td>
<td>J. Depp</td>
<td>Technical Univ.</td>
<td>60.2</td>
<td>111</td>
</tr>
<tr>
<td>t_3</td>
<td>J.C. Depp</td>
<td>Tech. University</td>
<td>30</td>
<td>111</td>
</tr>
<tr>
<td>t_4</td>
<td>R. Depp</td>
<td>Western Univ.</td>
<td>Lecturer</td>
<td>30</td>
</tr>
</tbody>
</table>
Evaluation: Record Linkage

DDs compared MDs,

- MDs associate only one differential function on each attribute
- DDs can specify various differential functions on one attribute
- DDs address more matching rules
- recall of DDs is significantly higher
- DDs have comparable precision as MDs, both are valid matching rules

![Graph showing evaluation results for MDs and DDs in Restaurant data instances.](image-url)
Outline

Introduction

Application

Foundation

Discovery

Conclusion and Future Work
Differential Function: Intersection

The *intersection* of $\phi_1[Z]$ and $\phi_2[Z]$ on the same attributes Z is

$$\phi_3[Z] = \phi_1[Z] \land \phi_2[Z]$$

- any $(t_1, t_2) \preceq \phi_1[Z]$ and $(t_1, t_2) \preceq \phi_2[Z]$, then $(t_1, t_2) \preceq \phi_3[Z]$
- any $(t_1, t_2) \not\preceq \phi_1[Z]$ or $(t_1, t_2) \not\preceq \phi_2[Z]$, then $(t_1, t_2) \not\preceq \phi_3[Z]$
- $[\text{name}(\leq 9)] \land [\text{name}(\leq 7)] = [\text{name}(\leq 7)]$

Apply intersection between $\phi_1[X]$ and $\phi_2[Y]$ on different attributes X and Y

- Let $Z = X \cap Y$

$$\phi_1[X] \land \phi_2[Y] = (\phi_1[X \setminus Z] \land \phi_1[Z]) \land (\phi_2[Z] \land \phi_2[Y \setminus Z])$$

$$= \phi_1[X \setminus Z] \land (\phi_1[Z] \land \phi_2[Z]) \land \phi_2[Y \setminus Z].$$

- $[\text{name}(\leq 5) \land \text{address}(\leq 12)] \land [\text{address}(\leq 10)] = [\text{name}(\leq 5) \land \text{address}(\leq 10)]$
Differential Function: Subsumption

Intuitively, the semantics of “similar” subsumes identification
- any two values that are “identical” (with distance = 0)
- can always be interpreted as “similar” (with distance ≤ 9)

Definition

Let $\phi_1[Z]$ and $\phi_2[Z]$ be two differential functions on attributes Z
- If any tuple pair $(t_1, t_2) \simeq \phi_2[Z]$ always agree $(t_1, t_2) \simeq \phi_1[Z]$
- we say that $\phi_1[Z]$ *subsumes* $\phi_2[Z]$, written $\phi_1[Z] \succeq \phi_2[Z]$

For example
- $\phi_1[\text{name}] = [\text{name(≤ 9)}]$ subsumes $\phi_2[\text{name}] = [\text{name(≤ 7)}]$
 - denoted by $[\text{name(≤ 9)}] \succeq [\text{name(≤ 7)}]$
 - a distance value of name that agrees ≤ 7 will always agree ≤ 9
- $[\text{date(≤ 30)}] \succeq [\text{date(> 7, ≤ 30)}]$; $[\text{addr(≤ 9)}] \succeq [\text{addr(= 0)}]$
Differential Dependency

Consider an instance I of relation R

- $(t_1, t_2) \sim \phi_L[X]$ denotes tuples (t_1, t_2) having distance agreeing $\phi_L[X]$
- I satisfies a DD, $I \models \phi_L[X] \rightarrow \phi_R[Y]$, if any two tuples t_1 and t_2 in I having metric distances $(t_1, t_2) \sim \phi_L[X]$ must agree $(t_1, t_2) \sim \phi_R[Y]$
- I satisfies a set Σ of DDS, $I \models \Sigma$ if $I \models \phi_L[X] \rightarrow \phi_R[Y]$ for each $\phi_L[X] \rightarrow \phi_R[Y] \in \Sigma$.

Proposition

For two differential functions $\phi_L[X]$ and $\phi_R[Y]$, if $Y \subseteq X$ and $\phi_R[Y] \succeq \phi_L[Y]$, then $\phi_L[X] \rightarrow \phi_R[Y]$.

- a trivial DD, always holds
- $[\text{name}(\leq 5) \land \text{address}(\leq 10)] \rightarrow [\text{address}(\leq 12)]$
Logical Implication

Example

Consider two DDs,

\[\text{DD}_4 \quad [\text{name}(\leq 7)] \rightarrow [\text{address}(\leq 1)], \]

\[\text{DD}_5 \quad [\text{address}(\leq 5)] \rightarrow [\text{salary}(\leq 50)]. \]

- any two tuples \(t_1 \) and \(t_2 \) having name distance \(\leq 7 \),
- according to \(\text{DD}_4 \), their distance on address should be \(\leq 1 \),
- \((t_1, t_2)\) agree address\((\leq 5)\) as well.
- the salary distance of \(t_1 \) and \(t_2 \) should be \(\leq 50 \) according to \(\text{DD}_5 \)

We can imply another DD,

\[\text{DD}_6 \quad [\text{name}(\leq 7)] \rightarrow [\text{salary}(\leq 50)]. \]
Implication Problem

Let Σ_1 and Σ_2 be two sets of DDs.

- Σ_1 logically implies Σ_2, $\Sigma_1 \models \Sigma_2$ if for all relation instance I, $I \models \Sigma_1$ implies $I \models \Sigma_2$

- Σ_1 and Σ_2 are equivalent, $\Sigma_1 \equiv \Sigma_2$ if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$

The implication problem

- given a consistent set Σ of DDs and another DD $\phi_L[X] \rightarrow \phi_R[Y]$

- to decide whether Σ can imply this DD, $\Sigma \models \phi_L[X] \rightarrow \phi_R[Y]$

- For example, $\{\text{DD}_4, \text{DD}_5\} \models \text{DD}_6$
Implication based-on Subsumption

Given a \(\text{DD} \) \(\phi_L[X] \rightarrow \phi_R[Y] \)

- \(\phi_1[Z] \rightarrow \phi_R[Y] \) can be implied, if \(X \subseteq Z, \phi_L[X] \succeq \phi_1[X] \)
- \(\phi_L[X] \rightarrow \phi_1[Z] \) can be implied, if \(Z \subseteq Y, \phi_1[Z] \succeq \phi_R[Z] \)

For example, consider a \(\text{DD} \) \([\text{name}(\leq 7)] \rightarrow [\text{address}(\leq 1)]\), it implies

- \([\text{name}(\leq 5)] \rightarrow [\text{address}(\leq 1)]\)
- \([\text{name}(\leq 7)] \rightarrow [\text{address}(\leq 2)]\)
Differential Key

Key: $t_1[R] = t_2[R]$ according to $t_1[K] = t_2[K]$ on a key $K \subseteq R$

A differential key $\phi_2[K]$ relative to $\phi_1[R]$

- is a differential function that can determine $\phi_1[R]$
- a differential key dependency $\phi_2[K] \rightarrow \phi_1[R]$ with $K \subseteq R$ and $\phi_2[K] \succeq \phi_1[K]$

For example,

- $[\text{position}(\geq 20)]$ is a differential key relative to $[\text{position}(\geq 20) \land \text{area}(\geq 5)]$
- according to the following differential key dependency, $[\text{position}(\geq 20)] \rightarrow [\text{position}(\geq 20) \land \text{area}(\geq 5)]$
Candidate Differential Key

A naïve key relative to $\phi_1[R]$ is $\phi_1[R]$ itself

A candidate differential key (CDK) $\phi_c[K]$ is

- an irreducible differential key relative to $\phi_1[R]$,
- there does not exist any $\phi_2[L]$ such that $L \subseteq K$, $\phi_2[L] \geq \phi_c[L]$ and $\phi_2[L] \rightarrow \phi_1[R]$.

A CDK

- not only has a minimal cardinality as candidate keys on FDs,
- but also should be the one not subsumed by others.

CDKs are useful in applications like data partition
Outline

Introduction

Application

Foundation

Discovery

Conclusion and Future Work
Discovery Problem

Discovery from data

- given a relation instance I
- discover candidate differential keys and minimal cover of differential dependencies that hold in I

The hardness

- a minimal cover of FDs, that hold in a relation instance I, can be exponentially large in the number of attributes
- FDs are considered as special cases of DDs where all the differential constraints are set to $= 0$
- DDs subsume FDs, could be exponentially large as well
Negative Pruning

Motivation: pruning candidates of DDSs, in order to avoid evaluating all possible $\phi_L[X] \rightarrow \phi_R[Y]$ in I

Lemma

For any $\phi_1[V], \phi_2[Z]$ having $V \subseteq Z, \phi_1[V] \succeq \phi_2[V]$, if $I \not\models \phi_2[Z] \rightarrow \phi_R[Y]$, then $I \not\models \phi_1[V] \rightarrow \phi_R[Y]$

Example: if $[\text{name}(\leq 5)] \rightarrow \phi_R[Y]$ not hold in I, then $[\text{name}(\leq 7)] \rightarrow \phi_R[Y]$ not hold either without evaluation in I

Worst case: all the candidates hold in the given instance I
Positive Pruning

Lemma

For any $\phi_1[V], \phi_2[W]$ *having* $W \subseteq V, \phi_2[W] \succeq \phi_1[W]$, *if* $I \models \phi_2[W] \rightarrow \phi_R[Y]$, *then* $I \models \phi_1[V] \rightarrow \phi_R[Y]$.

Example: if $[\text{name}(\leq 7)] \rightarrow \phi_R[Y]$ holds in I, then $[\text{name}(\leq 5)] \rightarrow \phi_R[Y]$ must hold without evaluation in I.

Worst case: all the candidates do not hold in the given instance I.

Hybrid approach with both positive and negative pruning, used by turns.
Instance Exclusion

Motivation: avoiding evaluating the entire I.

- one differential function subsumes another
- the set of tuples agreeing on the former one should be a super set of the latter one

Considers all the pairs of tuples in I.

\[
D(I) = \{ (t_i, t_j) \mid \forall t_i, t_j \in I \}.
\]

Given any DD $\phi_L[X] \rightarrow \phi_R[Y]$, we define $D(I, \phi_L[X], \neg \phi_R[Y]) =$

\[
\{(t_i, t_j) \in D(I) \mid (t_i, t_j) \bowtie \phi_L[X], (t_i, t_j) \not\bowtie \phi_R[Y] \},
\]

that is, the tuple pairs agreeing $\phi_L[X]$ but not agreeing $\phi_R[Y]$.
Instance Exclusion

Lemma

An instance I satisfies a DD, $I \models \phi_L[X] \rightarrow \phi_R[Y]$, iff $D(I, \phi_L[X], \neg \phi_R[Y]) = \emptyset$.

During the discovery, for a candidate $\phi_L[X] \rightarrow \phi_R[Y]$, have to evaluate whether $D(I, \phi_L[X], \neg \phi_R[Y]) = \emptyset$.
Instance Exclusion

Lemma

For any $\phi_1[V], \phi_2[W]$ having $W \subseteq V, \phi_2[W] \succeq \phi_1[W]$, we have $D(I, \phi_1[V], \neg \phi_R[Y]) \subseteq D(I, \phi_2[W], \neg \phi_R[Y])$.

Suppose that a current $D(I, \phi_2[W], \neg \phi_R[Y]) \neq \emptyset$

- instead of considering the entire $D(I)$
- use $D(I, \phi_2[W], \neg \phi_R[Y])$ to compute $D(I, \phi_1[V], \neg \phi_R[Y])$
Experiments

Evaluate the time performance of discovery approaches

- scale well with the increase of tuples in an instance \(I \)
- \(O(n^2) \) with respect to the number of tuples \(n \) in the instance \(I \)
- instance exclusion performs well

Figure: DDs discovery performance on various instance \(I \)
Experiments

- discovery cost increases exponentially in the number of attributes in a schema
- can achieve several orders of magnitude improvement compared with brute-force one

Figure: DDs discovery performance on various schema R
Outline

Introduction

Application

Foundation

Discovery

Conclusion and Future Work
Conclusions

We propose a novel class of dependencies, differential dependencies (DDs), which specify constraints on distance.

Theory

- formal definitions of DDs and differential keys
- subsumption order relation of differential functions
- reasoning about DDs
 - consistency of DDs, NP-complete
 - implication of DDs, co-NP-complete
 - closure of a differential function
 - a sound and complete inference system, proof
 - minimal cover for DDs

Practice

- discovery of DDs and differential keys from data.
- application of DDs and differential keys.
Future Work

Approximate differential dependencies

- “almost” hold in a data instance
- evaluation measure, efficient computation
 - Implication of approximate differential dependencies
 - Hardness analysis of computing error measure
 - Approximation algorithms computing error measure
 - Experiments of approximation validation

Further extensions

- data repairing with DDs
- conditioning DDs in a subset of tuples
- integrity rules in dataspaces
Data Dependencies in the Presence of Difference

Shaoxu Song

Tsinghua University
sxsong@tsinghua.edu.cn
The closure of $\phi_L[X]$ under Σ, $(\phi_L[X])^+$
- is also a differential function
- the intersection of the set of differential functions that can be determined by $\phi_L[X]$ according to DDS in Σ

$$ (\phi_L[X])^+ = \bigwedge \{ \phi_R[Y] \mid \Sigma \models \phi_L[X] \rightarrow \phi_R[Y] \} $$

- the closure of $[\text{name}(\leq 7)]$ under $\{\text{DD}_4, \text{DD}_5\}$ is $[\text{name}(\leq 7) \land \text{address}(\leq 1) \land \text{salary}(\leq 50)]$

It is natural that $\phi_L[X] \rightarrow (\phi_L[X])^+$.
Closure

To imply a DD is essentially to compute the corresponding closure \((\phi_L[X])^+\) of \(\phi_L[X]\)

Lemma

Let \(\Sigma\) be a set of DDs and \(\phi_1[Z] = (\phi_L[X])^+\) be the closure of \(\phi_L[X]\) with respect to \(\Sigma\).

- Consider a DD \(\phi_L[X] \rightarrow \phi_R[Y]\),
- \(\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]\) iff \(Y \subseteq Z\) and \(\phi_R[Y] \supseteq \phi_1[Y]\).

For example,

- [salary(\(\leq 50\))] subsumes the projection on salary of the closure of [name(\(\leq 7\))] under \(\{DD_4, DD_5\}\)
- it implies \(DD_6\) [name(\(\leq 7\))] \(\rightarrow\) [salary(\(\leq 50\))]
Inference System

A1. If $Y \subseteq X$ and $\phi_L[Y] = \phi_R[Y]$, then $\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]$.

A2. If $\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]$, then
$$\Sigma \vdash \phi_L[X] \land \phi_1[Z] \rightarrow \phi_R[Y] \land \phi_1[Z].$$

A3. If $\Sigma \vdash \phi_L[X] \rightarrow \phi_1[Z]$, $\phi_1[Z] \preceq \phi_2[Z]$ and
$$\Sigma \vdash \phi_2[Z] \rightarrow \phi_R[Y],$$
then $\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]$.

A4. If $\Sigma \vdash \phi_L[X] \land \phi_i[B] \rightarrow \phi_R[Y], 1 \leq i \leq k$, and
$$(\Sigma, \phi_1[B] \land \cdots \land \phi_k[B])$$ is inconsistent, then
$$\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y].$$

Theorem

The set \mathcal{I} of inference rules is

- **(sound)**, if $\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]$ then $\Sigma \models \phi_L[X] \rightarrow \phi_R[Y]$,
- **(complete)**, if $\Sigma \models \phi_L[X] \rightarrow \phi_R[Y]$ then $\Sigma \vdash \phi_L[X] \rightarrow \phi_R[Y]$,

for logical implication of DDS.
Example: Inference

Example

We consider a set Σ of DDs as follows:

$$
\begin{align*}
\text{DD}_7 & \quad [d(\geq 1, \leq 7) \land p(<10)] \rightarrow [a(\leq 150)], \\
\text{DD}_8 & \quad [p(\geq 10)] \rightarrow [a(\leq 100)].
\end{align*}
$$

Let DD_9 be another DD

$$
\text{DD}_9 \quad [d(\geq 1, \leq 7)] \rightarrow [a(\leq 150)].
$$

We show that $\Sigma \vdash_{I} \text{DD}_9$ can be proved by the following steps.

1. $[d(\geq 1, \leq 7) \land p(\geq 10)] \rightarrow [d(\geq 1, \leq 7) \land a(\leq 100)]$ by $A2$, DD_8
2. $[d(\geq 1, \leq 7) \land a(\leq 150)] \rightarrow [a(\leq 150)]$ by $A1$
3. $[d(\geq 1, \leq 7) \land p(\geq 10)] \rightarrow [a(\leq 150)]$ by $A3$, 1. 2.
4. $[d(\geq 1, \leq 7)] \rightarrow [a(\leq 150)]$ by $A4$, 3. DD_7
Minimal Cover

A minimal cover Σ_c for Σ is a set of DDs such that Σ_c

- is logically equivalent to Σ, i.e., $\Sigma_c \equiv \Sigma$
- is minimal according to the following properties:

C1. (left-reduced), for any $\phi_L[X] \rightarrow \phi_R[Y] \in \Sigma_c$, there does not exist any $\phi_1[W]$ such that $W \subseteq X$, $\phi_1[W] \succeq \phi_L[W]$ and $\Sigma_c \models \phi_1[W] \rightarrow \phi_R[Y]$.

C2. (right-subsumed), for any $\phi_L[X] \rightarrow \phi_R[Y] \in \Sigma_c$, there does not exist any $\phi_1[W]$ such that $Y \subseteq W$, $\phi_1[Y] \preceq \phi_R[Y]$ and $\Sigma_c \models \phi_L[X] \rightarrow \phi_1[W]$.

C3. (non-redundant), there does not exist a cover Σ' of Σ such that $\Sigma' \subset \Sigma_c$.
Example: Minimal Cover

Consider $\Sigma = \{\text{DD}_4, \text{DD}_5, \text{DD}_6\}$ in Example 2
- a minimal cover can be $\Sigma_c = \{\text{DD}_4, \text{DD}_5\}$
- Σ_c can imply DD_6
- by removing DD_4 or DD_5 from Σ_c, it is no longer a cover of Σ

Consider $\Sigma = \{\text{DD}_7, \text{DD}_8, \text{DD}_9\}$ in Example 9
- a minimal cover can be $\Sigma_c = \{\text{DD}_8, \text{DD}_9\}$
- $\Sigma' = \{\text{DD}_7, \text{DD}_8\}$ is not a minimal cover
- since DD_7 is not left-reduced and can be implied by DD_9 by augmentation rule A2.