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Abstract
To save the labeling efforts for training a classi-
fication model, we can simultaneously adopt Ac-
tive Learning (AL) to select the most informative
samples for human labeling, and Semi-supervised
Learning (SSL) to construct effective classifiers us-
ing a few labeled samples and a large number of
unlabeled samples. Recently, using Transfer Learn-
ing (TL) to enhance AL and SSL, i.e., T-SS-AL,
has gained considerable attention. However, exist-
ing T-SS-AL methods mostly focus on the situa-
tion where the source domain and the target domain
share the same classes. In this paper, we consider
a more practical and challenging setting where the
source domain and the target domain have different
but related classes. We propose a novel cross-class
sample transfer based T-SS-AL method, called CC-
SS-AL, to exploit the information from the source
domain. Our key idea is to select samples from the
source domain which are very similar to the target
domain classes and assign pseudo labels to them for
classifier training. Extensive experiments on three
datasets verify the efficacy of the proposed method.

1 Introduction
Generally, training effective classifiers require adequate la-
beled samples. However, manual label annotation is expen-
sive and time consuming. To save labeling efforts, two learn-
ing strategies have been widely adopted. The first is Active
Learning (AL) [Settles, 2009] which selects the most infor-
mative samples for labeling from a large pool of unlabeled
samples. With the elaborate selection, even a few samples
can provide sufficient information for supervised learning.
The second is Semi-supervised Learning (SSL) [Zhu, 2005]
which trains classifiers using both labeled and unlabeled sam-
ples. Using the information from a large number of unla-
beled samples, SSL can achieve promising performance giv-
en a small number of labeled samples. Based on the pow-
er of AL and SSL, recent studies have demonstrated that
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the combination of these two strategies, i.e., Semi-supervised
Active Learning (SS-AL), leads to better performance than
either of them [Leng et al., 2013; Zhang et al., 2014;
Wang et al., 2016], and SS-AL has been applied to many ap-
plications, like document analysis [Bouguelia et al., 2013],
image classification [Tang et al., 2012] and retrieval [Feng
et al., 2012], and sentiment classification [Zhou et al., 2013].

Besides the target task and the corresponding samples,
some auxiliary data sources are always available. For exam-
ple, when our goal is to train an object recognizer/detector
for YouTube videos, we can collect some images from Flickr
which are similar to the target object and able to help train
the model. In fact, by transferring the knowledge from aux-
iliary data sources (the source domain) into the target task
(the target domain), the performance of the model can be fur-
ther improved. This learning strategy is termed as Transfer
Learning (TL) [Pan and Yang, 2010]. Motivated by the suc-
cess of transfer learning, some attempts [Li et al., 2012; 2013;
Chattopadhyay et al., 2013] have been made to simultaneous-
ly build classifiers in the target domain by SS-AL, and trans-
fer knowledge from other source domains, called Transfer
Semi-supervised Active Learning (T-SS-AL). T-SS-AL can
significantly reduce the number of labeled samples in the tar-
get domain and achieve satisfactory performance simultane-
ously. However, existing T-SS-AL methods mostly require
the classes in the source domain and the target domain to be
identical. It is noted that this requirement is too demanding in
many cases. For example, when we want to train image clas-
sifiers for some uncommon classes, like “lophius litulon” and
“euchoreutes naso”, it is very difficult, if not impossible, to
collect auxiliary samples exactly belonging to the same class-
es. On the other hand, collecting auxiliary images from some
other classes, like “dolphin” and “rabbit” is relatively easi-
er. Under such circumstances, transferring knowledge across
different classes can further enhance the power of T-SS-AL
because the class limitation to the source domain is relaxed.

1.1 Motivation and Contribution
In this paper, we investigate T-SS-AL under the cross-class
setting where the classes in the source domain and the tar-
get domain are different but related. To transfer knowledge
across classes, we propose a sample transfer method based
on the sample-class similarity. We observe that some sam-
ples from other auxiliary classes can contribute to the proper-
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Figure 1: Observation and motivation.

ty description of a target class. To demonstrate this, we select
some images from CIFAR10 [Krizhevsky, 2009] and visu-
alize them by tSNE [Van der Maaten and Hinton, 2008] in
Figure 1. Here, we suppose we are constructing a dog truck
classifer. In Figure 1(a), we can observe that if some labeled
images from cat and car are available, they can well capture
the characteristics of dog and truck. In fact, if we directly as-
sign pseudo labels “dog” to all cat images, and “truck” to all
car images and then train a linear SVM classifier with them,
the classification accuracy is 92.8% for dog and truck. In Fig-
ure 1(b), we use labeled samples from “deer” and “plane” for
evaluation. Although the distributions in the source domain
and the target domain vary a lot, we can still observe that
many (not all) samples in the source domain are very simi-
lar to “dog” and “truck”. If we select these similar samples
(which will be introduced detailedly later) and assign pseudo
labels to them, the obtained classifier produces 92.4% accu-
racy. The result indicates that we do not need the samples
exactly belonging to the target classes, and samples which
are similar enough to the target classes (e.g., a cat image to
the class “dog”) can yield effective target domain classifiers.

To take the advantage of cross-class description as shown
above,, we propose a novel method based on cross-class sam-
ple transfer, called CC-SS-AL. The key idea is to “borrow”
samples from source domain for each target class and assign
the corresponding pseudo labels. Then, the selected samples
are regarded as the labeled samples in target domain and the
classification model is trained using both the transferred sam-
ples and the labeled target domain samples. To select good
samples, we adopt feature semantic embedding [Socher et
al., 2013] which maps samples and class labels into a com-
mon semantic space where the similarity between samples
and labels can be directly measured. Then, based on the
sample-class similarity and the separability, some samples
in the source domain are selected to assign pseudo labels.
With the transferred samples, SS-AL is performed by training
semi-supervised classifiers in the target domain and selecting
samples for human labeling by the graph based uncertainty
sampling. In summary, we make the following contributions.

• We extend T-SS-AL into a challenging cross-class set-
ting where the classes in the source domain and the tar-
get domain are different. By transferring samples across
classes, the labeling effort can be significantly reduced.
• A novel sample transfer based method, CC-SS-AL, is

proposed. Samples in the source domain are selected

and assigned pseudo labels from the target domain. The
sample selection procedure is based on the sample-class
similarity and separability such that the selected samples
can well capture the characteristics of the target classes.

• We carry out comprehensive empirical analysis on three
benchmark datasets. The results show that the proposed
CC-SS-AL requires much fewer labeled samples in the
target domain than the conventional SS-AL methods to
achieve the same accuracy, which validates its effecacy.

2 Background
Active Learning assumes that the learning system is allowed
and able to select samples from a large unlabeled pool for hu-
man labeling. In fact, the information in samples is different
and thus even a few labeled samples can provide sufficient
information if they are the most informative ones. General-
ly, the informativeness is measured by representativeness [Yu
et al., 2006], i.e., the samples that best fit the data distribu-
tion are selected, or uncertainty [Yang et al., 2014], i.e., the
samples that the current system is most uncertain about are
selected. The latter, i.e., uncertainty sampling, has attracted
much attention recently and we also make use of this strategy.

As the large unlabeled pool is available during the whole
active learning procedure, we can utilize not only the labeled
samples, but also a large number unlabeled samples for clas-
sifier training, which is a semi-supervised schema. Some
representative Semi-supervised learning algorithms are trans-
ductive SVM [Joachims, 1999] and Laplacian SVM [Belkin
et al., 2006]. Recent studies further investigate the combi-
nation of SSL and AL, leading to SS-AL. Leng et al. [2013]
made use of the complementarity between SSL and AL and
proposed a SS-AL method which queried the most uncertain
samples and trained SVM with the labeled samples and the
unlabeled class central samples. Tang et al. [2012] proposed
to use the sparse-graph-based SSL method in AL. Wang et
al. [2016] proposed to combine manifold regularization and
AL. They showed that SS-AL can yield better results than
either SSL or AL using the same number of labeled samples.

In many real-world applications, auxiliary data sources
which have abundant label information are available and we
can utilize them to improve the learning in the target domain.
By simultaneously transferring knowledge to the target do-
main and selecting the most informative samples for human
labeling, several T-SS-AL methods have be proposed recent-
ly. Shi et al. [2008] proposed to use the transferred knowl-
edge as often as possible and the human labeling was trig-
gered only when necessary. Li et al. [2012] proposed to find
a shared common space for different domains such that the
knowledge can be effectively transferred. Chattopadhyay et
al. [2013] proposed to simultaneously reweight the source do-
main samples and select target domain samples to minimize
the distribution difference between the two domains. Li et
al. [2013] proposed to construct two classifiers for the source
domain and the target domain respectively and the final clas-
sification was performed based on both classifiers. It is noted
that existing T-SS-AL methods mostly require the richly la-
beled source domain to have the same classes as the target
domain and thus they cannot deal with the cross-class setting.



3 The Proposed Method
3.1 Problem and Notation
In this part, we define the problem and important notations. In
the target domain, we have kt classes Ct = {ct1, ..., ctkt

} and
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is the label vector where yij = 1 if sample i belongs to class
j or yij = 0 otherwise. This pool consists of two disjoint
sets, i.e., the labeled set L where the label vector is known
and the unlabeled set U where the label vector is unknown.
In AL, we progressively select samples from U and manually
label them, i.e., add them to L. The goal of AL is to achieve
satisfactory classification accuracy and keep L as small as
possible. Finally, the obtained model is tested on an i.i.d.
test set in the target domain Dt = {(xt
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As a T-SS-AL problem, we are given a set of labeled data
in the source domain Ds = {(xs

1,y
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)} and

they belong to classes Cs = {cs1, ..., csks
}. Existing T-SS-AL

methods require Cs = Ct, while in this paper, we consider a
more challenging and practical setting where Cs ∩ Ct = ∅. In
addition, to transfer knowledge across classes, for each class
c ∈ Cs ∪ Ct, we have a label semantic vector ac ∈ Rr for it.

3.2 Bridging Samples and Classes
As mentioned above, the key idea is to select samples from
source domain which are very similar to the target classes.
Feature Semantic Embedding (FSE) [Socher et al., 2013] is
an effective method to build the similarity measure between
samples and classes. In many cases, the class labels are se-
mantic meaningful, like “dog” and “truck”. Based on some
Natural Language Processing techniques, like [Huang et al.,
2012], we can build vectorial representations in the seman-
tic space for class labels which reflects the semantic relation-
ship between them, i.e., ac. Then, the feature vectors of the
samples can be projected into the semantic space. Because
the projected samples and class labels are in the same space,
we can directly measure their similarity/distance, like the Eu-
clidean distance. The projection is learned using the labeled
samples by minimizing the distance between the embedded
feature and the corresponding label semantic vector as below

min
P

∑
i
d(P(xi),ac(xi)) (1)

where P is the embedding function, c(xi) denotes the class
that xi belongs to, and d(·, ·) is a distance measure which
is Euclidean distance in this paper. As the source domain is
richly labeled, we have abundant labeled training data to con-
struct an effective embedding function by solving the above
problem. In addition, as the semantic space is shared by the
labels from all classes, including both Cs and Ct, the projec-
tion learned using the source domain also works in the target
domain, i.e., we can use the learned projection to assist the
similarity measure between the source domain samples and
the target domain classes. Furthermore, in the AL framework,
we have some labeled data in the target domain. We incorpo-
rate them into the above problem. Previous works [Socher
et al., 2013; Guo et al., 2016] have shown that simple linear

function works well and thus we adopt the linear function and
squared Euclidean distance, which leads to the solution below

P = (X′X+ εIm)−1X′A (2)

where P ∈ Rm×r is the linear embedding, X = [x1; ...;xn]
is the feature matrix for all labeled samples from both source
and target domains, A = [ac(x1); ...;ac(xn)], Im is a m-
dimensional identity matrix, ε is a small positive value to
avoid numeric problem, and X′ denotes the transpose of X.
Given P, the distance between any source domain sample and
any target domain class is measured in the semantic space as

d
ctj
i = ‖actj − xiP‖2 (3)

a smaller distance indicates the sample xi from the source
domain is more similar to the target domain class ctj . Based
on the FSE, we build the cross-class similarity between the
source domain samples and the target domain classes, which
acts as the building block for the cross-class sample transfer.

3.3 Cross-class Sample Transfer
As we illustrated in Figure 1, there are many samples in the
source domain that can well describe the properties of the tar-
get domain classes. Therefore, the cross-class sample transfer
aims to select samples from the source domain that can help
distinguish one target domain class from the others. This goal
indicates two criteria, 1) the selected samples should be sim-
ilar to the target domain classes, and 2) the selected samples
should be separatable from the other samples/classes. Based
on these criteria, we propose the objective function as below

min
wc,scj

‖wc‖2 + C1

nl∑
i=1

ξi + C2

ns∑
j=1

scjξ
∗
j + β

ns∑
j=1

scjd
c
j

s.t. lci (w
cxt′

i ) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., nl

(2scj − 1)(wcxs′

j ) ≥ 1− ξ∗j , ξ∗j ≥ 0, j = 1, ..., ns

scj ∈ {0, 1},
∑

j
scj ≥ Q

(4)

where nl denotes the size of the labeled set in the target do-
main, i.e., L, lci is the class-specific label vector for class
c ∈ Ct where lci = 1 if yic = 1 or lci = −1 otherwise, and
scj is the indicator index for class c where scj = 1 means that
sample xs

j is selected for class c, i.e., we transfer it to class
c and assign c as its pseudo class, or scj = 0 otherwise. In
the above objective function, we perform class-wise sample
transfer, i.e., we select samples for each target domain class
independently. In fact, it is not expensive to collect “negative”
samples, while labeling “positive” samples is costly, and thus
our objective function mainly focuses on transferring positive
samples for each target domain class from the source domain.

As mentioned above, both similarity and separability are
considered simultaneously in Eq. (4). Specifically, minimiz-
ing the last term

∑ns

j=1 s
c
jd

c
j requires selecting samples with

small distance (large similarity) to class c. Minimizing the
third term results in that the selected “positive” samples are
separatable from the labeled negative samples in the target
domain. Different from conventional max-margin formula-
tion, scjξ

c
j is employed to take the place of ξcj as the loss. Be-

sides transferring positive samples, another important reason



is that most of the source domain samples are not useful such
that the negative ones may dominate the objective function if
we adopt the latter loss. In addition, we also incorporate the
information form the labeled target domain samples into the
objective function. This is to guarantee that the separation
is consistent between the labeled samples and the transferred
samples. Furthermore, the constraint

∑
j s

c
j ≥ Q is to pre-

vent the optimization task to be a trivial solution which as-
signs 0 to all scj , i.e., no sample is transferred. This constraint
guarantees that there are at least Q samples transferred for c.

Optimization
The optimization task in Eq. (4) can be solved iteratively, just
like in the transductive SVM [Joachims, 1999]. Specifically,
the optimization algorithms consists of the following steps.

Fix scj and update wc. With scj fixed, Eq. (4) w.r.t. wc is

min
wc
‖wc‖2 + C1

nl∑
i=1

ξi + C2

n′
s∑

j=1

ξ∗j

s.t. lci (w
cxt′

i ) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., nl

wcxs′

j ≥ 1− ξ∗j , ξ∗j ≥ 0, j = 1, ..., n′s

(5)

where n′s is the number of samples in the source domain with
scj = 1 at the current iteration. This problem is a weight-
ed SVM training problem [Yang et al., 2007] which can be
transformed into its dual problem, a constrained quadratic
programming problem. It can be solved efficiently by ready-
made QP software, like quadprog1 function in MATLAB.

Fix wc and update scj . Given wc, we first update ξ∗j =

1−wcxs′

j , and then Eq. (4) w.r.t. scj can be written as follows,

min
scj

C2

ns∑
j=1

scjξ
∗
j + β

ns∑
j=1

scjd
c
j , s.t.

ns∑
j=1

scj ≥ Q (6)

Denote ηcj = C2ξ
∗
j + βdcj . Then, we can rank all ηcj ascend-

ingly and the solution to Eq. (6) is the top Q ranked samples.
It is straightforward to observe that the objective function

value is non-increasing in both steps. Hence, we can iterate
the above steps until convergence to obtain the final solution.

Initialization. In the above steps, we assume that one vari-
able is provided when updating the other one. Now we ad-
dress the initialization problem where no variable is provided.
We can set C2 = 0 and solve Eq. (5) first, i.e., we initialize
wc using only the labeled samples in the target domain. We
can also set C2 = 0 and solve Eq. (6) first, i.e., we initialize
scj by considering only the similarity. Empirically, the latter
strategy leads to better performance and faster convergence.

3.4 Semi-supervised Active Learning
Graph-based Classifier Learning
In this paper, we consider the multi-class problem and the
binary classification is just a special case. With the trans-
ferred samples, the number of (pseudo) labeled samples for
each target domain class is significantly enlarged. Specifi-
cally, for each class c ∈ Ct, we solve Eq. (4) and select

1http://cn.mathworks.com/help/optim/ug/quadprog.html

some samples from source domain and assign label c. Fi-
nally, we obtain a pseudo labeled set L̃ containing the trans-
ferred samples for each class. To perform multi-class classifi-
cation, we train a one-vs-all classifier for each class [Hsu and
Lin, 2002] which regards samples from one class as positive
and the other as negative. Formally, for class q, we construct
L+
q = {x|x ∈ L ∧ c(x) = q, or x ∈ L̃ ∧ c̃(x) = q} as the

positive set, and L−q = L∪ L̃\L+
q as the negative set where c

and c̃ denote the label and the pseudo label of x respectively.
To make use of the unlabeled samples in U , we train

a semi-supervised classifier where a graph based classifi-
er [Belkin et al., 2006] is adopted here. Based on the man-
ifold assumption, similar samples should have similar label.
We first construct a k nearest neighbor graph on Lq ∪ U as

Sij =

{
1, if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise
(7)

Then, we construct a diagonal matrix D with diagonal ele-
mentDii =

∑
j Sij and the graph laplacian L = D− S. The

graph-based SVM classifier (LapSVM) is trained as follows,

min
wq
‖wq‖2+C

∑
xi∈Lq

(1−lqiw
qx′i)++Cgw

qX′LXwq′ (8)

where lqi ∈ {−1, 1} is the label vector for class q as we intro-
duced before. It can be efficiently solved by conjugate gradi-
ent schemas. Please refer to [Belkin et al., 2006] for details.

For each class c ∈ Ct, we can obtain the corresponding
one-vs-all classifier parameters wc by solving Eq. (8). Then,
the multi-class classification for a new sample x is given by

c(x) = argmaxcw
cx′ (9)

Graph-based Uncertainty Sampling
To select samples from U for human labeling, we adopt the
uncertainty sampling strategy considering its effectiveness in
active learning. In this paper, we follow the best-vs-second-
best (BvSB) strategy [Joshi et al., 2012] for uncertainty mea-
surement. Specifically, for x ∈ U , suppose that wcx′ pro-
duces the largest and the second largest responses on classes
c1 and c2, we compute p1 = ew

c1x′
/Z and p2 = ew

c2x′
/Z

where Z = ew
c1x′

+ ew
c2x′

is the normalization factor. The
entropy is defined as E(x) = −

∑2
j=1 pilogpi. The larger

entropy is, the more uncertain the sample is. Intuitively, we
can compute the entropy for all unlabeled samples and select
the ones with the largest entropy. However, this strategy 1)
fails to consider the relation between the uncertainty between
samples because if we label one sample, the uncertainties of
its neighbors may also decrease significantly, and 2) leads to
redundancy because similar samples have similar uncertainty.

Therefore, we propose a graph-based uncertainty sampling
strategy, which minimizes the objective function as follows,

min
ri
−rSE′ + λrSr′, s.t. r1′ = ρ > 0, r � 0 (10)

where ri is the ranking score for xi ∈ U and S is the k-
NN graph on U and Sii = 1. This problem can be solved
by QP software or the augmented Lagrange multipliers algo-
rithm [Bertsekas, 1999]. By solving Eq. (10), we obtain the



Algorithm 1 CC-SS-AL
Input: Source domain data Ds, target domain pool Dp;

Label semantic vector ac for ∀c ∈ Cs ∪ Ct;
Output: Classifiers wc for target domain, ∀c ∈ Ct;

1: Initialize L by random seed, U = {1, ..., np}\L;
2: for iter = 1 : max iter do
3: Construct feature semantic embedding P by Eq. (2);
4: Initialize pseudo labeled set L̃ = ∅;
5: for c ∈ Ct do
6: Compute sample-class similarity by Eq. (3);
7: Select samples Sc = {j|scj = 1} for c by Eq. (4);
8: Assign pseudo label c̃(xs

j∈Sc) = c, L̃ = L̃ ∪ Sc;
9: end for

10: Train LapSVM parameters wc for ∀c ∈ Ct by Eq. (8);
11: Select top ranked samples S by Eq. (10) for labeling;
12: Update L = L ∪ S and U = U\S;
13: end for
14: Return wc, ∀c ∈ Ct;

ranking scores for unlabeled samples and we select the top
ranked ones for human labeling. In the first term, the rank-
ing score of xi considers not only its own uncertainty, also
its neighbors’. The second term removes the redundancy. If
xi and xj are neighbors (Sij = 1), and if ri is large which
indicates that it may be selected, the term riSijrj enforces to
assign a small value to rj for minimizing the whole function.

3.5 Summarize
We summarize the whole procedure of CC-SS-AL in Al-

gorithm 1. Specifically, from line 2 to 9, we select samples
from the source domain for cross-class sample transfer, which
is the main difference between our work and existing T-SS-
AL methods. In the line 10, the one-vs-all graph-based semi-
supervised classifiers are trained using the labeled samples,
transferred samples with pseudo labels, and unlabeled sam-
ples. In line 12 and 13, we perform graph-based uncertainty
sampling to select informative samples for human annotation.

4 Experiment
4.1 Settings
To demonstrate the effectiveness of the proposed method, we
conduct experiments on three benchmark datasets. The first
is CIFAR10 [Krizhevsky, 2009], which consists of 10 class-
es like “plane” and “dog”, and each class has 6, 000 images.
In each source-target split, we use 8 classes as source do-
main and the other 2 classes as target domain. Thus we have
C2

10 = 45 different splits and the average result is reported..
The second dataset is Animals with Attributes (AwA) [Lam-
pert et al., 2014]. It has 50 different animal classes and
30, 475 images. This dataset provides a standard source-
target split where 40 classes with 24, 295 images belong to
source domain and 10 classes with 6, 180 images belong to
target domain. The third dataset is aPascal-aYahoo (aPY)
dataset [Farhadi et al., 2009] containing two subsets. The first
subset is aPascal from PASCAL VOC2008 challenge that has
12, 695 samples from 20 different categories like “people”

and “dog”. The second subset is aYahoo which is collect-
ed from Yahoo image search. aYahoo has 12 categories with
2, 644 images that are similar but different from the categories
in aPascal, such as “centaur” and “wolf”. In aPY, we follow
the standard setting where aPascal works as the source do-
main and aYahoo is the target domain. To extract features
for each image, we utilize the pre-trained Deep CNN tool
Caffe [Donahue et al., 2014] and we use the output of the
fc7 layer which is a 4, 096-dimensional vector for each im-
age. For each label, we use the 50-dimensional word vector
provided by Huang et al. [2012] as the label semantic vector.

Because the existing T-SS-AL methods cannot address the
cross-class problem, we compare our method to SS-AL meth-
ods. The first is LapSVM-R [Belkin et al., 2006], a widely
used SSL method, which uses LapSVM and random sam-
pling. The second is SVM-AL [Joshi et al., 2012], a con-
ventional AL method, which adopts SVM classifier and un-
certainty sampling. The third is LapSVM-AL [Wang et al.,
2016]. a SS-AL method which adopts LapSVM as the semi-
supervised classifier and active learning to select unlabeled
samples. It is noted that the main difference between the pro-
posed method and these existing works, which is also our
main contribution, lies in that our work is able to transfer
knowledge across different class while other methods cannot.

To evaluate the performance, we follow the metrics in
[Joshi et al., 2012]. Specifically, we split the data in target do-
main equally into two parts, and one part acts as the pool Dp

where the methods select samples for human labeling, and the
other part is the test set Dt. Each method iteratively selects
samples from Dp for labeling by the corresponding sampling
strategy, e.g., uncertainty sampling, and the model is retrained
on the Dp with the labeled samples L and the unlabeled sam-
ples U . Then we evaluate the model on Dt. Hence, we can
draw a curve which reflects the classification accuracy on Dt

of each method w.r.t. the number of iterations which is e-
quivalent to the number of labeled samples in Dp. In each
iteration, 2, 10, and 12 samples are selected for labeling for
CIFAR10, AwA, and aPY, respectively. For fair comparison,
at the first iteration, all methods share the same random seed.

In addition, to remove the influence of initial seeds, we use
50 different random seeds and the average result is reported.

To determine the model parameters for each model, e.g.,
the parameter C for SVM, the cross-validation (CV) strat-
egy is employed here. Specifically, for three baselines, we
use the labeled source domain for CV. The parameter C for
SVM and Cg for Laplacian regularization are chosen from
{10−3, 10−2, ..., 102}. Following Guo et al.[2016], we use
cross-class CV for our method. For CIFAR10 which has 8
classes in source domain, we use 2 classes to simulate the tar-
get domain and the other as the source domain. The other two
datasets are processed in similar way. In CV, C1 and C2 in
Eq. (4), C and Cg in Eq. (8) are selected from {0.1, 1, 10}.
In addition, we simply set β in Eq. (4) and λ in Eq. (10) to 1.

4.2 Results
First we compare the proposed method to baselines. In this
experiment, we set Q, the number of transferred samples for
each target domain class, to 100, 100, and 50 for CIFAR10,
AwA, and aPY, respectively. The performance curves on
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Figure 2: Classification accuracy w.r.t. the number of iterations (labeled samples).
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Figure 3: The effect of the number of transferred samples (Q).

three datasets are shown in Figure 2. We can observe that
the proposed CC-SS-AL significantly outperforms the other
baselines, which verifies its effectiveness. Specifically, at the
5-th iteration, our method has 86.72%, 90.11%, and 90.04%
accuracy on three datasets. The improvements upon the best
baseline, LapSVM-AL, are 7.17%, 6.62%, and 4.64% on
three datasets, which indicates that our method achieves error
reductions of 35.06%, 40.10%, and 31.78%, respectively.

An interesting observation is that the proposed CC-SS-AL
method can achieve much higher performance when only a
few labeled samples are available. The performance gains
are 17.43%, 8.01%, and 6.67% compared to the best base-
line at the first iteration. This phenomenon indicates that the
transferred and pseudo labeled samples can indeed capture
the characteristics of target domain classes which validates
1) our motivation that the elaborately selected samples from
other classes can well describe the target class and 2) our s-
election algorithm is indeed effective. In addition, CC-SS-
AL requires much fewer labeled samples in the target domain
than the other baselines to achieve the same performance. For
example, in AwA and aPY, CC-SS-AL needs only 5 iterations
(50 and 60 labeled samples respectively) to achieve 90% ac-
curacy, while LapSVM-AL, needs 17 and 12 iterations (170
and 144 labeled samples respectively), which indicates CC-
SS-AL saves 70.58% and 58.33% labeling efforts. Further-
more, CC-SS-AL only needs samples from related and differ-
ent classes which are very easy to obtain from Web, such that
CC-SS-AL is more practical than existing T-SS-AL methods.

In the second experiment, we investigate the influence of
cross-class sample transfer. Q in Eq. (4) determines how
many samples are transferred for each target domain class.
We plot the performance curves of CC-SS-AL with different
value of Q on three datasets in Figure 3. Even we set Q as a
small value, such as 5, CC-SS-AL can also outperform base-
lines, which validates again that the transferred samples pro-
vide valuable information. When we increase Q (e.g., to 50
and 100), CC-SS-AL performs better because more knowl-
edge is transferred. Interestingly, when we increase Q to
a large value (e.g., 500 for AwA), the performance of CC-
SS-AL degrades rapidly. For example, the accuracy at the
10-th iteration on AwA decreases from 92.42% to 69.57%
when we increase Q from 100 to 500. In fact, the underlying
assumption of CC-SS-AL is that there are some samples in
the source domain that are very similar to the target domain
classes. When Q is too large and the source domain is small,
the selection algorithm is forced to choose dissimilar samples
which introduce negative information for training classifiers.

5 Conclusion
In this paper, we extend the T-SS-AL into a new cross-class
setting where the auxiliary source domain has different but re-
lated classes to the target domain. We propose a novel cross-
class sample transfer based method, dubbed CC-SS-AL. It
selects sample from the source domain which can well cap-
ture the characteristics of the target domain classes and as-



sign pseudo labels to them. The information in target do-
main can be enhanced by incorporating such samples with
pseudo labels. Then, a semi-supervised classifier is trained
and a graph-based uncertainty sampling method is proposed
to select samples for human labeling. Experiments on three
datasets demonstrate that CC-SS-AL can achieve satisfacto-
ry performance with only a few labeled samples in the target
domain, which is much superior to existing SS-AL methods.
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