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Abstract
Hashing has been widely utilized for fast image re-
trieval recently. With semantic information as su-
pervision, hashing approaches perform much bet-
ter, especially when combined with deep convolu-
tion neural network(CNN). However, in practice,
new concepts emerge every day, making collect-
ing supervised information for re-training hash-
ing model infeasible. In this paper, we propose
a novel zero-shot hashing approach, called Dis-
crete Similarity Transfer Network (SitNet), to pre-
serve the semantic similarity between images from
both “seen” concepts and new “unseen” concept-
s. Motivated by zero-shot learning, the semantic
vectors of concepts are adopted to capture the sim-
ilarity structures among classes, making the model
trained with seen concepts generalize well for un-
seen ones. We adopt a multi-task architecture to ex-
ploit the supervised information for seen concept-
s and the semantic vectors simultaneously. More-
over, a discrete hashing layer is integrated into the
network for hashcode generating to avoid the infor-
mation loss caused by real-value relaxation in train-
ing phase, which is a critical problem in existing
works. Experiments on three benchmarks validate
the superiority of SitNet to the state-of-the-arts.

1 Introduction
The recent decade has witnessed the fast development of
hashing for semantic image retrieval [Wang et al., 2016].
By binarizing real-valued image feature vectors into ‘0/1’
bit sequences, hashing can index large-scale image database
with small storage cost and enable efficient similarity search
based on the bit-wise XOR operation. Starting from data-
independent approaches [Gionis et al., 1999] which utilizes
no prior knowledge about data, recent works mostly focus
on data-dependent hashing, which leverages information in-
side data itself. There are two main streams, unsupervised
hashing like Iterative Quantization [Gong et al., 2013] and
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Figure 1: Zero-shot hashing. The hashing model trained with seen
concepts should generalize well on the unseen concepts.

supervised hashing like Supervised Discrete Hashing [Shen
et al., 2015a]. With the supervised information like semantic
similarity matrix or class labels, the supervised approaches
achieve superior retrieval performance because the intrinsic
semantic property in the data is better explored.

Recently the deep convolutional neural network (CN-
N) has achieved great success in many computer vision
tasks, like image classification[He et al., 2016] and face
recognition[Wen et al., 2016]. Inspired by CNN’s power-
ful feature extraction ability, some works have attempted
to build hashing models based on CNN [Lai et al., 2015;
Liu et al., 2016; Xia et al., 2014] have appeared. They re-
quire the hashcodes produced by the last fully connected lay-
er to preserve the similarity given by the supervised infor-
mation. It is demonstrated that the image retrieval accuracy
is significantly improved by CNN-based hashing approaches
compared with the non-CNN ones [Liu et al., 2016].

It should be noticed that the existing hashing approaches
mainly focus on the close-set retrieval, i.e., the concepts of
possible testing samples (both database samples and query
samples) are within the training set. However, the explosive
growth of Web images violates this setting because the new
concepts about the images may emerge rapidly. It is expen-
sive to annotate sufficient training data for the new concept-
s timely, and also, impractical to retrain the hashing model
whereas the retrieval system meets a new concept. As illus-
trated in Figure 1, the existing approaches perform well on
the seen concepts because they are given correct guidance,
but they may easily fail on the unseen concepts that they nev-
er meet before such as the “dicycle” which is a kind of vehicle



with two wheels side by side. Hence, building generalizable
hashing model that can produce effective hashcodes for un-
seen concepts is very important for real-world applications.
However, existing works pay little attention to this problem.

In this paper, we consider the zero-shot hashing (ZSH)
problem [Yang et al., 2016] which aims to build hashing mod-
el that can capture the similarity structure of both seen and
unseen concepts. One challenge in ZSH is how to deduce the
information of unseen concepts from the seen concepts. In
fact, one important reason why existing works fail to handle
unseen concepts is that they treat all concepts independently
such that each concept cannot leverage the knowledge from
other related concepts or contribute its own information to
the others. Fortunately, recent progress of zero-shot classi-
fication [Changpinyo et al., 2016; Guo et al., 2017a] shows
that the relationship between seen and unseen concepts can
be well characterized in the word embedding space [Turian et
al., 2010] and word vectors of classes can be utilized as an
effective tool to transfer knowledge among classes. Inspired
by this idea, we propose a novel ZSH approach based on CN-
N, termed as Discrete Similarity Transfer Network (SitNet),
which produces semantic-similarity-preserving hashcodes for
both seen and unseen concepts. Specifically, we consider
three important aspects. The first is similarity transfer. We u-
tilize the semantic vectors of concepts as the side information
and enforce the hashcodes produced by the network to cap-
ture the semantic structure in the word embedding space. Due
to the transferability of the space, the model trained with seen
concepts can also produce hashcodes capturing the character-
istics of unseen concepts [Socher et al., 2013]. In this way,
the generalization ability of the hashing model is improved.
The second is discriminability. To achieve this goal, we adopt
a regularized center loss [Wen et al., 2016] alongside a se-
mantic vector guided loss. The above two aspects are joint-
ly optimized in a multi-task architecture. Thirdly, different
from many previous CNN hashing works which utilize a dis-
joint strategy for hashcodes generation and hashing function
learning [Xia et al., 2014], or adopt a real-value relaxation
in the network [Liu et al., 2016], we adopt a discrete layer
in the network that directly generates binary codes. With the
discrete layer, information leak is prevented during quanti-
zation. Besides, we adopt a simple and efficient method to
backpropagate the loss through the discrete layer. In summa-
ry, we make the following contributions in this paper:
• We put forward a novel approach termed as SitNet for

zero-shot hashing, which is capable of producing ef-
fective hashcodes for samples from unseen concepts by
transferring knowledge via the word vector space.
• A multi-task architecture is adopted simultaneously con-

sidering the supervised information from the seen con-
cepts and relationship among concepts such that limited
seen knowledge can help build effective hashing model
for unseen concepts. To our best knowledge, this is the
first CNN hashing work in the zero-shot way.
• We design a discrete layer which directly outputs bina-

ry codes for loss computation, avoiding the information
loss during quantization. An efficient algorithm is adopt-
ed for loss backpropagation for the discrete layer.

2 Related Work
2.1 Hashing for Retrieval
Hashing is a widely used indexing technique for image re-
trieval. Locality Sensitive Hashing [Gionis et al., 1999] is the
seminal hashing work. As it is data independent, it usually
requires long hashcodes for satisfactory performance. There-
fore, many data-dependent hashing approaches are proposed,
which fall into two categories: unsupervised and supervised
hashing. Regarding unsupervised hashing, the unsupervised
information of data is considered, like the manifold struc-
ture [Guo et al., 2017b; Shen et al., 2015b], and the vari-
ance of feature[Gong et al., 2013; Guo et al., 2016]. Su-
pervised hashing uses the supervised knowledge to capture
the semantic property of data, like Supervised Hashing with
Kernels [Liu et al., 2012] and Supervised Discrete Hash-
ing [Shen et al., 2015a]. As more information is used, super-
vised approaches achieve better results than the unsupervised
ones [Ding et al., 2016; Lin et al., 2016].

Recently, researchers have attempted to combine the deep
learning with hashing. Xia et al. [2014] propose a disjoin-
t strategy which firstly generates hashcodes using the super-
vised knowledge and then utilizes CNN to construct the hash-
ing functions. Alternatively, Lai et al. [2015] propose an
end-to-end network to minimize the triplet ranking loss. Li-
u et al. [2016] and Zhu et al. [2016] propose simultaneously
minimizing the pair-wise similarity loss and the quantization
loss. Benefiting from the power of CNN, they achieve signif-
icant improvement over the traditional approaches. However,
the aforementioned approaches focus on close-set retrieval,
leading to poor performance on the unseen concepts which
is a common situation in Web based retrieval tasks. Yang
et al. [2016] noticed this problem and propose the zero-shot
hashing schema which significantly improves the generaliza-
tion ability of the hashing model trained with seen concepts.
However, they fail to effectively exploit the supervised infor-
mation and leverage the power of deep learning. Please refer
to [Wang et al., 2016] for more elaborate survey on hashing.

2.2 Zero-shot Learning
Zero-shot learning (ZSL) is to construct models for concept-
s with no training data [Lampert et al., 2014]. Because
no data for unseen concepts is available, ZSL utilizes the
shared attribute space as intermediate to transfer supervised
knowledge from seen concepts to unseen concepts. Farhadi
et al. [2009] and Lampert et al. [2014] proposed two semi-
nal works of attribute-based ZSL. Unfortunately, the human-
defined attributes are noisy and expensive to obtain, more re-
liable and scalable representation for concepts are desired. So
Socher et al. [2013] used the word embedding of concepts for
knowledge transfer. Motivated by [Socher et al., 2013], many
follow-up works are proposed recently [Akata et al., 2016;
Changpinyo et al., 2016; Guo et al., 2017a]. They demon-
strate that the word vector space can well capture the rela-
tionship between seen and unseen concepts and is helpful for
knowledge transfer. Therefore, their models trained with only
seen concepts generalize well on unseen concepts. However,
existing works mostly focus on classification task, and how
to combine them with hashing is still an open problem.
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Figure 2: Architecture overview of SitNet. Each training image belongs to a concept/class and each concept has a semantic embedding
vector from word2vec. We incorporate a discrete hashing layer to generate hashcodes. Based on the hashcodes, we compute the regularized
center loss, and the semantic embedding loss to enforce the hashcodes to capture the similarity relationship among concepts. Because of the
transferability of the semantic vector space, the model can generalize well for the unseen concepts.

3 Discrete Similarity Transfer Network
3.1 Problem Definition
The definition of ZSH in this paper follows [Yang et al.,
2016]. We are given n training images {I1, ..., In} and each
image Im belongs to one visual concept from set Cs =
{cs1, ..., csks

} where ks is the size of Cs. For each image Im,
there is a label vector ym ∈ {0, 1}ks where ymj = 1 if Im
belongs to concept csj and ymj = 0 otherwise. In the con-
ventional hashing setting, it is assumed that the training data
and testing data are from the seen set Cs. In the ZSH setting,
we assume that some testing samples are from an unseen con-
cept set Cu = {cu1 , ..., cuku

} with Cs ∩ Cu = ∅ where ku is the
size of Cu. By using training samples only from Cs where no
samples of Cu is available, we aim to learn a hashing mod-
el h : I 7→ {−1, 1}H to map image to H-bit hashcodes.
It is desired that h can preserve the semantic similarity be-
tween samples from both Cs and Cu in the Hamming space
even if there is no data from Cu available during the training
phase. Furthermore, to transfer knowledge across concepts,
each concept c ∈ Cs ∪ Cu has a 300-dimensional semantic
vector obtained from word2vec, denoted as vc.

3.2 Network Architecture
The architecture of SitNet is illustrated in Figure 2. The
convolution, pooling, and fully-connected layers follow some
well-established architectures considering their effectiveness
in many tasks. We adopt AlexNet [Krizhevsky et al., 2012] in
this paper. We incorporate a discrete hashing laye fully con-
nected to the last fc layer and has H output units where we
use the sign function as the activation function for discretiza-
tion. It can directly output the hashcode of a sample, which
is clearly different from existing end-to-end CNN hashing ap-
proaches that need real-value relaxation during training [Shen
et al., 2015a]. Next, another fully-connected layer is adopt-
ed to project the hashcodes into the semantic vector space, in
which the loss is computed. Our loss function consists of two
parts, where the first is a max-margin loss between the pro-
jected representation and the target semantic vector vc to p-
reserve the similarity structure among all concepts for knowl-

edge transfer. The second is a regularized center loss which
leverages the supervised information from the seen data.

3.3 Loss Function
Given an input image Im, suppose the output of the hashing
layer is bm ∈ {−1, 1}H is the H-bit hashcodes. Then the
hashcodes are projected to the final semantic vector space by
the parameter W` and the output is denoted as xm.

As demonstrated by the achievement of zero-shot classifi-
cation approaches [Lampert et al., 2014; Socher et al., 2013],
the semantic vector space is an effective tool for knowledge
transfer across concepts. A model trained with the seen con-
cepts that maps images to the semantic vector space can also
work well on the unseen concepts, i.e., it can map a testing
image from an unseen concept to the word vector of its con-
cept’s even though they are not observed before. Motivated
by this idea, we also expect that hashcode can capture the
similarity structure in this space. Formally, this idea can be
implemented as bmW` = xm ≈ vcIm

, where cIm is the con-
cept that Im belongs to. For trainingk, the loss is designed as:

Le =
∑

m
max(0, λ+‖xm−vcIm

‖2− min
c′ 6=cIm

‖xm−vc′‖2) (1)

where λ is a margin parameter. We adopt the max-margin loss
as it leads to more generalizable model and it can address the
hubness problem [Lazaridou et al., 2015] in zero-shot learn-
ing while some other loss functions, like ridge loss, fail to
do so. By the semantic embedding loss, the learned hashing
model can capture the relationship among concepts and thus
it works better on the unseen concepts.

Unlike existing hashing approaches which treat all con-
cepts independently, our approach can quantitatively measure
and capture the semantic correlations among concepts in the
semantic vector space. In this way, the supervised informa-
tion from one concept can contribute to other concepts. For
example, the concept “dicycle” is not observed by the hashing
model during training. But its word vector is close to the vec-
tors of “bicycle” and “car”. Therefore, the hashing model can
obtain some valuable knowledge from “bicycle” and “car”
to deduce what hashcode a “dicycle” image should have. So,



given a “dicycle” image, the hashing model can correctly pro-
duce its hashcode that is near but different from “bicycle” or
“car”, and far from unrelated concepts like “dog”.

The semantic embedding loss mostly focuses on improv-
ing the generalizability of the hashing model. Meanwhile, it
is also desired that the samples from the same concept have
very similar hashcodes whereas samples from different con-
cepts have dissimilar hashcodes. To preserve similarity, we
adopt a regularized center loss to learn discriminative hash-
codes [Wen et al., 2016]. Specifically, for the ks seen con-
cepts, there are ks centers {t1, ..., tks} in the semantic vector
space corresponding to them. To achieve our goal, we pro-
pose the following regularized center loss:

Lc = −
∑
m

log
exp(xmv′cIm )∑ks

c=1 exp(xmv′c)

+
α

2

∑
m

‖xm − tcIm ‖
2 − β

2

∑
c

min
c′ 6=c
‖tc − tc′‖2

(2)

where α and β are the weight parameters. The first term is
a semantic vector guided soft-max loss that adopts the (nor-
malized) semantic vector of each concept as the basis. The
reason why we fix the parameters to the semantic vectors is
that our goal is to adjust xm (intrinsically equivalent to the
hashcodes) to improve the separability between concepts in-
stead of seeking parameters to separate them. The second ter-
m enables to cluster the samples from the same concept [Wen
et al., 2016] such that they have similar hashcodes. The third
term is a discriminability regularization to push the centers far
away to each other. The latter two terms can improve the dis-
criminability of the hashcodes. In summary, minimizing the
regularized center loss can adjust the hashcodes to achieve
both high intra-concept similarity and inter-concept distance.

For the conventional retrieval task, the regularized center
loss is able to result in good performance. However, in the
zero-shot scenario, it is necessary to consider the semantic
embedding loss. Therefore, we adopt a multi-task architec-
ture to jointly minimize these two losses, which can be im-
plemented as minimizing the following weighted loss:

L = Lc + γLe (3)

3.4 Optimization
We adopt the backpropagation algorithm with mini-batch s-
tochastic gradient descent method to train the network ande
just need the following gradients to backpropagate the loss:

∂Le

∂xm
=

{
0, if‖xm − vc′‖2 − ‖xm − vcIm

‖2 ≥ λ
vc′ − vcIm

, otherwise (4)

∂Lc

∂xm
=
∂Ls

xm
+ α(xm − tcIm ) (5)

where c′ = argminc 6=cIm
‖xm − vc‖2 and Ls denotes the tra-

ditional soft-max loss. In some well-established deep learn-
ing tools, like Caffe [Jia et al., 2014], they just need the above
gradients and their build-in operations can backpropagate the
loss through the network to minimize the training set loss.

However, there is still a problem during backpropagation
caused by the hashing layer because its discretion operation

by sign function is non-differentiable at 0 and the derivative
at the other part is also zero such that the gradient vanishes
when propagated through this layer. To address this issue, we
adopt the “straight-through estimator” [Bengio et al., 2013] to
compute the gradients. Specifically, for training sample Im,
suppose its pre-activation/discretization representation for the
hashing layer is rm ∈ RH and its hashcode is bm where
bmi = sign(rmi). Based on the chain rule, we can obtain the
gradient ∂L

∂bmi
. Obviously, in the conventional way, we have

∂L
∂rmi

= ∂L
∂bmi

∂bmi

rmi
= 0 because ∂sign(rmi)

∂rmi
= 0. Instead, we

propose to adopt the following straight-through estimator to
propagate the loss through the hashing layer:

∂L
∂rmi

=

{
∂L

∂bmi
, if − 1 ≤ rmi ≤ 1

0, otherwise
(6)

In fact, the gradient in Eq. (6) is reasonable in hashing.
For example, when bmi has a wrong value and it should be
changed (say, bmi = 1 but it should be −1), ∂L

∂bmi
will push

bmi to the negative side. Because we have bmi = sign(rmi)
which indicates bmi and rmi have the same sign, we also need
to push rmi to the negative side such that its sign is turned
over. Consequently, the direction to which the loss push-
es bmi is the same as the direction to which the loss pushes
rmi. Therefore, it is a reasonable choice to directly pass ∂L

∂bmi

through the sign function to ∂L
∂rmi

. Moreover, when |rmi| > 1
we set the gradient to 0. In fact, we can regard rmi as the con-
fidence that bmi takes 1 or−1. When |rmi| is small, it is more
likely that bmi takes the wrong sign such that it is necessary
to adjust them. But when |rmi| is large, this bit is reason-
ably trustable. In fact, the network is influenced by the whole
training set. During the training process, the loss caused by
one bit changes even if it is fixed since the network is tuned
by other training samples. Therefore, we ignore it and focus
on the bits with low confidence. By progressively assign-
ing more correct hashcodes, the loss of one bit will decrease
with training process. Finally, the loss caused by the high-
confidence bits is usually small in a well-trained network.

The existing CNN hashing approaches adopt two strategies
to account for the discrete optimization. The first strategy is
the disjoint optimization [Xia et al., 2014] which firstly gen-
erates the binary codes using the supervised information and
then train a network to map samples to the hashcodes as a
multi-bit binary classification problem. This strategy usually
gives rise to sub-optimal results [Lai et al., 2015]. The second
strategy is real-value relaxation. This strategy is adopted by
the end-to-end architecture which relaxes the sign function to
the sigmoid function [Lai et al., 2015], identity function [Liu
et al., 2016], or some other differentiable functions. In ad-
dition, a quantization loss is always integrated into the loss
function in order to enforce the output to be close to 1 or −1.
However, because they treat the quantization loss as a weight-
ed part of loss function, the network may try to minimize the
quantization loss such that its primary objective is not fully
optimized. Moreover, their loss is computed by the relaxed
real-value outputs. Hence, the obtained network is not op-
timal for binary codes. But in SitNet, we directly adopt a
discrete hashing layer, thereby only focusing on the primary
objective function in Eq. (3). In addition, because the op-



timization is directly performed to the binary codes without
any relaxation, our approach can lead to the optimal network
for binary codes.

Finally, to update the center tc for each concept, we can
utilize a mini-batched based updating rule [Wen et al., 2016]:

∆tc =

∑
m δ(cIm = c) · (tc − xm)

1 +
∑

m δ(cIm = c)
− β

α
(tc − tc′) (7)

where δ(x) is an indicator function which is 1 when x is true
or 0 otherwise, and c′ = argminc′‖tc − tc′‖2. The center is
updated by tc ← tc − τ∆tc where τ denotes a tiny stepsize.

4 Experiment
4.1 Data Preparation
Animals with Attributes [Lampert et al., 2014]. AwA
dataset consists of 30, 475 images manually labeled by 50 an-
imal categories, such as “tiger”, “dolphin”, and etc. This is a
widely used dataset for zero-shot learning.

CIFAR10 [Krizhevsky et al., 2012]. CIFAR10 dataset
contains 10 non-overlapping objects like “cat” and “truck”
and each object has 6, 000 images with 32 × 32 size. It is
frequently utilized for evaluating the hashing approaches.

ImageNet [Deng et al., 2009]. ImageNet is a large-scale
vision dataset organized according to WordNet hierarchy. In
our experiment, we use the subset of ImageNet for the Large
Scale Visual Recognition Challenge 2012 which has over
1.2m images manually labeled by 1, 000 concepts.

Semantic Vector. Semantic vector is an important part
in the proposed approach for knowledge transfer across con-
cepts to facilitate zero-shot hashing. In our experiment, we
use the word2vec tool. Specifically, we use the name of
the concept as the input for word2vec and adopt its 300-
dimensional output as the semantic vector for the concept.

4.2 Settings
We adopt the benchmark datasets to construct the zero-shot
scenario following [Yang et al., 2016]. For AwA dataset, we
split the categories in to 5 groups where each group has 10
categories. We use one group as the unseen concepts and
the other four as seen concepts and thus we have 5 different
seen-unseen splits. For CIFAR10 dataset, we use one cate-
gory as unseen and the other nine as seen categories which
leads to 10 seen-unseen splits. For ImageNet dataset, follow-
ing [Yang et al., 2016], we randomly select 100 categories
which have the semantic vector from word2vec which gives
us about 130, 000 images. We use 10 categories as unseen
and the other 90 as seen. For all three datasets, we construct
the training and query set as follows. From the seen concept-
s, we randomly select 10, 000 images as the training set. For
testing, we randomly select 1, 000 images from the unseen
concepts as the query set. The remaining unseen category im-
ages and all seen category images form the retrieval database.
Obviously, this setting is different from the conventional one
in the existing hashing approaches where the concepts in the
testing phase are all observed during training.

We select the following hashing approaches as the base-
lines. Iterative Quantization (ITQ) [Gong et al., 2013] and
Inductive Hashing (IMH) [Shen et al., 2015b], which are two

representative unsupervised hashing approaches. Kernelized
Supervised Hashing (KSH) [Liu et al., 2012] and Discrete
Supervised Hashing (DSH) [Shen et al., 2015a], which are
two celebrated supervised hashing approaches. Deep Hash-
ing Network (DHN) [Zhu et al., 2016] and Deep Neural Net-
work Hashing (DNNH) [Lai et al., 2015], which are two
state-of-the-art CNN hashing approaches. Zero-shot Hashing
with Transferring Supervised Knowledge (TSK) [Yang et al.,
2016] which is one beginning ZSH approach. We implement
TSK by ourselves and we use the author provided codes for
the others. For all approaches, we use the same training and
query sets. For the CNN approaches, we use the same training
set to fine-tune their models. For the non-CNN approaches,
we adopt the GoogLeNet feature for their input vectors.

We adopt two widely used evaluation metrics in the exper-
iment. The first is mean Average Precision (mAP) based on
Hamming ranking. Given a query, all database samples are
ranked based on their Hamming distances to the query. The
second the Precision within Hamming radius 2 based on look-
up table. Given a query, a look-up based retrieval [Shen et al.,
2015a] is performed and samples whose Hamming distances
to the query are no larger than 2 are returned.

4.3 Training Detail
To train our network, we utilize the Caffe [Jia et al., 2014]
tool and adopt the AlexNet as the base network by using its
convolution and fc layers. In all experiment, the initial learn-
ing rate is set to 10−3 and the momentum is set to 0.9. The
weight decay parameter is 0.0005. The mini-batch size is set
to 128. The training terminates at the 50, 000-th iteration. In
our model, the max-margin parameter is λ = 1, the weights
of the regularized center loss are α = β = 10−3, and the
weight of the semantic embedding loss is γ = 10−2.

In addition, since the initial models, including AlexNet and
GoogLeNet, are pretrained on ImageNet, they contain knowl-
edge about the 100 categories (both seen and unseen) utilized
in our experiment. To better evaluate the zero-shot perfor-
mance, we retrain the models on the other 900 categories
as the base models. For the experiments on ImageNet, all
approaches utilize the retrained models instead of the initial
ones for further fine-tuning or feature extraction.

4.4 Benchmark Comparison
We firstly compare SitNet to the baseline approaches on three
benchmarks in the zero-shot scenario. The mAP is plotted in
Figure 3 and the precision within Hamming radius 2 is pre-
sented in Figure 4. It can be observed that SitNet outperforms
the baseline approaches with significant margins on all three
datasets, which validates the effectiveness of SitNet for ZSH.
Moreover, we also have the following observations.

Firstly, compared to the results in the conventional hashing
literatures [Lai et al., 2015; Shen et al., 2015a], the perfor-
mance of several supervised baseline approaches drops sig-
nificantly in the zero-shot setting which demonstrates that the
existing supervised approaches generalize poorly on unseen
concepts. On the other hand, the unsupervised approaches
drops less significantly. This is because the unsupervised in-
formation, like variance [Gong et al., 2013], is less sensitive
to the supervised information. SitNet takes advantage of the
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Figure 3: Mean Average Precision on three datasets.
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Figure 4: Precision with Hamming radius 2.
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Figure 5: Effective verification using 32-bit hashcodes.

semantic vector space for knowledge transfer. In this space
the similarity structure among concepts is well captured such
that it can transfer the supervised information of seen con-
cepts to the unseen concepts. Even though the model never
meets the unseen concepts, it still generalizes well for them.

Secondly, CNN is a powerful tool for many tasks, includ-
ing the conventional hashing. However, in the zero-shot set-
ting, many CNN hashing approaches only achieves compa-
rable results to the non-CNN ones and some of them even
have very unstable performance, like DHN. CNN is capable
of discovering the complicated semantic similarity structure
if proper supervision is given. However, in the zero-shot set-
ting, it seems that CNN “overfits” the seen concepts such that
it may perform poorly for the unseen concepts in some cases.
Our SitNet is able to avoid this problem because the semantic
vector space helps to improve its generalizability.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

#Iterations (× 100)

L
o
s
s

(a) CIFAR10

0 100 200 300 400 500
0

1

2

3

4

5

6

#Iterations (× 100)

L
o
s
s

(b) ImageNet

Figure 6: Convergency analysis (32 bits).

4.5 Effectiveness Verification
Effect of Semantic Embedding Loss. The semantic embed-
ding loss is an important difference from the other CNN hash-
ing approaches. In Figure 5(a) we compare the optimal SitNet
to the one with γ = 0 which removes the semantic embedding
loss. Obviously, the optimal one outperforms the removed
one. The results demonstrate that the semantic embedding
loss indeed improves the zero-shot hashing performance.

Effect of Discrete Hashing Layer. Different from previ-
ous CNN hashing approaches, SitNet has a discrete hashing
layer which directly outputs binary hashcodes. To demon-
strate its efficacy, we replace the sign function in this layer
with the tanh function. The comparison is presented in Fig-
ure 5(b). The results show that the discrete layer performs
better than the real-value relaxed model.

In Eq. (6), we propose a simple method to backpropagate



the loss through the discrete hashing layer. In Figure 6, we
plot the loss in Eq. (3) w.r.t. the number of training itera-
tions. We can observe that the loss decreases steadily, which
demonstrates that the proposed method can well address the
discrete optimization problem in the hashing layer.

5 Conclusion
In this paper, we focus on the zero-shot hashing problem and
propose a novel SitNet for ZSH which is capable of produc-
ing effective hashcodes for both seen and unseen concepts.
Specifically, we utilize the semantic vectors of concepts to
capture the relationship among concepts and help transfer the
supervised knowledge across concepts. A multi-task archi-
tecture considering the semantic embedding loss and regular-
ized center loss is adopted. We integrate a discrete hashing
layern to prevent information leak and a simple and efficient
method is proposed for loss backpropagation. Experiments
on three benchmarks demonstrate the efficacy of SitNet.
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