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Abstract—The importance of introducing distance constraints
to data dependencies, such as differential dependencies (DDs) [28],
has recently been recognized. The metric distance constraints are
tolerant to small variations, which enable them apply to wide data
quality checking applications, such as detecting data violations.
However, the determination of distance thresholds for the metric
distance constraints is non-trivial. It often relies on a truth data
instance which embeds the distance constraints. To find useful
distance threshold patterns from data, there are several guidelines
of statistical measures to specify, e.g., support, confidence and
dependent quality. Unfortunately, given a data instance, users
might not have any knowledge about the data distribution, thus
it is very challenging to set the right parameters. In this paper, we
study the determination of distance thresholds for metric distance
constraints, in a parameter-free style. Specifically, we compute an
expected utility based on the statistical measures from the data.
According to our analysis as well as experimental verification,
distance threshold patterns with higher expected utility could
offer better usage in real applications, such as violation detection.
We then develop efficient algorithms to determine the distance
thresholds having the maximum expected utility. Finally, our
extensive experimental evaluation demonstrates the effectiveness
and efficiency of the proposed methods.

I. INTRODUCTION

The data collected from different sources are often dirty,

including inconsistencies, conflicts and violations, due to

various errors introduced by humans and machines (see [3]

for a survey). Recently, functional dependencies (FDs) have

been revisited and revised with extensions [5] to capture the

inconsistency in the dirty data [10]. For example, the following

functional dependency fd1 over the Hotel relation specifies a

constraint that for any two tuples in Hotel, if they have the

same Address, then their Region values must be equal.

fd1 : [Address]→ [Region]

The constraints are useful in detecting data violations, a very

important task for data cleaning [9]. For instance, we can use

the above fd1 to detect violations in an instance of Hotel in

Table I. For the tuples t5 and t6 with the equal value on

Address, they have different values of Region, which are then

treated as a violation of the above fd1.

Unfortunately, real-world information often has various

representation formats. The strict equality function limits the

TABLE I
EXAMPLE OF Hotel

ID Name Address Region

01 West Wood Hotel Fifth Avenue, 61st Street Chicago t1
01 West Wood Fifth Avenue, 61st Street Chicago, IL t2
01 West Wood (61) 5th Avenue, 61st St. Chicago, IL t3
22 St. Regis Hotel No.3, West Lake Road. Boston, MA t4
22 St. Regis Hotel #3, West Lake Rd. Boston t5
22 St. Regis #3, West Lake Rd. Chicago, MA t6

usage of FDs (as well as the extensions that are still based

on the equality). For example, according to fd1, the tuples t1
and t2 in Table I will be detected as a “violation”, since they

have “different” Region values but agree on Address. However,

“Chicago” and “Chicago, IL” denote the same region in the

real-world with different representation formats, which are not

violations. Moreover, t4 and t6, which have similar Address

but different Regions, are true violations. Unfortunately, they

cannot be detected by fd1, since their address values are not

exactly equal.

To address small variations in data formats, functional

dependencies have recently been extended by incorporating

distance constraints, namely differential dependencies (DDs)

[28]. Informally, DDs declare the dependencies between the

determinant attributes X and the dependent attributes Y ,

X → Y , with respect to metric distances, such as edit distance

(see [4] for a survey of distance/similarity metrics). In contrast

to the equality function on each attribute as FDs, a DD can

specify a pattern ϕ of distance thresholds on attributes of X
and Y . For example, in Hotel, we may have a DD as

dd1 : ([Address]→ [Region], < 8, 3 >)

where < 8, 3 > is a pattern ϕ of distance thresholds on

Address and Region respectively. It states a constraint on

metric distance: for any two tuples from Hotel, if they have

distance on Address less than a threshold (≤ 8), then their

Region values should be similar as well, i.e., the edit distance

on Region is less than the corresponding threshold (≤ 3).

This study focuses on DDs as a general type of metric

distance constraints, which employ distance metrics on both
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sides of attributes. There are some other notations that specify

distance metrics only in one side [19], [12] and could be

regarded as special cases. Indeed, when all the thresholds

are set to 0, i.e., equality, DDs have the same semantics as

FDs. For instance, the above fd1 can be represented by a

DD ([Address] → [Region], < 0, 0 >). Thereby, FDs are also

special cases of DDs.

Motivation: Unlike FDs, which already imply the equality

function, it is rather difficult to manually determine the proper

settings of distance thresholds for metric distance constraints.

For instance, a DD with a very tight threshold (e.g., close

to 0 as FDs) will be too strict to be tolerant to various

information formats, while a loose threshold (e.g., close to

dmax the maximum distance value) is meaningless since any

data can satisfy it. In light of the dependency discovery from

data [17], we can also rely on a truth data instance to determine

the distance thresholds. The truth data instance is clean without

violations and embeds the distance constraints.

The problem studied in this paper is then to determine the

distance thresholds ϕ for metric distance constraints from the

truth data. Given the attributes X,Y on a data instance, there

are numerous different distance thresholds to choose for the

attributes in DDs. Clearly, not all the settings of thresholds

are useful. Following the evaluation of FDs [18], we may also

study the measures for DDs, in order to indicate how reliable

and useful a metric distance constraint is. As opposed to the

equality function in the previous work, the major difference of

measures for metric distance constraints is about the tolerance

via distance metrics.

Specifically, the utility of metric distance constraints could

be investigated by certain statistical measures including sup-

port, confidence [6] and the unique dependent quality. Let

ϕ[X] and ϕ[Y ] be the projections of thresholds on attributes

X and Y of a distance threshold pattern ϕ.

i) The support of ϕ is the proportion of tuple pairs in the

truth data whose distances satisfy the thresholds in ϕ[XY ] on

both attributes of X and Y . When applying the metric distance

constraints to detect violations in the dirty data, a ϕ with high

support is preferred in order to detect more violations.

ii) The confidence of ϕ is the ratio of tuple pairs satisfying

ϕ[XY ] to the pairs satisfying ϕ[X]. Note that the confidence

measure is analogous to the precision of violation detection.

Thereby, a ϕ with high confidence is preferred.

iii) The dependent quality of ϕ denotes the quality of

tolerance on the dependent attributes Y . It indicates how close

the distance threshold ϕ[Y ] to the equality is. As shown in the

following example, if the dependent quality is low (i.e., ϕ[Y ]
is far away from equality), the constraint is meaningless and

useless.1

First, if the dependent quality is set too high, e.g., ϕ[Y ] = 0,

which is exactly the equality function in FDs, then the con-

straint could be too strict and may identify violations by

mistake as illustrated in the previous example. Consequently,

the confidence measure will be low. On the other hand,

1A large ϕ[X] could be meaningful. See Section III-A for a discussion.

consider a ϕ with the lowest dependent quality, i.e., with

threshold ϕ[Y ] = dmax the maximum distance value. It has

the highest confidence 1.0, since any tuple pairs can always

have distances ≤ dmax on Y . Unfortunately, such a ϕ would

miss all the violations and is useless. For example, we consider

([Address]→ [Region], < 8, dmax >), whose threshold on the

dependent attribute Region is dmax. Since any pair of tuples

always has distance on Region ≤ dmax, the confidence of this

DD is the highest 1.0. However, t4 and t6 in Table I cannot

be detected by such a DD, while these two tuples are true

violations and can be detected by dd1.

Recognize that real applications such as violation detection

need metric distance constraints with high statistical measures,

i.e., high support, high confidence and high dependent quality

at the same time. A straight-forward idea is to specify the

minimum requirements of these three statistical measures by

users, in the determination of distance thresholds. Unfortu-

nately, given a data instance, users may have no idea about

the data distribution. Without any prior knowledge, it might be

difficult to set the parameters of minimum support, confidence

and dependent quality, respectively. As illustrated in the above

examples, setting the requirements of some measures too high

will make the others low.

In this work, we propose methods to determine distance

thresholds in a parameter-free style. Intuitively, our approach

targets on automatically returning those “best” ϕ, i.e., not

existing any other settings that can be found having higher

support, confidence, and dependent quality than the returned

results at the same time. Most important of all, we verified that

these automatically found “best” distance threshold patterns

are indeed more effective than other randomly selected settings

(including FDs) in the application of violation detection.

We further notice that automatically determining the “best”

settings of distance thresholds is non-trivial in terms of compu-

tation cost. Indeed, the determination process has to consider

the combination of distance thresholds in the attributes. There-

fore, we explore several pruning opportunities to speed up the

determination process.

Contributions: To sum up, we make the following contri-

butions in this work.

i) We propose the expected utility of distance threshold

patterns, such that higher support, confidence and dependent

quality will yield a higher expected utility.

ii) We develop efficient pruning algorithms for the distance

threshold determination, together with several advanced prun-

ing bounds with respect to the expected utility.

iii) We conduct an extensive experimental evaluation over

three real data sets. In particular, we evaluate the effectiveness

of returned results in the violation detection application. The

experiments also demonstrate that our pruning strategies can

significantly improve the efficiency of determination.

The remainder of this paper is organized as follows. First,

we introduce some related work in Section II and the pre-

liminary of this study in Section III. Section IV develops the

computation of expected utility, together with analysis on its

properties. In Section V, we present pruning algorithms. Our
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extensive experimental evaluation is reported in Section VI.

Finally, Section VII concludes this paper.

II. RELATED WORK

The notation of differential dependencies (DDs) is first

proposed in [28], together with the corresponding fundamental

issues such as reasoning. The discovery in [28] targets on a

minimal cover of all DDs that exactly hold in a data instance,

while the statistical measures for DDs with respect to the

utility are not studied. Such statistical measures are essential

to tell the importance of a DD. Therefore, in this paper,

we first introduce three statistical measures, i.e., support,

confidence and dependent quality, for DDs. Then, we study

the distance threshold determination problem regarding the

statistical measures, in particular in a parameter-free style.

Besides the differential dependencies considered in this

paper, other notations of metric distance constraints are also

studied. Koudas et al. [19] propose the metric functional

dependencies (MFDs), which employ distance metrics in the

dependent attributes Y but have the equality function in the

determinant side X . Therefore, MFDs can be regarded as spe-

cial cases of DDs, and the threshold determination techniques

proposed in this study can be directly applied to MFDs. Fan et

al. [12] introduce the matching dependencies (MDs) for record

matching, another important aspect of data cleaning. Instead

of detecting data violations as DDs and MFDs do, MDs aim

to identify the duplicates based on the similarity on certain

attributes X . In addition, comparable dependencies (CDs) over

heterogeneous data are also studied in [29], which need the

more complicated schema mapping support. We believe that

the proposed threshold determination techniques could be use-

ful and possibly extended for determining MDs or CDs in the

future work. Indeed, the discovery of data dependencies from

a data instance has been widely studied [21], [26], [20]. Un-

fortunately, since the equality function is usually considered,

these previous works can hardly address the determination of

distance thresholds for metric distance constraints. The most

related work is [27] about MDs discovery. It differs from this

work in two aspects: (1) the determination on metric distance

only needs to be considered in the determinant side X for MDs;

(2) there is no issue about tolerance to address for dependent

attributes in MDs. Most importantly, the previous work needs

to specify the parameters for the measures manually, while the

problem introduced in this study is to determine the distance

thresholds in a parameter-free style.

A dependency rule can be measured in various ways. In the

measures of FDs [17], g3 measure [18] is widely used, that is,

the minimum number of tuples that have to be removed from

the relation instance for the FD to hold. The computation of

g3 measure relies on grouping tuples by equal values, which

cannot be applied to distance metrics on tuple pairs. The

confidence and support measures are also used in evaluating

FDs [6] and conditional FDs [14], [7], [11]. The confidence

can be interpreted as an estimate of the probability that a

randomly drawn pair of tuples agreeing on X also agrees on

Y [6]. In our study, we also utilize support and confidence for

TABLE II
NOTATIONS

Symbol Description

ϕ Pattern of distance thresholds

dmax Maximum distance value

R Original data relation

M Matching relation with matching tuples

C Candidate set of distance threshold patterns DDs

D(ϕ) LHS support of ϕ[X]

S(ϕ) Support of ϕ

C(ϕ) Confidence of ϕ

Q(ϕ) Dependent quality of ϕ

Ū(ϕ) Expected utility of ϕ

metric distance constraints, which are defined based on tuple

pairs. The major difference of measures for metric distance

constraints to the previous work is about dependent quality.

As introduced in the introduction, metric distance constraints

need an additional measure to evaluate the quality of tolerance

in the dependent attributes.

Instead of setting minimum requirements of several mea-

sures, in association rule mining [1], it is also studied to return

the most interesting rules according to the specified measures.

For example, Han et al. [16] indicate that setting minimum

support requirement is quite subtle: a too small threshold may

lead to the generation of thousands of patterns, whereas a too

big one may often generate no answers. Webb and Zhang [31]

study the k-optimal rule discovery, where the leverage is used

as a single value measure instead of support and confidence

separately. Scheffer [25] studies the trade-off between support

and confidence for finding association rules, by computing

an expected prediction accuracy. Compared with the previous

work on mining association rules, our problem for metric

distance constraints is different and more challenging in two

aspects: (1) the support and confidence measures are defined

with respect to the distance in tuple pairs, instead of the group

(set) of identical items in association rules; (2) besides support

and confidence, we have to balance the additional measure of

dependent quality on distance, which is a concept that does not

exist in association rules. Consequently, our expected utility

needs to consider more measures, i.e., support, confidence and

dependent quality, which has more complicated computation

and properties as illustrated in Section IV.

III. PROBLEM STATEMENT

In this section, we first introduce the formal definition

and statistical measures for metric distance constraints, which

raises the problem of determining thresholds with high utility.

Table II lists the frequently used notations in this paper.

A. Preliminary

Consider a relation R. Let X ⊆ R denote a set of

determinant attributes, and Y ⊆ R be a set of dependent

attributes. For each attribute A ∈ X ∪ Y , we associate a
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distance metric dA, e.g., edit distance [24] or cosine similarity

[8] on text, or the metric on numeric data [2]. The selection of

distance metric is out of the scope of this study. Please refer to

[4] for a survey. Let dA(a1, a2) denote the distance between

two values a1 and a2 on attribute A.

A differential dependency (DD) [28], (X → Y, ϕ), specifies

a pattern ϕ of distance thresholds on attributes X and Y ,

also denoted by ϕ[XY ]. The projection ϕ[A] on attribute A ∈
X ∪ Y denotes the distance threshold of A.

A DD states the constraint that, for any two tuples t1 and

t2 in a relation instance r of R, if dAi
(t1[Ai], t2[Ai]) ≤

ϕ[Ai], ∀Ai ∈ X , then it must have dAj
(t1[Aj ], t2[Aj ]) ≤

ϕ[Aj ], ∀Aj ∈ Y, where ϕ[Ai] and ϕ[Aj ] are distance thresh-

olds on the attributes of Ai and Aj respectively.

For example, a DD ([Address] → [Region], < 8, 3 >) in

the Hotel relation specifies the constraint that if two tuples

have similar Address (with edit distance no greater than

ϕ[Address] = 8) then their Region values are also similar

(with edit distance ≤ ϕ[Region] = 3).

Note that the distance thresholds on the determinant at-

tributes X could be large. If ϕ[X] is close to dmax the max-

imum distance value, it states that no matter whether the X
values are similar or not, the constraints on Y can be achieved

anyway. The larger the ϕ[X] is, the weaker the Y side depends

on the similarity of X . When ϕ[X] = dmax, the constraint on

X is unlimited, i.e., any tuple pair can always have distance

≤ dmax. In fact, for any attribute A ∈ R \ (X ∪ Y ) that

does not appear in a DD (X → Y, ϕ), it already implies an

unlimited constraint ϕ[A] = dmax on A. We say that ϕ[Y ] is

independent of A.

B. Statistical Measures

In order to compute the measures of support, confidence and

dependent quality, we define the following statistics. Following

the support and confidence measures defined on tuple pairs [6],

we study the statistics of tuple pairs with respect to metric

distance. Given an instance of relation R with N data tuples,

we conduct a pair-wise matching of all N tuples. The metric

distance of each tuple pair is denoted by a matching tuple b,
where b[A] is the distance of the data tuple pair on attribute

A ∈ R. As illustrated below, for the evaluation of each ϕ,

we have to visit all the tuple pairs once. To avoid the re-

computation among the evaluation of different ϕ, we can pre-

compute the matching tuples from all tuple pairs and store

them for reuse.

Let M be a matching relation with total M = |M| =
N(N−1)

2 matching tuples obtained from the pair-wise match-

ing. If the distance values on X of a matching tuple b can

satisfy the corresponding thresholds ϕ[X], we say that b
satisfies ϕ[X], denoted by b � ϕ[X]. Let count(b � ϕ[X])
denote the total number of matching tuples b ∈ M that can

satisfy ϕ[X]. We introduce the following statistics.

D(ϕ) =
count(b � ϕ[X])

M
(1)

Indeed, D(ϕ) can be regarded as the support of ϕ[X] in the

left-hand-side of ϕ. To illustrate the computation of statistical

measures, we consider the previously used running example

in Table I in the introduction. Since there are 15 tuple pairs

in Table I and 6 of them have distance ≤ 8 on Address, we

have D(dd1) = 6/15 = 0.4.

C(ϕ) =
count(b � ϕ[XY ])

count(b � ϕ[X])
(2)

Moreover, C(ϕ) is exactly the confidence definition of ϕ, i.e.,

the ratio of tuple pairs satisfying ϕ[XY ] to the pairs satisfying

ϕ[X]. For example, in Table I, among 6 pairs of tuples

satisfying ϕ[X] of dd1, there are 4 tuple pairs also having

Region distances ≤ 3. Thereby, the confidence of dd1 is 4/6.

Consequently, the overall support of ϕ is S(ϕ) = C(ϕ)D(ϕ),
i.e., the proportion of tuple pairs whose distances satisfy the

thresholds in ϕ[XY ] on both attributes of X and Y , e.g.,

S(dd1) = 4/15.

Q(ϕ) =

∑
A∈Y dmax − ϕ[A]

|Y |dmax
(3)

Finally, the dependent quality Q(ϕ) denotes the quality of

tolerance in the dependent side, i.e., how the distance thresh-

olds ϕ[Y ] on dependent attributes Y is close to the equality.

Intuitively, as presented in formula 3, the smaller the distance

thresholds on Y are, the higher the dependent quality Q(ϕ)
is. When the distance thresholds are set to the smallest 0, the

dependent quality will be the highest 1.0, i.e., the equality

case. On the other hand, the largest threshold dmax will have

the lowest dependent quality 0.0.

C. Threshold Determination Problem

There are various distance threshold settings that can be

associated to the DDs on X → Y , while only some of

them with high utility are interesting to users, i.e., those

ones with high support, confidence and dependent quality.

The determination process often needs users to specify the

minimum requirements of these three statistical measures.

As mentioned in the introduction, it is difficult to set param-

eters of minimum support, confidence and dependent quality

respectively. Setting some requirements high may lead other

measures to be low. To avoid tuning parameters manually, we

are interested in an overall evaluation of utility.

Let b be any matching tuple. We study the following

prediction probability

U(ϕ) = Pr(b � ϕ[Y ],Q(ϕ) is high | b � ϕ[X]), (4)

i.e., the conditional probability of b satisfying ϕ[Y ] with

high dependent quality given b satisfies ϕ[X]. Intuitively, to

accurately detect the violations with small distance, we expect

the above probability of a ϕ to be high. This U(ϕ) can roughly

denote the utility of confidence and dependent quality, while

support is not investigated.

Therefore, we aim to compute an expected utility to refine

U(ϕ) w.r.t. confidence and dependent quality by using support,

Ū(ϕ) = E(U(ϕ) | C(ϕ),D(ϕ),Q(ϕ)),
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where C(ϕ),D(ϕ) and Q(ϕ) are the statistics observed from

the matching relation M. The computation and properties of

the expected utility are discussed in the following Section IV.

In short, we can find that the expected utility of a ϕ is high

if it has high support, confidence and dependent quality.

Finally, we formulate the determination problem without

manually specifying the individual requirements.

Definition 1. The distance threshold determination problem is

to find a distance threshold pattern ϕ for the DD on X → Y
with the maximum expected utility Ū(ϕ).

IV. COMPUTING EXPECTED UTILITY

In this section, we present the detailed computation steps

of the expected utility, and then analyze the corresponding

properties.

Computation: Given a data instance, we can compute the

statistics C(ϕ),D(ϕ),Q(ϕ) denoted by C,D,Q. According to

the Bayesian rule, we have the expected utility as follows,

Ū(ϕ) = E(U | C,D,Q)

=

∫
uP (U = u | C,D,Q)du

=

∫
u
P (U = u,C,D,Q)

P (C,D,Q)
du

=

∫
u
P (C,Q | U = u,D)P (U = u | D)

P (C,Q | D)
du

=

∫
uP (C,Q | U = u,D)P (U = u | D)du

P (C,Q | D)
.

Consider all possible u values,∫
P (U = u | C,D,Q)du = 1

⇔

∫
P (U = u,C,D,Q)

P (C,D,Q)
du = 1

⇔

∫
P (C,Q | U = u,D)P (U = u | D)

P (C,Q | D)
du = 1

⇔ P (C,Q | D) =

∫
P (C,Q | U = u,D)P (U = u | D)du.

Based on the above two derivations, we have

E(U | C,D,Q) =

∫
uP (C,Q | U = u,D)P (U = u | D)du∫
P (C,Q | U = u,D)P (U = u | D)du

.

P (C,Q | U = u,D) can be modeled exactly as a Binomial

distribution [23], denoted by DCQ ∼ B(D, u). Recall the

definition of Binomial distribution: Consider a set of n objects,

each of which yields success with probability p, then the

probability of k successes in n objects is given by the

probability mass function of Binomial distribution:

f(k;n, p) =

(
n
k

)
pk(1− p)n−k.

In our scenario, we find D instances from the matching relation

M satisfying ϕ[X] (i.e., n = D). Among them, we observed

DCQ instances satisfying ϕ[Y ] with high dependent quality

(i.e., k = DCQ successes). Moreover, according to formula

4, u is the probability of predicting Y with high dependent

quality given X (i.e., p = u). Finally, the probability of

observing C,Q is given by f(DCQ;D, u). Thereby, we can

rewrite the computation formula,

E(U | C,D,Q) =

∫
uf(DCQ;D, u)P (U = u | D)du∫
f(DCQ;D, u)P (U = u | D)du

.

P (U = u | D) is exactly P (U = u), since the utility U is

independent of D which concerns X only. The prior P (U = u)
denotes the distribution of ϕ, i.e., the fraction of ϕ with U = u.

Note that the observed CQ can be interpreted as an estimation

of the prediction probability of utility u, i.e., the probability

of matching tuples that satisfy ϕ[X] also satisfying ϕ[Y ] with

a high dependent quality. Thus, we use the histogram P (CQ)
to estimate P (U = u), which can also be modeled by the

Binomial distribution,

P (U = u) = π(u) = f(u; 1,CQ),

where CQ is the mean of CQ.

Finally, we can compute the expected utility Ū(ϕ) by

Ū(ϕ) = E(U | C,D,Q) =

∫
uf(DCQ;D, u)π(u)du∫
f(DCQ;D, u)π(u)du

. (5)

Property: We discuss the properties of the expected utility,

that is, how the support, confidence and dependent quality

measures of ϕ contribute to the expected utility Ū(ϕ). (All

the proofs of the following lemma, theorem and proposition

can be found in the full version [13].)

Theorem 1. For any ϕ1, ϕ2, if ϕ1 has higher support than

ϕ2, denoted by
S(ϕ1)
S(ϕ2)

= ρ, ρ ≥ 1, and the confidence and

dependent quality of ϕ1 are higher than those of ϕ2 as follows
C(ϕ1)
C(ϕ2)

≥ ρ, Q(ϕ1)
Q(ϕ2)

≥ 1
ρ
, then we have Ū(ϕ1) ≥ Ū(ϕ2).

This conclusion verifies our intuition that higher support,

confidence and dependent quality will contribute to a larger ex-

pected utility. Indeed, to clarify the contributions of measures

clearly, we can fix one of them, and derive the contributions

of the other two measures. For instance, as we will see in

Theorem 2 below, if any ϕ1, ϕ2 have the same D measure,

then the higher confidence and dependent quality of ϕ1 will

yield a higher expected utility Ū(ϕ1) than that of ϕ2.

So far, we have presented the computation of expected

utility with clarification on the corresponding properties. We

are now ready to find the distance threshold patterns for DDs

with the maximum expected utility in a parameter-free style,

instead of studying how to specify the minimum requirements

of several statistical measures.

V. DETERMINATION ALGORITHM

In this section, we study the finding of one (or several)

setting of distance thresholds for the DDs on X → Y with the

maximum expected utility, i.e., ϕmax = argmaxϕ Ū(ϕ). The

determination process has mainly two steps: (i) to find the best

ϕ[Y ] when given a fixed ϕ[X]; (ii) to find the desired ϕ[X]
together with its best ϕ[Y ] which has the maximum Ū(ϕ).
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The previous FDs discovery considers the combination of at-

tributes [17] and targets on minimizing a single measure, such

as g3 [18]. In contrast, we study the determination of distance

thresholds on certain attributes X,Y and aim to maximize the

expected utility with respect to three measures. Recognizing

the major difference and challenges, in the following, we

investigate several pruning methods and bounds, by exploring

the unique features of the expected utility.

A. Determination for Dependent Attributes

First, we consider the determination for the dependent

attributes: given a fixed ϕ[X], to find the corresponding best

ϕ[Y ] on the dependent attributes Y with the maximum Ū(ϕ).
For an attribute A ∈ Y , we can consider the search space

of distance threshold ϕ[A] from 0 to dmax. For example,

supposing that the maximum distance value is 9, we denote

all the distance thresholds as dis = {0, 1, 2, . . . , 9}.
Let CY denote the set of distance threshold patterns ϕ[Y ]

by enumerating all the distance thresholds ϕ[A] ∈ dis for all

the dependent attributes A ∈ Y . For instance, as shown in

Figure 1 (a), each node, such as < 1, 1 >, corresponds to a

ϕ[Y ] ∈ CY . Suppose that two attributes in Y have the same

dis = {0, 1, 2, . . . , 9}. Figure 1 (a) illustrates all the distance

threshold patterns in CY , from < 0, 0 > to < 9, 9 >.

Since ϕ[X] on the determinant attributes X is fixed in the

current step, according to formula 1, the D(ϕ) value is the

same for any ϕ such that ϕ[Y ] ∈ CY . Therefore, we mainly

study the other two measures C(ϕ) and Q(ϕ) in terms of

contributions to the expected utility Ū(ϕ).

Theorem 2. Consider any two ϕ1, ϕ2, having the same

D(ϕ1) = D(ϕ2) = D. If their confidence and dependent

quality satisfy C(ϕ1)Q(ϕ1) ≥ C(ϕ2)Q(ϕ2), then we have

Ū(ϕ1) ≥ Ū(ϕ2).

According to Theorem 2, for a fixed ϕ[X], to find a ϕ with

the maximum Ū(ϕ) is equivalent to find the one with the

maximum C(ϕ)Q(ϕ). For each ϕ[Y ] ∈ CY , we can directly

calculate the dependent quality Q(ϕ) by formula 3. Moreover,

together with the given ϕ[X] on the determinant attributes

X , we can also compute the measure C(ϕ) from M using

formula 2. The result ϕ with the maximum Ū(ϕ) can be found

by one pass through all the ϕ[Y ] ∈ CY .

Algorithm 1 presents the approach of finding the best ϕ[Y ]
for a given ϕ[X] such that the expected utility Ū(ϕ) is

maximized. As mentioned, to find the result, we only need to

compute C(ϕi)Q(ϕi) for each ϕi such that ϕi[Y ] ∈ CY and

ϕi[X] = ϕ[X]. Line 3 in Algorithm 1 computes the C(ϕi)
from M by using formula 2. Let Vmax denote the maximum

value of C(ϕ)Q(ϕ) in the first i− 1 candidates, i.e.,

Vmax =
i−1
max
j=1

C(ϕj)Q(ϕj).

Initially, we can set Vmax = 0. The ϕmax in Line 5 records

the distance threshold pattern with the maximum C(ϕ)Q(ϕ)
value, and will be returned as the result.

Suppose that we consider d values of distance thresholds

in each attribute, i.e., |dis| = d. In this PA approach, we need

Algorithm 1 for Dependent Attributes

PA(M, ϕ[X], Vmax)

1: for each ϕi[Y ] ∈ CY do

2: let ϕi[X] = ϕ[X]
3: compute C(ϕi) from M
4: if C(ϕi)Q(ϕi) > Vmax then

5: ϕmax = ϕi, Vmax = C(ϕi)Q(ϕi)
6: return ϕmax

(a) (b)

Fig. 1. Pruning on dependent attributes

to consider the combination of d distance thresholds in all Y
attributes as the candidate patterns in CY , i.e., |CY | = d|Y | in

size. For each candidate ϕ, there is a costly step to compute

C(ϕ). According to formula 2, for each ϕ, we have to count

the number of matching tuples inM which can satisfy ϕ[XY ].
With the increase of data sizes, the matching relation size

M = |M| will be large as well. The cost O(Md|Y |) of PA is

high. Therefore, we propose the following pruning techniques

to reduce the number of candidates during the computation.

Pruning approach: To study the pruning of pattern candi-

dates, let’s first introduce the relationships between distance

threshold patterns. Consider any attribute set Z of R.

Definition 2. For any ϕ1, ϕ2, if ϕ1[A] ≥ ϕ2[A] holds for all

the attributes, ∀A ∈ Z, then we say that ϕ1[Z] dominates

ϕ2[Z], denoted by ϕ1[Z]� ϕ2[Z].

Figure 1 (a) shows the dominant relationships of candidates

in CY . An arrow from a node ϕ2[Y ] to ϕ1[Y ] denotes that

ϕ1[Y ] dominates ϕ2[Y ], i.e., ϕ1[Y ] � ϕ2[Y ]. We present the

dominant relationships between two neighbor levels. For the

domination between other levels, we can derive them by the

transitivity property, i.e., if ϕ1[Y ]�ϕ2[Y ] and ϕ2[Y ]�ϕ3[Y ],
we have ϕ1[Y ]�ϕ3[Y ] as well. For example, in Figure 1 (a),

< 1, 1 > also dominates < 0, 0 >, which is not shown.

Lemma 1. For any two ϕ1, ϕ2, having ϕ1[X] = ϕ2[X] and

ϕ1[Y ]� ϕ2[Y ], then C(ϕ1) ≥ C(ϕ2) and Q(ϕ1) ≤ Q(ϕ2).

According to Lemma 1, by a downward traversal of candi-

dates in the dominant graph, the dependent quality increases

from 0 to 1. On the other hand, as shown in Figure 1 (b), the

confidence increases from 0 to 1 in an upward traversal.

Consider the current ϕi in traversal of CY . Let ϕmax denote
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the candidate with the maximum C(ϕmax)Q(ϕmax) = Vmax

in the previously processed i− 1 candidates in CY ,

ϕmax = argmaxϕj ,j∈[1,i−1]C(ϕj)Q(ϕj).

We have the opportunity of pruning the following two sets of

remaining ϕk without conducting the costly computation of

C(ϕk):
i) Pruning by ϕmax. The first pruning opportunity is intro-

duced by ϕmax of the previously processed i− 1 candidates.

Proposition 1. For any ϕk[Y ] ∈ CY with Q(ϕk) ≤ Vmax, we

have Ū(ϕmax) ≥ Ū(ϕk).

We identify the candidates that can be pruned according to

Proposition 1. Let

S0 = {ϕk | Q(ϕk) ≤ Vmax, ϕk[Y ] ∈ CY }.

Since confidence is always less than or equal to 1, we have

C(ϕk)Q(ϕk) ≤ Q(ϕk) ≤ Vmax. As illustrated in Figure 1

(b), all the ϕk in S0 can be safely pruned without computing

C(ϕk) from M.

ii) Pruning by ϕi. The second pruning opportunity is

developed according to the current ϕi in i-th step.

Proposition 2. For any ϕk[Y ] ∈ CY with ϕi[Y ]�ϕk[Y ] and

Q(ϕk) ≤
Vmax

C(ϕi)
, we have Ū(ϕmax) ≥ Ū(ϕk).

Similarly, the candidates that can be pruned according to

Proposition 2 are represented by

S1 = {ϕk | ϕi � ϕk,Q(ϕk) ≤
Vmax

C(ϕi)
, ϕk[Y ] ∈ CY },

as shown in Figure 1 (b). According to ϕi[Y ]�ϕk[Y ], we have

C(ϕk) ≤ C(ϕi). It implies C(ϕk)Q(ϕk) ≤ C(ϕi)Q(ϕk) ≤
Vmax. Therefore, all the ϕk in S1 can be safely pruned as

well, without computing C(ϕk).
Based on the above two propositions, we develop Algorithm

2, namely PAP, which prunes the candidates of S0 and S1 when

passing through each ϕi ∈ CY . The operation prune(ϕ, q)

removes all the patterns dominated by ϕ from the candidate set

CY , whose dependent quality Q(ϕk) is less than or equal to q.

For example, in Line 7, prune(ϕi,
Vmax

C(ϕi)
) removes patterns ϕ

in S1 from CY , according to Proposition 2. Note that any ϕk is

dominated by ϕ0, ϕ0[Y ]�ϕk[Y ], where ϕ0 has ϕ0[A] = dmax

for each attribute A ∈ Y . Therefore, in Line 6, we can also

use the same function prune(ϕ0, Vmax) to prune the set S0,

according to Proposition 1.

Finally, we discuss the processing orders of candidates in

CY . Heuristically, in order to maximize the pruning power, we

would like to find the largest Vmax as early as possible. As

illustrated in Figure 1, if we first process patterns in the top, the

corresponding dependent quality is small (≈ 0), which leads

to a small Vmax, indicating weak pruning power. On the other

hand, when the patterns in the bottom are processed first, the

corresponding Vmax is also small due to the low confidence (≈
0). Therefore, during the processing, we heuristically choose

the patterns in the middle to be processed first, namely mid-

first order in CY .

Algorithm 2 for Dependent Attributes with Pruning

PAP(M, ϕ[X], Vmax)

1: for each ϕi[Y ] ∈ CY do

2: let ϕi[X] = ϕ[X]
3: compute C(ϕi) from M
4: if C(ϕi)Q(ϕi) > Vmax then

5: ϕmax = ϕi, Vmax = C(ϕi)Q(ϕi)
6: prune(ϕ0, Vmax) {remove patterns in S0 from CY }
7: prune(ϕi,

Vmax

C(ϕi)
) {remove patterns in S1 from CY }

8: return ϕmax

B. Determination for Determinant Attributes

Next, we consider all possible distance threshold patterns

of the determinant attributes X , say CX , and find a ϕ with the

maximum Ū(ϕ). The straight-forward approach is to compute

the best ϕ[Y ] for each ϕ[X] ∈ CX respectively by using PA,

and then return the one with the maximum Ū(ϕ).
Algorithm 3 presents the straight-forward computation of a

distance threshold ϕmax with the maximum expected utility.

For each ϕi[X] ∈ CX , Line 3 computes D(ϕi) from M by

using formula 1. By calling the PA or PAP algorithm, we can

compute the best ϕi[Y ] with respect to the current ϕi[X].
For the initial bound Vmax, as mentioned before, we can set

Vmax = 0 as illustrated in Line 4. Finally, the expected utility

Ū(ϕi) of each ϕi in Line 5 is computed by using formula 5

as presented in Section IV. Here, Umax records the maximum

expected utility in the first i− 1 candidates,

Umax =
i−1
max
j=1

Ū(ϕj).

Initially, we set Umax = 0. The returned ϕmax is the distance

threshold pattern with the maximum expected utility Umax.

Algorithm 3 for Determinant Attributes

DA(M)

1: Umax = 0
2: for each ϕi[X] ∈ CX do

3: compute D(ϕi) from M
4: compute ϕi[Y ] by PA(M, ϕi[X], 0)

5: Ū(ϕi) = E(U(ϕi) | C(ϕi),D(ϕi),Q(ϕi))
6: if Umax < Ū(ϕi) then

7: ϕmax = ϕi, Umax = Ū(ϕi)
8: return ϕmax

Again, considering all d distance threshold values in each

attribute, there are d|X| and d|Y | candidates in set CX and CY
respectively. Let c = |X|+|Y | be the total number of attributes

in X and Y . The total number of candidates evaluated in the

algorithm is |CX×CY | = dc. Note that for each candidate, we

have to traverse the matching relation M in order to compute

corresponding measures such as confidence. Therefore, the

entire complexity of the approaches, e.g., DA+PA, is O(Mdc),
where M is the total number of matching tuples in M. Note

that pruning version PAP can be applied to replace the basic

approach PA, namely DA+PAP.
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Advanced pruning bound using ϕmax: The most costly

part of the above DA algorithm is still the computation of

ϕi[Y ] by using PA or PAP, which traverses M frequently. As

mentioned, in order to improve the pruning power of PAP, we

expect to find a larger pruning bound Vmax. Let’s first study

the following properties in terms of the expected utility.

Theorem 3. Consider any two ϕ1, ϕ2, having D(ϕ1) ≥
D(ϕ2). If their confidence and dependent quality satisfy

C(ϕ2)Q(ϕ2) ≤ 1−
D(ϕ1)

D(ϕ2)

(
1− C(ϕ1)Q(ϕ1)

)

then we have Ū(ϕ1) ≥ Ū(ϕ2).

Intuitively, we can prune those ϕ2 whose C(ϕ2)Q(ϕ2) is

no higher than 1 − D(ϕ1)
D(ϕ2)

(
1 − C(ϕ1)Q(ϕ1)

)
, i.e., the new

pruning bound Vmax. To apply this pruning bound, we require

a precondition D(ϕ1) ≥ D(ϕ2).
Therefore, we can adopt an ordering of candidates in CX

having D(ϕi1) ≥ D(ϕi2) for any i1 < i2. The ordering can

be done in linear time by amortizing the D(ϕ) values into a

constant domain. In the following algorithms, we assume that

the candidates in CX have already been listed in descending

order of D(ϕ) values.

Let ϕmax be the current result with the maximum expected

utility by evaluating the first i−1 candidates in CX . Since we

process CX in descending order of D(ϕ) values, for the next

ϕi, we have D(ϕmax) ≥ D(ϕi). According to Theorem 3, we

can compute an advanced pruning bound

Vmax = 1−
D(ϕmax)

D(ϕi)

(
1− C(ϕmax)Q(ϕmax)

)
(6)

for the computation of ϕi[Y ] by using PAP, in the current ϕi.

Algorithm 4 extends Algorithm 3 by introducing the ad-

vanced pruning bound Vmax instead of simply assigning

Vmax = 0 in the original DA. We compute the advanced

pruning bound in Line 4 by using formula 6, and use this

Vmax for pruning in the determination on dependent attributes

Y (Line 5). Note that all candidates in CY might be pruned

in PAP by the advanced Vmax, i.e., no ϕi[Y ] returned (Line

6). Then, the current ϕi[X] can be discarded safely without

computing the corresponding Ū(ϕi).

Algorithm 4 for Determinant Attributes with Pruning

DAP(M)

1: Umax = 0
2: for each ϕi[X] ∈ CX do

3: compute D(ϕi) from M

4: Vmax = 1− D(ϕmax)
D(ϕi)

(
1− C(ϕmax)Q(ϕmax)

)
5: compute ϕi[Y ] by PAP(M, ϕi[X], Vmax)

6: if ϕi[Y ] exists then

7: Ū(ϕi) = E(U(ϕi) | C(ϕi),D(ϕi),Q(ϕi))
8: if Umax < Ū(ϕi) then

9: ϕmax = ϕi, Umax = Ū(ϕi)
10: return ϕmax

Recall that when the advanced pruning bound is not avail-

able, i.e., Vmax = 0 initially in DA+PAP, we use a mid-first

order to process candidates in CY in order to find a large Vmax

as early as possible. However, we now already calculate an

advanced pruning bound Vmax > 0 in DAP. Heuristically, in

order to prune more candidates, we would like to process those

ones in CY which can dominate more candidates, according to

the prune operator in PAP. For example, we can use a top-first

order, which first processes candidates in the top, since the top

candidates (e.g., < 9, 9 > in Figure 1 (a)) always dominate

the bottom ones. Therefore, in the DAP+PAP approach with

advanced pruning bounds, the top-first processing order of can-

didates in CY is preferred to achieve better time performance,

which is also verified by our experiment results in Table V.

If the calculated bound Vmax is less than 0, we can simply

assign 0 to it. Once the bound is Vmax > 0, it can achieve a

tighter pruning bound. Therefore, practically, the worst case

of DAP is exactly the basic DA algorithm. In fact, as we

can find, Theorem 2 is a special case of Theorem 3 when

D(ϕ1) = D(ϕ2). In other words, theoretically, the advanced

pruning (e.g., DAP+PAP) developed based on Theorem 3

is a generalization of the basic pruning DA+PAP based on

Theorem 2. Our experiments in Section VI also verify that

DAP+PAP is at least no worse than DA+PAP.

Algorithm Extensions: When users require more than one

answer for specific applications, the proposed algorithms can

be easily extended to find the distance threshold patterns with

second or third or l-th largest expected utilities. Specifically,

instead of the maximum C(ϕ)Q(ϕ), we use Vmax to denote the

l-th maximum C(ϕ)Q(ϕ) in Algorithms 1, 2 and so on. Then,

the return results are a set of l patterns of distance thresholds

with the largest expected utilities. Since we relax Vmax from

the 1st maximum to l-th maximum, the pruning power will be

weaker with the increase of l. We report the time performance

on different answer sizes l in the experiments.

VI. EXPERIMENTAL EVALUATION

We now report the experimental evaluation of the proposed

methods. All the algorithms are implemented by Java. The

experiment evaluates on a machine with Intel Core 2 CPU

(2.13 GHz) and 2 GB of memory. We use three real data sets.

The Cora2 data set, prepared by McCallum et al. [22], consists

of records of research papers, such as author, title, year,

publisher, etc. The Restaurant3 data set consists of restaurant

records including attributes name, address, city and type. The

CiteSeer4 data set is selected with attributes including address,

affiliation, subject, description, etc. During the preprocessing,

we use edit distance with q-grams [15] to evaluate the distance

of tuples in the original data. After pair-wised computation,

we have up to 1,000,000 matching tuples in the matching

relation M for each data set. The proposed techniques are

then evaluated on the prepared matching relation M.

2http://www.cs.umass.edu/~mccallum/code-data.html
3http://www.cs.utexas.edu/users/ml/riddle/data.html
4http://citeseer.ist.psu.edu/
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TABLE III
EFFECTIVENESS OF EXAMPLE RESULTS FROM RULE 1

ϕ[X] ϕ[Y ] Measures Violation Detection

author title venue year S(ϕ) C(ϕ) Q(ϕ) Ū(ϕ) Precision Recall F-measure

ϕ1 4 1 3 1 0.1529 0.3760 0.80 0.2325 0.3725 0.5425 0.4418

ϕ2 5 2 3 1 0.1764 0.3667 0.80 0.2296 0.3718 0.6266 0.4667

ϕ3 5 1 3 2 0.1632 0.3774 0.75 0.2232 0.3179 0.4492 0.3723

ϕ4 4 2 3 2 0.1657 0.3657 0.75 0.2188 0.3073 0.4457 0.3638

ϕ5 4 1 4 2 0.1529 0.3852 0.70 0.2108 0.2654 0.3267 0.2928

ϕ6 5 2 5 2 0.1764 0.3985 0.65 0.2106 0.2459 0.3337 0.2831

fd 0 0 0 0 0.0064 0.3595 1.00 0.1064 0.4315 0.0735 0.1256

TABLE IV
EFFECTIVENESS OF EXAMPLE RESULTS FROM RULE 3

ϕ[X] ϕ[Y ] Measures Violation Detection

name address city type S(ϕ) C(ϕ) Q(ϕ) Ū(ϕ) Precision Recall F-measure

ϕ1 10 7 5 10 0.2396 0.7967 0.25 0.1666 0.4889 0.3267 0.3917

ϕ2 10 8 5 10 0.3467 0.7040 0.25 0.1577 0.3650 0.4137 0.3879

ϕ3 10 7 1 10 0.2396 0.4106 0.45 0.1454 0.3305 0.3274 0.3289

ϕ4 10 9 5 10 0.4709 0.6001 0.25 0.1344 0.2663 0.4782 0.3421

ϕ5 10 8 2 10 0.3467 0.3640 0.40 0.1267 0.2675 0.4137 0.3249

ϕ6 10 6 3 10 0.1333 0.4711 0.35 0.1182 0.4212 0.2082 0.2787

fd 0 0 0 0 0.0002 0.1219 1.00 0.0611 0.4062 0.0091 0.0178

In the experiments, suppose that users want to determine

the distance thresholds for the metric distance constraints on

the following X → Y attributes,

Rule1 : cora(author, title→ venue, year)

Rule2 : cora(venue→ address, publisher, editor)

Rule3 : restaurant(name, address→ city, type)

Rule4 : citeseer(address, affiliation, description→ subject)

where Rule 2 has a larger Y while Rule 4 has a larger X .

A. Result Study

The first experiment illustrates some example results of

distance threshold patterns, and evaluates the effectiveness of

applying them in the application of violation detection. To

evaluate the detection accuracy, we use the measures of pre-

cision, recall and f-measure [30]. Let truth be the set of tuple

pairs with violations that are manually inserted in random. Let

found be the set of tuple pairs detected by applying the DDs.

We have precision = |truth∩found|
|found| , recall = |truth∩found|

|truth| , and f-

measure= 2 · precision·recall
precision+recall

. The precision measure denotes

the soundness and the recall means the completeness, while

the f-measure is the overall accuracy. It is natural that higher

precision, recall and f-measure are preferred.

Tables III and IV illustrate the example results on Rules

1 and 3, respectively. Each row denotes a ϕ with distance

thresholds ϕ[X], ϕ[Y ] on attributes of X and Y respectively.

We present the corresponding measures of support S(ϕ), con-

fidence C(ϕ), dependent quality Q(ϕ), as well as the expected

utility Ū(ϕ). The results ϕi are listed in the descending order

of Ū(ϕ). In the last row, we also report the corresponding FDs,

where the distance threshold is 0 for each attribute.

Note that the results in Table IV show the interesting case

of independence. The distance thresholds of attributes name

and type are 10 in all the results, which is considered as

the maximum distance value. It implies that there is no clear

dependency relationship with respect to the name and type of

Restaurants, while the similarity of city could be dependent on

the similarity of address. By applying these DDs, we cannot

detect the violations on type. Moreover, the similarity of name

could not help in detecting the violations in city. Nevertheless,

Table IV presents the best results in terms of the expected

utility over the address and city attributes, since no dependency

could be found on name and type.

The results also verify our property analysis of expected

utility. According to Theorem 1, if a ϕ (e.g., with ϕ2 in

Table III) has higher support, confidence and dependent quality

than another (e.g., ϕ4 in Table III) at the same time, then

the expected utility of ϕ2 must be higher than that of ϕ4.

As observed in Table III, we have Ū(ϕ2) ≥ Ū(ϕ4), which

verifies our analysis of expected utility properties in Section

IV. Consequently, it is ensured that there does not exist any ϕ
which has higher support, confidence and dependent quality

at the same time than the returned ϕ1 with the maximum

expected utility.

The application of violation detection demonstrates the ef-

fectiveness of expected utility. As shown in Tables III and IV,

the overall accuracy of detection (f-measure) approximately

decreases with the decrease of the expected utility Ū(ϕ). It

indicates that the expected utility can reflect the usefulness of
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Fig. 3. Generation for dependent attributes

metric distance constraints in the application. Although some

of the measures of a ϕ are higher, e.g., ϕ6 in Table III with

support 0.1764 and confidence 0.3985, the detection accuracy

(f-measure) is still low due to the poor dependent quality of ϕ6.

This result also confirms that manually setting requirements of

three measures could miss better results.

Finally, as shown in Tables III and IV, although the depen-

dent quality is high in FD, due to the low support, the expected

utility of FD is lower than DDs. Consequently, the detection

effectiveness (f-measure) of FD is poor.

B. An Overview of Time Performance

Next, we evaluate the time performance of the proposed

determination and pruning techniques. Since our proposed

pruning techniques are proved (in fact also observed in the

experiments) to be safe without missing answers or introduc-

ing errors, the returned results by different approaches are

exactly the same. Therefore, in the following, we focus on

the efficiency evaluation of the proposed techniques on various

data sizes, up to 1,000,000 matching tuples. The compared ap-

proaches include the basic DA+PA, the basic pruning DA+PAP,

the advanced pruning DAP+PAP. Note that advanced pruning

bounds have no contribution to the algorithm PA without

pruning techniques. Thus, approaches such as DAP+PA are

equivalent to DA+PA, and omitted in this evaluation. Please

refer to Section VI-C below for the additional results on

evaluating the individual methods, such as PA vs. PAP.

Figure 2 reports the time cost of returning answers with

the largest Ū. First, the time cost of approaches increases

linearly with the data size, which shows the scalability of our

determination methods. Although some specific tests may vary

slightly in time cost due to the different data distribution and

pruning power, the linear trend can still be clearly observed.

This linear result with respect to the number of matching

tuples M is not surprising, according to the complexity of

determination algorithms O(Mdc) as illustrated in Section V.

Moreover, our pruning techniques work well for different

rules and can reduce the time cost significantly in all data sizes.

i) The pruning approach PAP of determination for dependent

attributes shows lower time costs than the basic one PA. For

example, in Rule 1, with the same DA method, the DA+PAP

shows significantly lower time cost than the original DA+PA.

ii) The DAP+PAP approach can provide a pruning bound that

is at least no worse than the DA+PAP one. For instance, under

the same PAP, the results in Rule 1 show better performance

of DAP than DA, while Rule 3 verifies that the DAP is at least

no worse than the DA. These results demonstrate the efficiency

of the proposed pruning techniques, especially the superiority

of the advanced DAP+PAP approach.

C. Evaluation on Specific Steps

In this experiment, we demonstrate the detailed results by

applying different methods in specific steps. As mentioned in

Section V, our algorithms can be easily extended to find the

l-largest expected utility answers, which offer more options

to users. Therefore, the following additional experiments also

evaluate the performance on various l-th largest results, in-

cluding the 1st largest.

Determination for Dependent Attributes: We first study

the PA and PAP algorithms for determination in dependent

attributes Y in Figure 3. The basic PA algorithm has to traverse

all the candidates on Y without any pruning. Therefore,

as shown in Figure 3, no matter how many l answers are

requested, the PA approach has the same time cost. Meanwhile,

the PAP approach can significantly reduce time cost by pruning

candidates based on Propositions 1 and 2.

On the other hand, however, with the increase of the answer

size l, the corresponding l-th largest expected utility value

decreases, that is, the pruning bound is relaxed and the pruning

power is weaker. Therefore, as presented in Figure 3, time cost

of PAP increases with a larger answer size l.
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Fig. 4. Pruning power evaluation
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Fig. 5. Generation for determinant attributes

Moreover, the pruning power of the PAP algorithm is af-

fected by the confidence and dependent quality measures, i.e.,

affected by data distribution. Therefore, PAP shows different

improvement of time cost in four rules tests. In particular, Rule

2, which has more attributes in the dependent side, may have

more opportunities of pruning by PAP. Consequently, as shown

in Figure 3, the PAP can achieve a significant improvement in

Rule 2. In fact, as discussed in the following experiments, the

pruning bounds calculated by different techniques may show

different performance as well.

Determination for Determinant Attributes: Recall that

algorithms for determinant attributes, DA and DAP, contribute

different pruning bounds. In order to evaluate the pruning

power of these approaches, Figure 4 observes the pruning rate,

i.e., the proportion of candidates that can avoid computation.

For example, a pruning rate 0.9 denotes that 90% candidates

can be safely pruned without computation. Obviously, the

higher the pruning rate is, the lower time cost will be. We

illustrate the time performance of DA and DAP algorithms for

determinant attributes X in Figure 5.

First, the basic DA algorithm initially assigns Vmax = 0 as

the pruning bound, while the advanced DAP uses the current

ϕmax to calculate a larger pruning bound (≥ 0). Therefore,

the pruning power of DAP is stronger than the basic DA as

illustrated in Figure 4, and consequently shows better time

performance in Figure 5.

Note that the pruning rates of Rule 2 are already very

high (greater than 0.9). Therefore, even by applying advanced

techniques, we cannot achieve much better pruning bounds

anymore. The corresponding time cost is then similar as well.

Moreover, although the DAP approach shows quite similar

pruning power to the basic DA in Rules 3 and 4, as we

discussed in Section V, the DAP algorithm is at least no worse

than DA.

Processing Order in CY : Now, we discuss the processing

orders of candidates in CY , i.e., the mid-first order and the

TABLE V
TIME COST (S) OF VARIOUS PROCESSING ORDER IN CY

l-th largest Mid-first in PAP Top-first in PAP

DA DAP DA DAP

1 34.20 23.21 34.40 18.50
2 37.60 24.92 39.00 20.40
3 39.93 25.90 41.36 21.15
4 41.26 26.75 42.96 21.93
5 42.23 28.73 44.11 23.90
6 44.14 28.95 46.18 24.53
7 44.93 29.70 47.79 25.06

top-first order. Table V presents the time cost of different

approaches with these two orders, in the Rule 1 test. Similar

conclusions can also be observed in other rules.

As discussed in Section V, when the pruning bound is

initially set to Vmax = 0 in the DA+PAP approach, the mid-

first order is preferred in order to find a large Vmax as early as

possible. Therefore, as presented in Table V, DA with mid-first

order in PAP (column 2) has lower time cost than the top-first

one (column 4), under all answer size l. On the other hand,

if advanced pruning bound Vmax > 0 is calculated by DAP,

then we can use the top-first order to prune more candidates

in CY . Consequently, the top-first order of PAP shows better

performance than the mid-first one, in approaches together

with DAP. Nevertheless, the DAP+PAP with top-first order can

always achieve the lowest time cost, and the improvement of

mid-first order in DA+PAP is not as significant as the DAP+PAP

approaches as well. Thereby, we could use top-first order in

most cases.

Scalability on l-th Largest: Finally, we also study the

efficiency of determining l-largest expected utility answers

over various data sizes. Here, we only report the result of

5-th largest Ū answers in Figure 6. Similar conclusions are

observed in other l sizes. Again, since there is no pruning of

the DA+PA approach, the time cost of DA+PA in Figure 6 is
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Fig. 6. Scalability on data sizes (return 5-th largest Ū)

the same as Figure 2 of the 1st largest. The improvement of

pruning like DA+PAP in Figure 6 is not as significant as that of

1st largest answers. For example, in Rule 1 with 1m data size,

DA+PAP has an improvement about 2200 (from 5500 to 3300)

in Figure 2, while the corresponding improvement is only

about 1500 (from 5500 to 4000) in Figure 6. Nevertheless,

DAP+PAP can still keep the lowest time cost in all the test in

Figure 6.

VII. CONCLUSIONS

Motivated by the utility of differential dependencies (DDs)

in real applications like violation detection, in this paper, we

study the problem of determining the distance thresholds for

metric distance constraints from data. Instead of manually

specifying requirements of various statistical measures, we

conduct the determination in a parameter-free style, i.e., to

compute an expected utility of the distance threshold pattern

and return the results with the maximum expected utility. Sev-

eral advanced pruning algorithms are then developed in order

to efficiently find the desired distance thresholds. Finally, the

experimental evaluation on three real data sets demonstrates

the performance of our proposed methods. In particular, we

evaluate the effectiveness of returned results in the violation

detection application, and show that the pruning techniques

can achieve lower time cost.
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