AI based portable Hospital

Team Members:

- 1. Abdul Etibaroghlu---Zhejiang Normal University
- 2. Sidik Mohamed Hassan---Zhejiang university of science and technology
- 3. Angel---Tsinghua University

Team Members

Abdul Etibaroghlu
 Azerbaijan,
 Zhejiang Normal University,
 Master of Biology

What we designed?

Portable Hospital, let AI decides:

Decides based on your daily routine and health status history:

Tracks: blood pressure, melatonin level in blood, testosterone level, sweat analysis,

Healthcare Patient Panels

Sighr.

Covers the entire spectrum of ailment profile from Healthcare Access, wellness behavior till treatment

How it works?

Electrochemical Biosensors

Team member

- Name: Sidik Mohamed Hassan
- School : Zhejiang university of science and technology
- Master of chemical engineering

Sweat biosensor

• Human sweat, a very important bio fluid, consists of water (99%), ions (Na+, K+, Ca2+, etc.), metabolites (glucose, lactate, ethanol, etc.), hormones, small proteins and peptides, providing a wealth of chemical information about physiological and metabolic status.

DETECTION TECHNIQUES

Types of biosensor and the analytes they can detect in sweat

sensor	analyte/data of interest				
optical	sweat rate				
	pH level				
	$OH^{-}, H^{+}, Cu^{+}, Fe^{2+}$				
impedance-based	sweat rate				
	sweat conductivity				
ion-selective	pH level				
electrodes (ISEs)	$Na^{+}, H^{+}, K^{+}, NH_{4}^{+},$				
	0 , Mg ²⁺ , Zn ²⁺ , Ca ²⁺				
enzymatic	metabolites (glucose, lactate, ethanol,				
amperometric					
	uric acid)				
stripping-based	heavy metals (Cu, Zn,				
	Pb, Cd, Hg)				

The most common methods of detection are enzymatic amperometric and potentiometric ionselective electrode (ISE) sensors.

How To Design Sweat Biosensor

How does it work

Team member

- Name: Angel
- School: Tsinghua university
- Master degree of Mathematics Statistics

Data analysis of blood sugar data

Brief statement: This data is about 27 diabates patients'health conditions. Serum total cholesterol(x1), glycerine(x2), fasting insulin(x3), glycated haemoglobin(x4), fasting blood sugar(y). We need to analysis how x1,x2,x3,x4 impact y

- Calculation:
- > mydata<-read.table("clipboard",header=T)
- > mydata

	No	xl	x2	x3	x4	У	e		
1	1	5.68	1.90	4.53	8.2	11.2			
2	2	3.79	1.64	7.32	6.9	8.8			
3	3	6.02	3.56	6.95	10.8	12.3			
4	4	4.85	1.07	5.88	8.3	11.6			
5	5	4.60	2.32	4.05	7.5	13.4			
6	6	6.05	0.64	1.42	13.6	18.3			
7	7	4.90	8.50	12.60	8.5	11.1			
8	8	7.08	3.00	6.75	11.5	12.1	-		
10	10	3.85	2.11	6 50	7.9	9.6			
11	11	4.05	1 97	3 61	8 7	0.4			
12	12	4.39	1 97	6 61	7.8	10 6			
13	13	7.97	1.93	7.57	9.9	8.4			
14	14	6.19	1.18	1.42	6.9	9.6			
15	15	6.13	2.06	10.35	10.5	10.9			
16	16	5.71	1.78	8.53	8.0	10.1			
17	17	6.40	2.40	4.53	10.3	14.8			
18	18	6.06	3.67	12.79	7.1	9.1			
19	19	5.09	1.03	2.53	8.9	10.8			
20	20	6.13	1.71	5.28	9.9	10.2			
21	21	5.78	3.36	2.96	8.0	13.6			
22	22	5.43	1.13	4.31	11.3	14.9			-
							-		
2.2			-			2.2	10.0		
23	23	0.50	5 6.	21 3	.4/ 1	2.3	10.0		
24	24	7.98	8 7.	92 3	.37	9.8	13.2		
25	25	11 5	1 10	89 1	20 1	0 5	20 0		
20	20	F. 0	4 0	00 0	61	6.4	12.2		
20	20	5.84	τ 0.	92 8	.01	0.4	13.3		
27	27	3.84	4 1.	20 6	.45	9.6	10.4		

- > lm.health<-lm(y~x1+x2+x3+x4,data=mydata) ## linear regression of y for the variables x1,x2,x3,x4
- > summary(lm.health) ## read the result of the linear regression

```
Call:
lm(formula = y \sim x1 + x2 + x3 + x4, data = mydata)
Residuals:
           10 Median
   Min
                          3Q
                                 Max
-3.6268 -1.2004 -0.2276 1.5389 4.4467
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      2.8286
           5.9433
                              2.101
                                      0.0473 *
x1
            0.1424
                       0.3657
                               0.390
                                     0.7006
x2
            0.3515
                      0.2042 1.721
                                      0.0993 .
x3
           -0.2706
                      0.1214 -2.229
                                     0.0363 *
                      0.2433 2.623
x4
            0.6382
                                      0.0155 *
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.01 on 22 degrees of freedom
11. 1+ -1 - P
            a diama di n
                                           Residual standard error: 2.01 on 22 degrees of freedom
Multiple R-squared: 0.6008, Adjusted R-squared: 0.5282
F-statistic: 8.278 on 4 and 22 DF, p-value: 0.0003121
1411 - ----
                                            A A
```

Conclusion

• As the analysis shows, the p-value of x₃ and x₄ is smaller than 0.05, and the p-value of x1 and x2 is bigger than 0.05, so fasting insulin(x3) and glycated haemoglobin(x4) have the bigger impact on fasting blood sugar(y), serum total $cholesterol(x_1)$ and $glycerine(x_2)$ have the smaller impact. That is to say, fasting insulin(x_3) and glycated haemoglobin(x4) are two main influence factors of fasting blood sugar(y).

Use the cluster to cluster the patients

- If the patients are in the same category, then they have the similar health conditions.
- Calculation:
- d<dist(mydata,method="euclidean",diag=T,upper=F,p =2)
- KM<-

kmeans(mydata,4,nstart=20,algorithm="Hartigan-Wong") ## Use K-means to cluster 4 category.

• KM

```
-100
K-means clustering with 4 clusters of sizes 10, 3, 7, 7
Cluster means:
        NO
                x1
                        x2
                               x3
                                         x4
1 12.500000 5.434000 2.580000 8.635000 8.240000
2 24.000000 8.673333 8.340000 2.680000 10.866667
3 21.714286 5.501429 1.678571 4.952857 9.200000
4 4.142857 5.438571 2.018571 5.271429 9.542857
        y
1 9.71000
2 16.40000
3 12.57143
4 12.52857
Clustering vector:
[27] 3
Within cluster sum of squares by cluster:
[1] 362.48049 56.61493 155.88397 162.13403
(between_SS / total_SS = 70.9 %)
Available components:
[1] "cluster"
                 "centers"
                               "totss"
                 "tot.withinss" "betweenss"
[4] "withinss"
[7] "size"
                 "iter"
                               "ifault"
>
```

Conclusion of the cluster

- As the result show, if we cluster these 27 diabates patients into 4 categories, then these four categories have 10, 3, 7, 7 patients, respectively.
- First category: Number 7, 9~16, 18 (10 patients)
- Second category: Number 23~25 (3 patients)
- Third category: Number 17, 19~22, 26~27 (7 patients)
- Forth category: Number 1~6, 8 (7 patients)