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Abstract 

Plant stresses, such as drought, heat, cold, salinity, and pest infestation, can 

significantly impact crop yields and threaten food security. Artificial intelligence (AI) 

can help farmers to cope with these stresses in several ways. Rapid technological 

advancements have made it necessary for farmers to acquire new skills and to keep up 

with modern technologies to remain competitive. This can lead to additional stress as 

they try to adapt to rapidly changing technology while also running a profitable 

business. The long-term impacts of stress in agriculture are significant. In order to 

detect abiotic stressors on plants, several machine learning models (MLs) have been 

developed with the assistance of unmanned aerial vehicles (UAVs) equipped with 

hyperspectral, multispectral, and infrared imagers. In addition, a robust artificial 

intelligence and geographical information system (AI/GIS) mobile and web-based 

solution; "MyAgro360" was recently developed by Africa Farmnet Limited to identify 

diseases and pests that affect crops and provides recommendations for management 

control to farmers that use it. The AI/GIS-powered scouting and scanning features in 

MyAgro360 can accurately detect fall armyworms and other biotic stresses at multiple 

stages and can provide early control measures for users. Machine learning algorithms 

can be used to analyse large datasets of plant genetic information to identify genes that 

are associated with stress tolerance. This information can be used to develop crop 

varieties that are more resilient to stress. Overall, AI can help farmers to monitor, detect, 

and respond to plant stresses more effectively, ultimately improving crop yields and 

ensuring food security.  
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1. Introduction 

Recent studies have shown that remote and proximal sensors can assess crop 

physiological and biochemical changes after stress damage (Wei et al., 2017, Murphy 

et al., 2020, Wu et al., 2021). These methods use spectral indices and chlorophyll 

fluorescence variables to identify and assess frost damage (Perry et al., 2017, Fitzgerald 

et al., 2019, Nuttall et al., 2019). Cold and drought stress directly alter energy flow from 

PSII reaction centres to quinone, affecting PSII performance (Kalaji et al., 2016, 

Rapacz, 2007). Chlorophyll fluorescence imaging has been shown to estimate thylakoid 

membrane damage soon after freezing in common wheat (Rapacz and Woniczka, 2009) 

(Figure 3). Hyperspectral imaging showed preliminary nitrogen balance of wheat 

seedlings under frost stress (Wu et al., 2012). Zhang et al. (2017) used NIR 

spectroscopy to evaluate wheat gluten enzymatic activity in real time. Bunaciu et al. 

(2012) used FTIR spectroscopy to create the PLSR models to measure medicinal plant 

antioxidant enzymatic activity. Vergara-Diaz et al. (2020) examined leaf and ear 

metabolites using full-range spectra. Again, eco-physiological study benefits from 

hyperspectral regression models. Although while separate frost and drought stress 

sensing have been explored, it is unclear how combined stress and its detection differ 

from sensing individual stresses; and in combination with AI/GIS working models 

(Murphy et al., 2020, Choudhury et al., 2022). 

MyAgro360 is an integrated AI/GIS-powered mobile and web solution that 

provides users with a comprehensive digital farm management and traceability, e-

extension, and last mile stakeholder management. MyAgro360 also enable users to map 

their farms in real-time, scout and scan suspected stresses including pests and diseases 

for accurate identification and management, plan, record, digitise and track farm 

activities, learn from an audio-visual library, access location-based weather forecast 

and extension workers, access agro-inputs from nearby agro-shops, trade on our Asime 

ecommerce platform, and engage lastmile stakeholders. MyAgro360 is an enhanced 

redesign of our earlier innovation, Igeza which won a second runner up Frontier 

Innovation award in the USAID FAWTech Challenge in 2018, Cape Town, South 

Africa. 

Our business is built on a subscription and commission-based models, where 

farmers pay a small fee to access our platform or earn a percentage of the value of 
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transactions facilitated on our platform. Our value proposition lies in our ability to 

provide smallholder farmers with access to previously inaccessible markets and 

technology options, while also helping them to improve their productivity and 

profitability. By leveraging AI and GIS technology, we are able to provide real-time 

weather information, reduce transaction costs, and facilitate transactions between 

farmers and buyers. Our platform also provides farmers with access to a range of quality 

inputs and advisory services, helping them to adopt modern and sustainable farming 

practices. Through our platform, we are creating a more inclusive and efficient and 

smart agricultural ecosystem, helping to improve the livelihoods of smallholder farmers 

and build a more resilient food system in Africa. 

1.1. The Problem  

Agriculture is the backbone of most developing economies and a lever for 

global food security. Nonetheless, existing food production is in jeopardy as a result of 

climate change, as extreme weather events culminate in temperatures that are suitable 

for insect pests (biotic), which in turn causes plant membrane breakdown and reduces 

agricultural output. Pests and diseases are obstacles to crop production, and farmers 

have to spend a significant amount of money to purchase pesticides and engage in other 

forms of disease control. Hence, to minimise yield losses and hazards to global food 

security, these stresses need to be alleviated at the farmer level prior to the manifestation 

of observable symptoms. Plant stresses, such as drought, heat, cold, salinity, and pest 

infestation, can significantly impact crop yields and threaten food security. Artificial 

intelligence (AI) can help farmers to cope with these stresses in several ways (Figure 

8).  

Machine learning algorithms can be used to analyse large datasets of plant 

genetic information to identify genes that are associated with stress tolerance. This 

information can be used to develop crop varieties that are more resilient to stress. 

Overall, AI can help farmers to monitor, detect, and respond to plant stresses more 

effectively, ultimately improving crop yields and ensuring food security. In order to 

detect abiotic stressors on plants, several machine learning models (MLs) have been 

developed with the assistance of unmanned aerial vehicles (UAVs) equipped with 

hyperspectral, multispectral, and infrared imagers.  
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1.2. Objectives of the Study 

A robust artificial intelligence and geographical information system (AI/GIS) 

mobile and web-based solution; "MyAgro360" was recently developed by Africa 

Farmnet Limited to identify diseases and pests that affect crops and provides 

recommendations for management control to farmers that use it. However, this solution 

needs to be tested in a variety of environments, including those with varying levels of 

stress, intensities, and on different kinds of pests and diseases, so that it could be used 

on range of crops. We merged this solution with ML models developed by Irsa’s lab to 

detect both frost and drought (abiotic stressors) and fall armyworm (biotic stressor) on 

wheat and maize production in China and Ghana (Figure 8). 

  

Figure 1: A schema of stress mechanisms and impact on crop yield and productivity. Source: 

Authors’ work. 
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2. Literature Review 

2.1. Abiotic Stresses 

Stress in physical terms is defined as mechanical force per unit area applied to 

an object. In response to the applied stress, an object undergoes a change in the 

dimension, which is also known as strain. As plants are sessile, it is tough to measure 

the exact force exerted by stresses and therefore in biological terms it is difficult to 

define stress. A biological condition, which may be stress for one plant may be optimum 

for another plant. The most practical definition of a biological stress is an adverse force 

or a condition, which inhibits the normal functioning and well-being of a biological 

system such as plants (Jones et al., 1989). Various abiotic as well as biotic stress signals 

for plants are given below by Mahajan et al., 2005. 

2.1.1. Cold Stress 

Each plant has its unique set of temperature requirements, which are optimum for its 

proper growth and development. A set of temperature conditions, which are optimum 

for one plant may be stressful for another plant. Many plants, especially those, which 

are native to warm habitat, exhibit symptoms of injury when exposed to low non-

freezing temperatures (Lynch 1990). These plants including maize (Zea mays), soybean 

(Glycine max), cotton (Gossypium hirsutum), tomato (Lycopersicon esculentum) and 

banana (Musa sp.) are in particular sensitive to temperatures below 10–15°C and exhibit 

signs of injury (Guy 1990; Hopkins 1999).  

The symptoms of stress induced injury in these plants appear from 48 to 72 h, 

however, this duration varies from plant to plant and also depend upon the sensitivity 

of a plant to cold stress. Various phenotypic symptoms in response to chilling stress 

include reduced leaf expansion, wilting, chlorosis (yellowing of leaves) and may lead 

to necrosis (death of tissue). Chilling also severely hampers the reproductive 

development of plants for example exposure of rice plants to chilling temperature at the 

time of anthesis (floral opening) leads to sterility in flowers (Jiang et al., 2002). The 

success of many crops’ rests on their ability to with stand the freezing temperature of 

late spring or early autumn frost. Therefore, tolerance to freezing temperatures is in 

particular important for the sustainability of agricultural crops.  
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As understanding the basics of a disease is essential for its cure, in the same way 

understanding of how freezing induces its injurious effects on plants is essential for the 

development of frost tolerant crops. The real cause of freeze-induced injury to plants is 

the ice formation rather than low temperatures. It is noteworthy to mention here that 

dehydrated tissues such as seeds and fungal spores can survive at very low temperatures 

without any symptoms of injury. Even cryopreservation is a common method for 

storage of seeds and other biological materials, which is based on the fact that water 

essentially solidifies without the formation of ice crystals. 

2.1.2. Salinity Stress 

Salinity is a major environmental stress and is a substantial constraint to crop 

production. Increased salinization of arable land is expected to have devastating global 

effects, resulting in 30% land loss within next 25 years and up to 50% by the middle of 

21st century (Wang et al., 2003). High salinity causes both hyperionic and 

hyperosmotic stress and can lead to plant demise. Sea water contains approximately 3% 

of NaCl and in terms of molarity of different ions, Na+ is about 460 mM, Mg2+ is 50 

mM and Cl around 540 mM along with smaller quantities of other ions. Salinity in a 

given land area depends upon various factors like amount of evaporation (leading to 

increase in salt concentration), or the amount of precipitation (leading to decrease in 

salt concentration).  

Weathering of rocks also affects salt concentration. Inland deserts are marked 

by high salinity as the rate of evaporation far exceeds the rate of precipitation. 

Agricultural lands that have been heavily irrigated are highly saline. As drier areas in 

particular need intense irrigation, there is extensive water loss through a combination 

of both evaporation as well as transpiration. This process is known as 

evapotranspiration and as a result, the salt delivered along with the irrigation water gets 

concentrated, year-by-year in the soil. This leads to huge losses in terms of arable land 

and productivity as most of the economically important crop species are very sensitive 

to soil salinity.  

Maladies caused by salt stress on plant cells arise from the following; 

• Disruption of ionic equilibrium: Influx of Na+ dissipates the membrane potential 

and facilitates the uptake of Cl- down the chemical gradient. 



Digital Agriculture Group 

 

 14 

• Na+ is toxic to cell metabolism and has deleterious effect on the functioning of 

some of the enzymes (Niu et al., 1995).  

• High concentrations of Na+ causes osmotic imbalance, membrane 

disorganization, reduction in growth, inhibition of cell division and expansion.  

• High Na+ levels also lead to reduction in photosynthesis and production of 

reactive oxygen species (Yeo 1998).       

2.1.3. Nutrient Stress 

Abiotic stress and soil nutrient limitation are environmental conditions that 

reduce plant growth, productivity, and quality. In natural and agricultural ecosystems, 

one of the most common soil-related abiotic stress is low phosphorus (P) availability, 

which limits crop productivity in more than 70% of globally available arable land. To 

overcome the low availability of inorganic P in the soil, the application of large amounts 

of fertilizers is the main strategy to maintain crop yields. Although the molecular 

mechanisms of the low-P stress response have been studied in detail, the epigenetic 

regulatory mechanisms remain unknown. Chu et al. 2020 evaluated changes in DNA 

methylation, gene expression, and siRNA abundance in response to low-P stress in two 

soybean genotypes with different P efficiencies. DNA methylation levels were higher 

under low-P stress in both genotypes, and transcriptional alterations in some genes were 

found to be associated with changes in methylation.  

A low availability of P is also a limiting factor for potatoes. P can become toxic 

when accumulated at high concentrations (500 µM). In the study by Chea et al., (2020), 

plant morphology, mineral allocation, and metabolites were assessed under P 

deficiency and toxicity; the study also evaluated the ability of rhizobacteria to enhance 

plant biomass and P uptake. A reduction in plant height and biomass under P deficiency 

was observed, along with altered mineral concentration and allocation. The stress 

induced by P deficiency and toxicity was evident by the accumulation of proline.  

Hornyák et al., 2020 studied nutritional stress in vitro and in planta, analyzing 

several embryological (e.g., developed ovules, embryo sacs, and pollen viability) and 

yield parameters. Flowers grown in vitro with severely reduced nutrient content showed 

dramatic degeneration of embryo sacs. In planta, reducing flower competition was 

found to be the most promising treatment to improve yield by increasing the frequency 

of developed embryo sacs and the average number of mature seeds. These effects could 
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result from increased production of SA and jasmonic acid (JA) that promote more 

effective pollinator attraction. High bicarbonate concentrations in calcareous soils with 

high pH affect crop performance (e.g., Fe deficiency). The ability to mobilize poorly 

soluble Fe is key to tolerance. 

2.1.4. Heavy Metal Stress 

Exposure to heavy metals impairs morphological, physiological, biochemical, 

and molecular processes in plants. Pb and Cd in the environment severely affects plant 

growth and yield. In contrast, plants acquire Zn from soil for their vital functions. Shafiq 

et al., (2020) reported that Zn facilitates the accumulation and transport of Pb and Cd 

in the aerial parts of maize plants. In addition, the interaction of Zn, Pb, and Cd 

interferes with the uptake and translocation of other divalent metals. This study 

highlights how DNA methylation and histone acetylation affect metal stress tolerance 

through Zn transporters and alerts against the overuse of Zn fertilizers in metal-

contaminated soils. Cerium dioxide (CeO2) nanoparticles are pollutants of emerging 

concern as they are rarely immobilized in the environment. In the study of Skiba et al., 

2020, CeO2 nanoparticles (CNPs) were proved to affect metals uptake. In particular, a 

decrease in Cu, Zn, Mn, Fe, and Mg is found in the roots while a reversed process was 

observed for Ca. 

2.1.5. Ozone, UV, & Light Stresses 

Ultraviolet (UV) radiation, especially UV-B, has long been considered a 

stressor for plants, causing DNA, protein, and membrane damage. One of the strategies 

adopted by plants to counteract UV stress is the synthesis of antioxidant molecules (e.g., 

phenolic and flavonoid compounds) as well as UV-B screening molecules. In the study 

by Yoon et al., (2021) investigated the spatial interception of UV-B radiation of kale 

(Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-

tracing simulation using a high-resolution portable 3D scanner and leaf optical 

properties. UV-B-induced phenolic compounds and flavonoids accumulated largely, 

and UV-B was more intercepted in younger leaves. The effect of the UV-B intercept 

on the flavonoid content was substantially higher than leaf age.  

Overall, the study paves the way to explore the physical and physiological basis 

of the intraindividual distribution of phenolic compounds. The study of Wójtowicz et 

al., (2021) focused on a mutation, namely, ch1, that affects chlorophyllide an oxygenase 
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(CAO), the enzyme responsible for chlorophyll b synthesis. They understood the 

strategy for compensation mechanism of the photosynthetic apparatus during low 

chlorophyll b content by characterizing and comparing the performance and spectral 

properties of the photosynthetic apparatus related to the lipid and protein composition 

in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. The exposure 

of mutants with lower chlorophyll b content to short-term and long-term low-light stress 

enabled a shift in the structure of both PSI and PSII via spectral analysis and thylakoid 

composition studies. Both ecotypes, Col-1 and Ler-0, reacted to high-light conditions 

in a way resembling the response of ch1 mutants to normal conditions. The authors 

suggested how the conversion of chlorophyll a to b might be regulated depending on 

the light stress conditions. 

2.1.6. Drought Stress 

One of the negative effects of climate change is soil water deficit, which results 

in drought stress. Many studies applied a molecular approach to identify involved 

mechanisms underlying drought tolerance. Water stress may arise as a result of two 

conditions, either due to excess of water or water deficit.  

Flooding is an example of excess of water, which primarily results in reduced 

oxygen supply to the roots. Reduced O2 results in the malfunctioning of critical root 

functions including limited nutrient uptake and respiration. The more common water 

stress encountered is the water deficit stress known as the drought stress. Removal of 

water from the membrane disrupts the normal bilayer structure and results in the 

membrane becoming exceptionally porous when desiccated. Stress within the lipid 

bilayer may also result in displacement of membrane proteins and this contributes to 

loss of membrane integrity, selectivity, disruption of cellular compartmentalization and 

a loss of activity of enzymes, which are primarily membrane based.  

In addition to membrane damage, cytosolic and organelle protein may exhibit 

reduced activity or may even undergo complete denaturation when dehydrated. The 

high concentration of cellular electrolytes due to the dehydration of protoplasm may 

also cause disruption of cellular metabolism. The components of drought and salt stress 

cross talk with each other as both these stresses ultimately result in dehydration of the 

cell and osmotic imbalance. Virtually every aspect of plants physiology as well cellular 
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metabolism is affected by salt and drought stress. Drought and salt signaling 

encompasses three important parameters (Liu et al., 1943).  

• Reinstating osmotic as well as ionic equilibrium of the cell to maintain cellular 

homeostasis under the condition of stress.  

• Control as well as repair of stress damage by detoxification signaling. 

• Signaling to coordinate cell division to meet the requirements of the plant under 

stress. 

 

Figure 1: Combined effects of different stress conditions on plants (Ahluwalia et al., 2021). 

 

2.1.7. Combined Drought and Pathogens 

Plant’s response to the co-occurrence of drought and pathogen stress has been 

widely studied. These responses depend on plant type, developmental stage, severity, 

duration of each stress and the effect of both stresses at the cellular level (Mittler 2006). 

Effects of drought and pathogen infection may result as a consequence of each other 

and can either be additive or antagonistic (Carter and Chen 2009; Ramegowda and 

Senthil-Kumar 2013) (Figure 1). Their combinatorial effects on roots are extensive. 

Reduced length of roots, root rot disease development, reduced fresh weight of roots, 
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number of root hair and magnitude of branching, hormonal imbalance, impaired cell 

division and root decay are some of the effects of drought and pathogen stress seen on 

plants (Sharma and Pande 2013; Zhan et al., 2015) (Figure 1).  

Water potential of plants is usually an indicator of soil moisture levels and its 

maintenance is very important for proper functioning of the plant vascular system 

(Figure 1). During drought stress, the plant’s primary response is the closure of stomata 

to prevent water loss due to transpiration. However, in cases of pathogen infection, this 

response is interrupted (Pandey et al., 2015; Choudhary et al., 2016). Under mild 

drought conditions, the basal defense of a plant is activated which defends it against 

pathogenic infection. Although, under severe drought conditions the pathogenic 

infection can be aggravated due to release of cellular nutrients into the apoplast (Gupta 

et al., 2020; Ramegowda et al., 2014). 

Susceptibility of plants to drought and pathogen infection may be due to their 

incapability to modify tolerance mechanisms and intensification of the damage caused 

by any of the stresses. Lastochkina et al. (2020) reported that exposure of wheat to 

drought stress and fungal pathogen, Fusarium culmorum, the causal agent of common 

root rot and seedling blight, resulted in higher malondialdehyde content, increased leaf 

yellowing, decreased root and shoot growth, and decline of biomass accumulation in 

comparison to individual stress (Figure 1). In other cases, drought-stressed plants 

showed resistance to certain pathogens that required consistently moist or humid 

environmental conditions. Under drought stress conditions, N. benthamiana plants 

showed fewer disease symptoms upon infection with the fungal pathogen, Sclerotinia 

sclerotium (causal agent of white mould) as opposed to pathogen infected well-watered 

plants (Ramegowda and Senthil-Kumar 2013). 

2.2. Biotic Stresses 

2.2.1. Fall armyworm 

Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a 

polyphagous pest that originated from the American continents. It feeds on 

approximately 353 plant species belonging to 76 plant families and prefers to feed on 

economically important crops such as maize, sorghum, rice, millet, and sugarcane (Day 

et al., 2017; Montezano et al., 2018). S. frugiperda has the ability to damage various 

crops rapidly and hence deteriorates the nutritional value of the infested crops. This pest 
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has spread into all of north-eastern India and damaged the maize crop (Firake et al., 

2019). Before 2016, S. frugiperda was only found in South and North America. The 

occurrence of this pest was reported in Africa in 2016 and spread in Europe in 2018.  

In Asia, it was first reported in India in 2018 and damaged the maize crop 

(Firake et al., 2019). A year after the first invasion into Asia, S. frugiperda was found 

in Indonesia and West Africa. In Pakistan, S. frugiperda was initially found on maize 

crop in the Sindh province in the southern part of Pakistan in 2019, and has now spread 

to different regions of the country and affects maize, millet, and sorghum (Gilal et al., 

2020). The damage amount of S. frugiperda feeding on maize crop is substantial; losses 

of 73% in Latin America and 21–53% in Africa have been reported (Day et al., 2017). 

S. frugiperda larvae feed on the stem, leaves, and reproductive parts of their 

host plants. Two strains of S. frugiperda have been reported worldwide: corn strain and 

rice strain. The corn strain mostly prefers maize and sorghum, while the rice strain 

mostly prefers pastures including rice. The change in the population of any insect pest 

depends on the nutrition and properties of their host plants, which influence their 

population growth (Huang et al., 2018). Life history traits of insects, including growth, 

reproduction, survival, etc., are affected by the different nutrition of different host 

plants that insects feed on during their larval stages. Demographic studies play an 

important role in population dynamics and pest status in the field. Although the most 

preferable crop of S. frugiperda is maize other crops can be suitable hosts in the absence 

of maize crops. Given the further dispersion of S. frugiperda in Pakistan, there is a dire 

need to reveal the biological performance of this pest on other economically important 

crops such as wheat, sorghum, and rice (Idrees et al., 2022). 

2.2.2. Plant Viruses 

The impression from the ninth report of the International Committee for the 

Taxonomy of Viruses is that there are not very many viruses of plants. The report list 

just under 1000 different species (King et al., 2012). However, the vast majority of 

these are from crop plants, and recent studies of plant virus biodiversity using 

metagenomic approaches are revealing the abundance and novelty of plant viruses. 

Viruses are abundant in wild plants, from the tropics to Antarctica (Hopkins et al., 2014) 

with infection incidence as high as 60% based on current and older technologies, and 

most are turning out to be novel. Other than through seed dispersal most plants do not 
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move across significant distances; hence their horizontally-transmitted viruses must be 

moved by others. Most often the vectors for plant viruses are insects, although below 

ground transmission also occurs through nematodes, chytrids or plasmodiophorids.  

The relationships among plants, insects and viruses are ancient, and it is not 

surprising that they are intimate and complex. Insect’s vectors are in turn colonized by 

other entities, and endosymbiotic bacteria produce compounds that are involved in plant 

virus transmission as well (Morin et al., 1999). 

Insect transmission of plant viruses is usually categorized in four ways (Table 

1), depending on how long the insect needs to feed to acquire the virus, how long it 

remains viruliferous, how long it must feed to transmit the virus, and whether or not the 

virus circulates through the insect gut and/or propagates in the insects, comprehensively 

reviewed by Bragard et al., (2013). These transmission modes affect the evolution of 

plant–virus–insect relationships. 

Table 1: Major modes and characteristics of insect transmission. 

Type of 

transmission 

Acquisition 

time 

Retention 

time 

Transmission 

time 
Insects 

Non-persistent  Minutes 
Minutes to 

hours 
Minutes 

Aphids, thrips (via 

pollen) 

Semi-persistent 
Minutes to 

hours 

Minutes to 

hours 

Minutes to 

hours 

Aphids, beetles, 

leafhoppers, mites, 

thrips, whiteflies 

Circulative 
Hours to 

days 

Hours to days 

to life 
Hours to days 

Aphids, leafhoppers, 

treehoppers, 

whiteflies 

Circulative-

propagative 

Hours to 

days 

Days to life to 

generations 
Days to life 

Aphids, leafhoppers, 

mites, thrips, 

planthoppers 

 

2.2.3. Transmission by Aphids 

Aphids are also small plant-feeding insects that are probably the best-studied of 

all the plant virus vectors. Some viruses such as Cucumber mosaic virus (CMV) are 

generalists in terms of transmission, and can be vectored by hundreds of different aphid 

species in a non-persistent manner, whereas other viruses such as Barley yellow dwarf 

virus (BYDV) have a very specialized interaction with aphids and specific virus strains 

are transmitted by individual aphid species in a circulative manner (McElhany et al., 

2012). 
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When given a choice, aphids are attracted to CMV-infected plants, but once 

they begin to feed the plants are induced to produce anti-feeding compounds. This 

moves the insects rapidly away from the plant to new hosts, a strategy that enhances 

the transmission of CMV, which only requires very brief feeding periods both for 

acquisition and transmission (Carmo-Sousa et al., 2014). This work led to the 

hypothesis that viruses can induce volatiles that attract insect vectors, but the 

persistently-transmitted viruses induce pro-feeding behavior as well, while the no 

persistently-transmitted viruses induce anti-feeding behavior to rapidly move vectors 

off once the virus is acquired (Mauck et al., 2012). 

2.3. Cost of stress on agricultural productivity 

Rapid technological advancements have made it necessary for farmers to 

acquire new skills and to keep up with modern technologies to remain competitive. This 

can lead to additional stress as they try to adapt to rapidly changing technology while 

also running a profitable business. The long-term impacts of stress in agriculture are 

significant. 

In addition, ongoing financial and personal stress can negatively impact family 

relationships and social well-being, leading to further mental health and societal issues. 

Addressing stress in agriculture requires a comprehensive approach that focuses on 

supporting the unique needs of farmers and farm workers. This includes providing 

access to financial resources, promoting mental and emotional health services, 

improving work and safety conditions, and encouraging positive cultural attitudes 

towards farmers and agriculture. 

2.3.1. Applications of Artificial Intelligence (AI) 

There are numerous applications of artificial intelligence (AI) in agriculture that 

are being explored and developed. Here are some examples: 

Precision farming: AI can be used to analyze data from sensors, drones, and 

satellites to develop a detailed understanding of soil composition, weather patterns, and 

plant growth stages. This information can be used to optimize crop management and 

maximize yields while minimizing resource waste. 

Crop monitoring and disease detection: AI algorithms can identify crop 

diseases and pests using images captured by drones or smartphones with high accuracy. 
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This helps farmers take targeted actions to prevent and manage the spread of the 

disease, reducing crop losses. 

Climate modeling and prediction: Big data analytics and machine learning 

models can be used to predict changes in weather patterns and their impact on crop 

production. This allows farmers to make informed decisions about planting, irrigation, 

and harvesting schedules. 

Robotics and automation: Autonomous robots are being developed that can 

perform tasks such as planting, weeding, and harvesting crops. These robots use 

computer vision and machine learning algorithms to navigate through fields and 

perform tasks with precision. 

Decision support systems: AI can help farmers make more informed decisions 

about crop management by analyzing data from various sources, such as the weather 

forecast, crop health sensors, and market prices. 

Supply chain management: AI can optimize supply chain logistics by 

predicting demand, shipping routes, and delivery schedules. This can improve 

efficiency while reducing costs and waste. 

Predictive maintenance: AI algorithms can be used to identify equipment 

failures before they occur, enabling proactive maintenance and minimizing downtime. 

Overall, the application of AI in agriculture has the potential to revolutionize the 

industry's approaches to crop management, yield optimization, and sustainability. 

2.3.2. Machine Learning (ML) in Agriculture 

Machine learning is a developing field with numerous agricultural applications. 

Farmers and agricultural experts are investigating how machine learning technologies 

might boost crop yields, cut water consumption, and detect pests and diseases (Figure 

2). Machine learning could help farmers use resources more efficiently and produce 

food more sustainably in the future. Machine learning in agriculture allows farmers to 

use lavish amounts of data about climate change, crop and soil conditions, and other 

environmental variables to make informed decisions about plant and animal treatment. 

Due to shifting climatic conditions and market trends, the farming sector faces several 

risks and uncertainties, resulting in large production losses and wasted resources. While 
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decades of experience and increasingly precise meteorological data have assisted 

farmers in making reasonable forecasts, there is still far. 

 

 

Figure 2: Smart agriculture market (stats for ML) by value, 2018-2028 (Data source: 

BlueWeave Consulting). 

2.4. Key Technologies in Agriculture  

Agriculture is one of the most significant industries in the world, as it is critical 

to feeding the world's rising population. In recent years, technology has played a key 

role in increasing agricultural efficiency and productivity. Precision agriculture, remote 

sensing and geospatial analysis, and the usage of drones are some of the main 

agricultural technologies. 

 

Figure 3: Applications of AI in agriculture and their role in plateau of productivity. 
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2.4.1. Precision Agriculture 

Precision agriculture is the use of technology to enhance crop production while 

reducing the impact on the environment. This technology enables farmers to monitor 

and adjust inputs such as water, fertilizer, and pesticides, resulting in higher yields and 

reduced costs (Table 2). Precision agriculture also allows farmers to use data and 

analytics to make informed decisions about planting, harvesting, and resource 

management (Cox 2002). 

 

Figure 4: Key technologies in Agriculture and their gateway to cloud computing 

 

2.4.2. Remote Sensing and Geospatial Analysis 

Remote sensing and geospatial analysis are tools that offer farmers with extensive 

information on their crops, soil, and landscape. Remote sensing is the use of aerial and 

satellite imagery to monitor crop health, identify stress points, and detect changes in 

vegetation over time. Geospatial analysis, on the other hand, employs geographic data 

to generate maps and models that may be used to plan, manage, and evaluate 

agricultural systems (Sishodia et al., 2020). 
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Figure 5: Use in agriculture machinery, sensors and robots in agriculture to enhance 

productivity. 

2.4.3. Drones 

Drones are increasingly being used in agriculture for a variety of purposes such as crop 

monitoring, mapping, and sensing. Drones can be equipped with a variety of sensors 

that provide farmers with data on plant growth, soil moisture, and temperature. This 

technology can be used to increase yield, reduce costs, and inhibit environmental 

impact (Dutta and Goswami 2020) (Figure 6). 

2.5. Innovative Solutions in Smart Agriculture in Developing Countries 

Smart agriculture is the application of technology to farming in order to increase 

crop production, reduce losses, and increase efficiency in the agricultural industry. 

Developing countries are using smart agriculture to address food security issues, 

promote economic growth, and improve farmer livelihoods (Figure 6). 

2.5.1. Innovation in Smart Agriculture 

Precision agriculture is one of the innovative solutions in smart agriculture, 

which involves integrating technology such as Global Positioning Systems (GPS), 

drones, and sensors to increase crop yields, reduce waste, and save expenses.  



Digital Agriculture Group 

 

 26 

 

Figure 6: Cloud-based event and data management using smart sensing, control, analysis, and 

planning. 

Precision agriculture has been adopted in developing nations such as India, 

where farmers spray crops and collect data on soil moisture, plant health, and nutrient 

levels using drones. This practice has enhanced crop yield, reduced the use of 

pesticides, and improved profitability for smallholder farmers. Another advancement 

in smart agriculture is the use of artificial intelligence (AI) to improve agricultural 

decision-making (Figure 7). AI technology can evaluate huge amounts of data to 

provide farmers with accurate predictions and insights on the weather, soil conditions, 

and crop health. PEAT, a German-based digital start-up, has developed an AI-based 

application called Plantix that can identify nutrient deficits in soil as well as plant pests 

and diseases, giving farmers ideas on how to apply fertilizer to increase harvest quality. 

This app has improved the productivity and income of smallholder farmers by enabling 

them to make informed decisions (Figure 7). 

Smart irrigation is another innovative solution in smart agriculture that 

addresses water scarcity in developing countries. Traditional irrigation methods are not 

efficient and may lead to overuse of water resources. Smart irrigation systems use 

sensors, weather data, and AI technology to optimize water use by providing precise 

amounts of water at the right time. In Jordan, a smart irrigation system has been 
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developed to ensure efficient water use in the cultivation of high-value crops such as 

strawberries (Massadeh et al., 2014). This system has reduced water waste and 

increased crop yield by up to 20% (Figure 7). 

 

Figure 7: Smart farming via image processing, deep learning, and machine learning
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3. Smart Agriculture 

Smart agriculture is revolutionizing farming by incorporating advanced 

technologies and artificial intelligence (AI) to optimize agricultural practices, enhance 

productivity, and minimize environmental impact. This innovative approach leverages 

data-driven techniques and cutting-edge tools to address challenges in the agricultural 

sector, ultimately ensuring greater efficiency and sustainability. 

 

Figure 8: Security and privacy monitoring in agriculture from data acquisition to preparation 

and processing and decision making to final services in agriculture sector. 

Integrating AI in smart agriculture has opened up new possibilities for farmers 

and agricultural stakeholders.  Utilizing machine learning algorithms and advanced 

analytics, AI can process vast amounts of data from various sources, such as satellite 

imagery, drones, and ground-based sensors. This data is then used to make informed 

decisions regarding crop health, pest and disease management, irrigation, and soil 

management, among other aspects of farming (Figure 9). 

Furthermore, AI-powered predictive models help forecast crop yields, enabling 

better decision-making regarding planting, harvesting, and marketing strategies. 

Automation and robotics also play a crucial role in smart agriculture, with AI-driven 

machines performing tasks such as planting, harvesting, and spraying with greater 

precision and efficiency. 
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Therefore, the fusion of smart agriculture and AI has the potential to transform 

the agricultural sector, making it more resilient, sustainable, and capable of meeting the 

ever-growing global food demands. 

Table 2: Use of Machine Learning Techniques in Agriculture 

Crop 

Management 
Water Management Soil Management 

Livestock 

Management 

• Yield prediction 

• Disease detection 

• Weed detection 

• Crop recognition 

• Grading by quality 

• Selective breeding 

• Irrigation monitoring 

• Leak detection 

• Weather monitoring 

• Weather prediction 

• Water usage 

prediction 

• Pesticides and 

fertilizers 

• Fertility prediction 

• Soil sensitivity 

• Moisture prediction 

• Organic carbon 

• Insect detection 

• Animal monitoring 

• Precision livestock 

• Production quality 

• Living conditions 

• Grazing control 

 

3.2. Application of Deep Learning in Smart Agriculture 

3.2.1. Stress Detection 

Deep learning techniques, such as Convolutional Neural Networks (CNNs) and 

object detection algorithms (e.g., YOLO, Faster R-CNN), can be employed to detect 

and recognize stress in agricultural fields (Redmon et al., 2016). That is, by analyzing 

images captured by drones or ground-based cameras, these algorithms can identify 

objects, such as rocks, equipment, and other obstacles, allowing for more efficient and 

safe navigation of autonomous agricultural machinery. 

3.2.2. Crop Quality 

Deep learning models, such as CNNs, can be utilized to analyze images of crops 

and assess their quality based on visual attributes like colour, size, shape, and presence 

of defects (Ghosal, Singh, Sarkar 2018). These models can be trained on large datasets 

containing labelled images of crops with varying quality, allowing for accurate and 

efficient crop quality assessment. 

3.2.3. Soil Management 

Deep learning techniques can be used to analyze remote sensing data, such as 

multispectral and hyperspectral images, to assess soil properties and conditions. These 
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models can help identify patterns and trends in soil health, nutrient levels, and moisture 

content, enabling more targeted and efficient soil management practices. 

3.2.4. Weed Identification and Detection 

Deep learning models, particularly CNNs, can be employed for weed 

identification and detection in agricultural fields. In analyzing high-resolution images 

captured by drones or other remote sensing technologies, these models can accurately 

identify and locate weeds, guiding targeted herbicide applications and reducing 

chemical usage, as revealed by (Dyrmann, Karstoft, & Midtiby, 2016). 

3.2.5. Prediction and Detection of Plant Diseases 

Deep learning techniques can be used to analyze images of plant leaves and 

other tissues to detect and classify plant diseases. By training CNNs or other deep 

learning models on large datasets containing images of healthy and diseased plants, 

these models can provide early and accurate detection of plant diseases, enabling timely 

intervention and treatment. In identifying plant diseases, various approaches have been 

employed for detection. For instance, this method was used (Ramcharan et al., 2018) to 

predict that Cassava’s susceptibility to viral infections poses a risk to food security in 

sub-Saharan Africa. 

3.2.6. Crop Yield Prediction 

Deep learning models, such as Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) networks, can be used to predict crop yields based on 

historical data, weather conditions, and other relevant factors. By incorporating real-

time data from sensors, satellite imagery, and other sources, these models can provide 

accurate and timely yield forecasts, helping farmers make informed decisions about 

harvesting, storage, and marketing. Thus, You (2017) utilized a deep Gaussian process 

for predicting crop yield based on remote sensing data in developing countries. 

3.3. Application of Machine learning in Smart Agriculture 

3.3.1. Machine Learning for Precision Agriculture 

Machine learning can be employed in various aspects of smart farming to 

analyze large datasets and provide insights that can help farmers optimize their 

operations. By integrating machine learning algorithms into farm management systems, 
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farmers can make data-driven decisions, improve resource allocation, and increase 

overall productivity. Several studies highlight the importance of machine learning 

(Zhang, Wang & Wang, 2002, Liakos, Busato, Moshou, Pearson, & Bochtis, 2018).  

3.3.2. Crop Quality and Soil Management 

Smart farming solutions can incorporate advanced sensor technologies, such as 

soil sensors and remote sensing data, to monitor soil health and crop quality. These 

sensors can provide real-time information about soil nutrients, pH levels, and moisture 

content, enabling farmers to make informed decisions about fertilization, irrigation, and 

other management practices. Machine learning algorithms can also analyze this data to 

identify patterns and trends that can be used to optimize soil management strategies, 

ultimately improving crop quality and yields. 

3.3.3. Weed Detection and Control 

Using computer vision and machine learning techniques, smart farming 

solutions can automatically detect and identify weeds in the field (Dyrmann, Karstoft, 

& Midtiby, 2016). Drones and other remote sensing technologies can be used to capture 

high-resolution images of the fields, which can then be processed by machine learning 

algorithms to identify weeds and their locations. This information can be used to guide 

the targeted and precise application of herbicides, reducing the overall use of chemicals 

and minimizing their impact on the environment. 

3.3.4. Crop Yield Prediction 

Smart farming solutions can leverage machine learning algorithms to predict 

crop yields based on historical data, current weather conditions, and other relevant 

factors. These predictions can help farmers plan their harvesting schedules, storage 

requirements, and marketing strategies, ultimately improving their profitability. By 

incorporating real-time data from sensors, satellite imagery, and other sources, these 

machine-learning models can be continuously updated and refined to provide more 

accurate yield forecasts. 

3.3.5. Soil Moisture Prediction 

Machine learning can be used to develop predictive models for soil moisture 

levels. By analyzing data from soil sensors, weather stations, and remote sensing 
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technologies, these models can provide farmers with insights into the future moisture 

conditions of their fields. This information can help farmers optimize their irrigation 

schedules, conserve water resources, and maintain optimal soil moisture levels for crop 

growth. Additionally, such predictive models can also help farmers prepare for and 

mitigate the impacts of drought and other extreme weather events. 

3.4. Application of Image Processing in Smart Agriculture 

3.4.1. Plant Species Recognition 

Image processing techniques can be used to recognize and classify plant species 

based on their unique morphological features, such as leaf shape, colour, and texture. 

Convolutional Neural Networks (CNNs) and other deep learning approaches can be 

employed to analyze images of plants and identify their species with high accuracy 

(Wäldchen & Mäder, 2018). To improve recognition performance, large datasets 

containing labelled images of various plant species can be used to train these models. 

3.4.2. Weed Identification/Detection 

Computer vision and image processing techniques can be utilized to detect and 

identify weeds in agricultural fields. Thus, in capturing high-resolution images of the 

fields using drones or other remote sensing technologies, these techniques can analyze 

the images to identify weeds and their locations. Machine learning algorithms, such as 

CNNs, can be trained on labelled datasets containing images of different weed species 

and used to classify them in real-time (Dyrmann, Karstoft, & Midtiby, 2016). This 

information can guide targeted and precise herbicide applications, reducing chemical 

use and environmental impact. 

3.4.3. Grading of the Quality of Fruits 

Image processing can be used to assess the quality of fruits based on their 

external appearance, such as colour, size, shape, and presence of defects. Algorithms 

can be developed to analyze images of fruits captured using cameras or other imaging 

devices and to classify them into different quality grades. Machine learning techniques, 

such as deep learning, can improve the grading process's accuracy and efficiency, 

allowing for a more consistent and objective fruit quality assessment. 
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3.4.4. Sorting and Classification of Fruits 

Image processing and computer vision technologies can be used to automate the 

sorting and classification of fruits based on their size, colour, shape, and other visual 

attributes (Brosnan, & Sun, 2002). By capturing images of fruits as they move along a 

conveyor belt or other processing equipment, these technologies can analyze the images 

and sort the fruits into different categories. This can help streamline the packing process 

and ensure that fruits of similar quality are grouped together, ultimately improving the 

efficiency of the supply chain and reducing waste. 

3.4.5. Integration of Temperature and Humidity Sensors 

Temperature and humidity sensors can be integrated into smart farming 

solutions to monitor and control the microclimate conditions in the agricultural 

environment. Image processing techniques can be used to analyze thermal and humidity 

data captured by these sensors, allowing farmers to make informed decisions about 

irrigation, ventilation, and other climate control measures. By combining this sensor 

data with other sources of information, such as weather forecasts and crop growth 

models, farmers can optimize their management practices and improve the overall 

productivity and sustainability of their operations. 

4. Our Solution 

MyAgro360 addresses the lack of access to accurate and real-time agricultural 

data, which lead to inefficient farming practices and reduced productivity. By 

leveraging AI and GIS technologies, MyAgro360 help users to map their farms, collects 

and records farm activities, provides location-based weather information, traceability 

and transparency in value chain, and thus, providing farmers with insights and 

recommendations to optimise their operations and improve yields. 

MyAgro360 solves the lack of precision pest and disease identification, 

lessening waste of resources and negative environmental impacts through the use of 

pesticides. By using AI and GIS-powered precision tools, MyAgro360 help farmers to 

precisely identify pests and diseases with recommended control, reducing waste and 

minimising the impact on the environment (Figure 10). 
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Figure 9: Mobile and web dashboards of MyAgro360, our AI/GIS-powered solution. 

MyAgro360 also addresses the challenges faced by smallholder farmers in 

developing countries, such as limited access to markets, access to inputs and access to 

expert advisory. By providing farmers with access to MyAgro360 digital platforms that 

leverage AI and GIS technologies, MyAgro360 connects farmers with markets options, 

and provides them with real-time information and advisory to help improve their 

farming practices and profitability. Our solution directly addresses goals 2 and 12 of 

the sustainable development goals (Figure 10). 

4.1. Stress Detection and Management 

MyAgro360, an AI-driven application was used to identify abiotic stressors 

(frost and drought), pests and diseases on wheat in China and maize in Ghana grown 

under ambient conditions. This information can help farmers to take appropriate action, 

such as applying targeted pesticides or implementing integrated pest management 

strategies (Figure 11). 
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Figure 10: Initial outputs from MyAgro360, our AI/GIS-powered solution. Hyperspectral 

imaging based on output from AI-scanned images, chlorophyll fluorescence imaging, enzymes 

and reactive oxygen species model outputs. 

5. Analytical Approaches 

5.1. Market Analysis 

The agritech industry is experiencing significant growth in Africa, with a focus 

on using technology to improve agricultural productivity, increase food security, and 

support sustainable farming practices. According to a report by the African 

Development Bank, the agritech market in Africa is projected to reach $5.9 billion by 

2022, driven by increasing demand for food, rising incomes, and technological 

innovations. 

Several factors are contributing to the growth of the agritech industry in Africa, 

including the increasing adoption of mobile phones, the availability of affordable 

smartphones, and the growth of digital payment systems. This has led to the 

development of innovative solutions, such as mobile-based agricultural advisory 

services, e-commerce platforms for agricultural inputs, and digital payment systems for 
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farmers (Figure 12). In addition to these developments, the African Union's 

Comprehensive African Agriculture Development Programme (CAADP) has set a 

target of 6% annual growth in the agricultural sector by 2025. This is expected to drive 

the adoption of agritech solutions to increase productivity and efficiency in the sector. 

 

 Figure 11: Market, competitor and customer analyses for MyAgro360 in Africa. 

The target market for our agritech startup in Africa consists of farmers, 

agribusinesses, and other stakeholders in the agricultural value chain. The size of the 

target market varies by country, but in general, the agricultural sector is a significant 

contributor to the economies of most African countries. The demographics of the target 

market vary depending on the specific solution being offered. For example, mobile-

based agricultural advisory services are more popular among younger farmers who are 

more comfortable using mobile phones. In contrast, e-commerce platforms for 

agricultural inputs are more attractive to older farmers who are more familiar with 

traditional distribution channels. The purchasing power of target customers in Africa 

also varies widely depending on the country and the specific market segment. While 

some farmers may have limited resources, others may be more affluent and have greater 

purchasing power.  
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5.2. Risk Analysis  

5.2.1. Internal Risks: SWOT Analysis 

Strengths 

• Innovative AI/GIS-powered solution for real-time farm management and 

traceability. 

• Comprehensive platform addressing multiple agricultural pain points. 

• Award-winning technology and previous successful implementation. 

• Access to previously inaccessible markets and technology options for 

smallholder farmers. 

• Real-time weather information and advisory services for farmers. 

Weaknesses 

• Limited testing in various environments and stress levels. 

• Dependence on technology and internet access for farmers. 

• Subscription and commission-based models may not be affordable for all 

smallholder farmers. 

• Need for continuous updates and improvements to stay ahead of the 

competition. 

Opportunities 

• Expanding agritech market in Africa with potential for significant growth. 

• Leveraging AI advancements for improved accuracy and efficiency. 

• Collaboration with government and non-government organizations to promote 

sustainable farming practices. 

• Expansion to other crops and countries. 

Threats 

• Increasing competition from other agritech startups in Africa. 

• Unpredictable changes in the agricultural landscape due to climate change. 

• Potential regulatory hurdles and compliance requirements. 

• Dependence on external funding for research and development. 
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5.2.2. External Risks: PESTEL Analysis 

Political 

• Government support for the agricultural sector and agritech initiatives. 

• International organizations are promoting sustainable farming practices. 

• Regional political stability and cooperation. 

Economic 

• Growing agritech market in Africa with potential for high returns. 

• Increasing demand for food and higher incomes in Africa. 

• Varying purchasing power among target customers. 

Social 

• Increasing adoption of technology among farmers in Africa. 

• Changing demographics with younger farmers adopting mobile technology. 

• Need for sustainable farming practices to ensure food security. 

Technological 

• Rapid advancements in AI, GIS, and remote sensing technologies. 

• Increasing availability of affordable smartphones and mobile internet access. 

• Development of digital payment systems and mobile-based agricultural 

services. 

Environmental 

• Climate change impacts on agriculture, including extreme weather events and 

increased pest pressures. 

• Need for sustainable farming practices to minimize environmental impact. 

• Increasing awareness of the environmental consequences of pesticide use. 

Legal 

• Compliance with regional and national regulations for agritech solutions. 

• Intellectual property protection for proprietary technologies. 

• Data privacy and security regulations for user data. 
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6. Competition 

The agritech industry in Africa is still in its early stages, and there are relatively 

few large, established players. However, there are several emerging startups that are 

making significant inroads in the market (Figure 13). Some of the major competitors in 

the African agritech industry include: 

Farmerline: Farmerline is a Ghanaian agritech company that develops 

solutions to increase access to farm inputs and simplify transactions throughout the 

agricultural value chain. 

Farmcrowdy: A Nigerian startup that connects smallholder farmers with 

investors, who provide funding for farming activities in exchange for a share of the 

profits. 

Apollo Agriculture: A Kenyan startup that provides smallholder farmers with 

access to agricultural inputs, credit, and advice through a mobile-based platform. 

Zenvus: A Nigerian startup that provides precision agriculture solutions, such 

as soil testing and crop yield forecasting, using sensors and data analytics. 

Agrocenta: A Ghana-based startup that provides a mobile-based platform for farmers 

to share knowledge and information with each other. 

Our primary competitive advantages are our deep understanding of the African 

agricultural ecosystem, gained through years of working directly with farmers, 

agribusinesses, policymakers, key stakeholders, and buyers. This has allowed us to 

tailor our platform to the specific needs of smallholder farmers in Africa, providing 

them with access to markets, and inputs that were previously unavailable to them 

(Figure 13). 

MyAgro360 uses advanced technology, such as AI and GIS, to provide real-

time data and insights to farmers, agribusinesses, and buyers. This has enabled us to 

provide more personalised and efficient services, reducing transaction costs and 

improving the accuracy of our recommendations. 
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Figure 12: Competitor product analyses of leading agritech startups in Africa 

7. Financial Plan 

The financial estimates for our startup are contingent on a variety of things, 

including the nature of our pricing mechanism and the magnitude of the agritech 

industry. Yet, MyAgro360 has the potential to earn significant market share through 

the sale of licensing rights, usage rights, and subscriptions. 

7.1. Revenue Projections 

Our subscription-based pricing model costs $1000 per year, and the estimated 

target customers in the target market is 5,000 farmers, agribusinesses, and aggregators 

per each country (Table 3). The following is a breakdown of the anticipated revenue 

for the first four years of business. 

Table 3: Revenue projections for the first four years. 

Year Adoption rate Users Cost ($) Revenue 

2023 10 350 3000 1050000 

2024 25 2000 3000 6000000 

2025 50 3500 3000 10500000 

2026 75 5000 3000 15000000 
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7.2. Cost Projections 

The costs associated with the development, deployment, and maintenance of 

MyAgro360 will depend on the complexity of the solution, the number of developers 

and engineers involved, and the hosting and server costs (Table 4). Assuming a 

conservative estimate of $200,000 in development costs and an ongoing annual cost of 

$50,000 for hosting, maintenance, and updates, the cost projections for the first four 

years would be as follows: 

Table 4: Cost projections for the first four years. 

Year Maintenance Updates + Marketing Total 

2023 300,000 50,000 350,000 

2024 50,000 50,000 100,000 

2025 50,000 50,000 100,000 

2026 70,000 50,000 120,000 

 

7.3. Projected Cashflow 

On the basis of the forecasts for both revenues and expenditures, the following 

would be the net income for the first three years (Table 5). 

Table 5: Cash flow projections for the first four years. 

Year Cash Flow 

2023 700,000 

2024 5,900,000 

2025 1,0400,000 

2026 14,880,000 

 

7.4. Breakeven Analysis 

The break-even point is the point at which MyAgro360 will be able to cover all 

of its expenses. If we use the estimates from above, the point at which we would be 

profitable would be when we acquire around 1,000 users per year. In order for 

MyAgro360 to generate a profit in its first year of operation, the company will need to 

achieve an adoption rate of at least 10%. 
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8. Conclusion 

In order to prevent yield losses, techniques for quickly detecting and predicting 

abiotic and biotic stressors are crucial. In this study, we looked at how well 

hyperspectral (HSI) and chlorophyll fluorescence imaging (CFI) combined with 

artificial intelligence (AI) and geographical information system (GIS) work in 

simulating natural settings to assess wheat responses to frost (4°C) and drought (40% 

soil moisture content) stress at the booting stage and accurately identify fall armyworm 

and maize streak disease in maize. Flag leaf water content, photosynthetic rate, and 

enzyme activity were examined in addition to their typical HSI full range reflectance 

(280-2500 nm) and CFI values. Partial least square regression (PLSR) models were 

developed to investigate the utility of HSI for monitoring cellular damage in terms of 

enzymatic activity, and spectral indices were computed to characterise the responses to 

both isolated and combined stressors. Most of the work done on PLSR models for 

enzymes focused on the reflection at 360, 700, 1400, 1900, and 2460 nm. The highest 

R2c (0.99), R2v (0.94), and R2d (0.93), as well as the largest ratio of prediction to 

deviation, were found in superoxide dismutase, peroxidase, and ascorbate peroxidase, 

respectively (4.04, 3.06, and 3.85).  

Cold stress, both alone and in conjunction with dryness, and reduced CFI. 

Through measuring enzymatic activity and reactive oxygen species (ROS), PLSR 

models confirmed that the most important variables were the ratio vegetation stress 

index (RVSI), the green difference vegetation index (GDVI), the difference vegetation 

index (DVI), and the normalised difference water index (NDWI). There was a high 

association between spectral index and enzyme activities in predicting crop failures. 

This means that HSI and CFI methods were able to detect coupled frost and drought 

conditions for fast quantification. The AI/GIS-powered scouting and scanning features 

in MyAgro360 accurately detected fall armyworms at the pupal stage and accurately 

provided early control measures for users. 
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