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ABSTRACT

Recently, transformers have shown strong ability as visual feature extractors, sur-
passing traditional convolution-based models in various scenarios. However, the
success of vision transformers largely owes to their capacity to accommodate nu-
merous parameters. As a result, new challenges for adapting a well-trained trans-
former to downstream tasks arise. On the one hand, classic fine-tuning tunes all
parameters in a huge model for every downstream task and thus easily falls into
an overfitting situation, leading to inferior performance. On the other hand, on
resource-limited devices, fine-tuning stores a full copy of all parameters and thus
is usually impracticable for the shortage of storage space. However, few works
have focused on how to efficiently and effectively transfer knowledge in a vision
transformer. Existing methods did not dive into the properties of visual features,
leading to inferior performance. Moreover, some of them bring heavy inference
cost though benefiting storage. To tackle these problems, we propose consolida-
tor to achieve efficient transfer learning for large vision models. Our consolidator
modifies the pre-trained model with the addition of a small set of tunable parame-
ters to temporarily store the task-specific knowledge while freezing the backbone
model during adaptation. Motivated by the success of group-wise convolution, we
adopt grouped connections across the features extracted by fully connected lay-
ers to construct tunable parts in a consolidator. To further enhance the model’s
capacity to transfer knowledge under a constrained storage budget and keep infer-
ence efficient, we consolidate the parameters in two stages: 1. between adaptation
and storage, and 2. between loading and inference. On a series of downstream
visual tasks, our consolidator can reach up to 7.56 better accuracy than full fine-
tuning with merely 0.35% parameters, and outperform state-of-the-art parameter-
efficient tuning methods by a clear margin. Code is available at github.

1 INTRODUCTION

Recently, transformer architectures originated from natural language processing (NLP) (Vaswani
et al., 2017) demonstrate considerable capacity in computer vision (Dosovitskiy et al., 2020; Tou-
vron et al., 2021; Liu et al., 2021b). Vision transformers, along with traditional convolutional neural
networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014), are
widely used as feature extractors to generate strong and general visual representations via deriving
knowledge from massive images. Thanks to the abundant information in such representations, we
can adapt the pre-trained models to downstream tasks by a simple fine-tuning strategy.

However, fine-tuning is not a good solution for adaptation. As is well known, the scale of vision
models grows faster and faster in recent years. On the one hand, fine-tuning which tunes all param-
eters in such a huge model easily falls into an overfitting situation, leading to inferior performance.
On the other hand, fine-tuning inflicts heavy storage burdens. Since fine-tuning intensively tunes all
parameters, it maintains a full copy of the model’s parameters for each task. Therefore, fine-tuning
can cause a huge storage burden when there are many tasks to be adapted, resulting in impracticality
in real-world scenarios, especially in resource-constrained situations, e.g., embedded systems.

†Corresponding authors.
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Efforts have been made to improve the performance as well as reduce the storage overhead of fine-
tuning. For example, adapter (Houlsby et al., 2019; Karimi Mahabadi et al., 2021), prompt tun-
ing (Li & Liang, 2021; Lester et al., 2021; Zhou et al., 2021) and LoRA (Hu et al., 2021) inject
tunable parameters and freeze the backbone during adaptation. In the vision field, VPT (Jia et al.,
2022) directly leverage learnable prompts, AdaptFormer (Chen et al., 2022) adopts parallel adapter,
NOAH (Zhang et al., 2022) searches for the optimal combinations of the three representative mod-
ules, i.e., adapter, LoRA, and VPT, and SSF (Lian et al., 2022b) use additional scaling and shifting
parameters for adaptation. Despite their acceptable performance, existing methods suffer from two
common conflicts: 1. trade-off between the inference efficiency and the adaptation performance,
and 2. trade-off between the adaptation performance and the number of stored parameters. Previous
works (Houlsby et al., 2019) show that introducing more tunable parameters can achieve more fruit-
ful results. However, extra parameters can bring significantly larger computation and storage cost,
resulting in low inference efficiency and more storage space. Therefore, one essential question is
raised: can we design a module that can share the same inference cost as an ordinary model while
enjoying superior capacity against existing methods?

In this paper, we propose a generic module, dubbed consolidator, to tackle the aforementioned
issues. The proposed consolidator is designed as a mergeable adapter that accompanies the fully
connected (FC) layer in the vision models. Specifically, to enrich the model capacity under a limited
parameter budget, we take inspiration from the success of group-wise convolution (Howard et al.,
2017; Ma et al., 2018; Liu et al., 2022) and build our consolidator as grouped connected (GC)
layers. To enhance the flexibility, we further reorder channels for each group connection, followed
by a droppath regularizer. Benefiting from the inference-time linearity of GC, channel reorder, and
droppath operations, the proposed consolidator can be perfectly consolidated into the original FC
layer of a vision model, leading to no extra inference cost.

Our consolidator can be easily expanded as a multi-branch topology without breaking the linearity.
Practically, we can simultaneously equip several GC layers with channel reordering for communi-
cations between different groups of feature channels. After adaptation, we can first consolidate the
multi-branch GC layers into one single sparse parameter matrix and store the sparse matrix for each
task. Such property can enhance the model’s transferability and achieve a considerable storage re-
duction when the number of tasks scales up. During inference, such a sparse parameter matrix can
be merged into the backbone model as well, resulting in no inference cost. Thanks to the twice con-
solidation, the proposed consolidator can greatly promote efficient and effective visual adaptation.

To verify the superiority of consolidator, we conduct extensive experiments and analysis on a series
of downstream recognition tasks. Experimental results show that our consolidator can surpass full
fine-tuning by 7.56 top-1 accuracy with merely 0.35% parameters per task. Compared to state-of-
the-art methods, such as NOAH, AdaptFormer and SSF our method can consistently reach better
performance while enjoying no inference cost. On other fundamental visual tasks, i.e., object detec-
tion and semantic segmentation, our consolidator shows great power as well.

Overall, we summarize our contributions as follows. (i) We propose a basic module, dubbed consol-
idator, for effective and efficient visual transfer learning. To enhance the transferability under limited
tunable parameters, our consolidator is designed as a mergeable grouped connected (GC) layer with
a channel reorder layer and a droppath regularizer. We extend the single branch to a multi-branch
topology for better flexibility and transferability. (ii) We design a two-stage consolidation scheme
by merging corresponding parameters in the training-storage phase and loading-inference phase. In
this way, we can maximally dig the adaptation capacity of the model under a constrained storage
budget, with no extra inference cost. (iii) We conduct extensive experiments and analysis on various
downstream tasks. Results show that the proposed consolidator method can consistently outperform
state-of-the-art methods with fewer stored parameters but superior performance.

2 RELATED WORKS

Parameter-efficient transfer learning. In the language field, works (Houlsby et al., 2019; Pfeiffer
et al., 2021; Li & Liang, 2021; Lester et al., 2021; Zaken et al., 2021; Hu et al., 2021; Karimi Ma-
habadi et al., 2021; Liu et al., 2021a; Ding et al., 2022a) have been done to efficiently transfer the
knowledge of pre-trained transformers to downstream language tasks. In the field of visual adap-
tation, several explorations have also been made to adapt vision transformers efficiently. Jia et al.
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Figure 1: Consolidator tuning versus full fine-tuning. Consolidator adds tunable multi-branch
grouped connected layers to the original fully connected layers. The tunable parameters are merged
via addition into one single sparse matrix before storage to reduce the needed storage space. Between
loading and inference, the parameters in the sparse matrix will be merged back into the original fully
connected layer. Consolidator greatly enlarges the model’s adaptation capacity under a constrained
storage budget with no extra inference cost. Best viewed in color.

(2022) and Bahng et al. (2022) directly apply prompt-tuning. Jie & Deng (2022) integrates addi-
tional tunable convolution layers. NOAH (Zhang et al., 2022) first trains a large supernet with three
modules, VPT, LoRA, and adapter, and then searches for the optimal configurations of each module
for every transformer block using evolution algorithm (Chen et al., 2021). AdaptFormer (Chen et al.,
2022) adds parallel adapters instead of serial ones. SSF (Lian et al., 2022b) tunes additional scal-
ing and shifting parameters for adaptation. It is also shown that classic methods such as LoRA (Hu
et al., 2021) and adapter (Houlsby et al., 2019) can lead to good performance for vision transformers.
However, existing methods suffer from the two trade-offs as we discussed in Section 1, resulting in
difficulties in fully digging the adaptation capacity of vision models efficiently. To solve the prob-
lems, we present a mergeable adapter, named consolidator, and introduce a two-stage consolidation
design to perfectly balance the trade-offs, leading to efficient and effective visual adaptation.

Inference-efficient structures. Many works (Ding et al., 2019; Guo et al., 2020; Ding et al.,
2021b;c;a; 2022b) strive to design a generic convolution architecture to realize superior capacity
while enjoying no inference cost. For example, RepVGG (Ding et al., 2021c) integrates an extra
1×1 convolution to strengthen the main 3×3 convolution. However, existing methods are typically
designed for CNNs. As for the popular vision transformer architectures, rare works investigate how
to effectively strengthen their capacity while introducing no extra inference cost. LoRA (Hu et al.,
2021) and SSF (Lian et al., 2022b) offer possible solutions, but they do not explore the consoli-
dation process between training and storage, leading to inferior performance under a given storage
budget. In this paper, we adopt parallel GC layers to replace the functionality of the original FC
layers in vision models, which shows strong abilities for visual adaptation. Furthermore, we expand
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the existing one-stage training-inference consolidation to a two-stage process: 1. training-storage
consolidation, and 2. loading-inference consolidation. Such a two-stage design can maximally dig
the adaptation capacity of the pre-trained model under a constrained storage budget, with no extra
inference cost. Extensive experiments show that our consolidator can outperform state-of-the-art
methods in both the number of tunable parameters and the adaptation performance.

3 METHODOLOGY

3.1 PRELIMINARIES

In this paper, we mainly focus on the adaptation for vision transformers (Dosovitskiy et al., 2020;
Liu et al., 2021b). A typical vision transformer (Dosovitskiy et al., 2020) consists of L serial blocks.
In each encoder, there are a multi-head self-attention module (MHSA) and a multi-layer percep-
tron (MLP). Formally, a batch of input images xinput ∈ RB×3×H×W will be first reshaped into
a sequence of flattened 2D patches xp ∈ RB×N×(P 2·C), where C is the number of channels and
(P, P ) is the resolution of each patch, and N = NW/P 2 is the number of patches. Then the
patches are mapped to D channel dimensions with a linear projection. Next, a classification to-
ken is appended and we can get x1 ∈ RB×(N+1)×D. Here we use xl ∈ RB×(N+1)×D to de-
note the input of l-th (1 ≤ l ≤ L) block. Its output xl+1 = x′l + MLP(LayerNorm(x′l)) where
x′l = xl + MHSA(LayerNorm(xl)). For MHSA, the input features are first processed by three FC
layers to generate matrices Q,K, V , and the output is calculated by Softmax(QKT

√
d
)V and then pro-

jected by another FC layer. Therefore, the parametric components of MHSA are four FC layers. The
parametric components of MLP are two FC layers as well. Therefore, we formulate our consolidator
for the FC layers (see Fig. 1), covering all the parametric components in each MHSA and MLP. We
will show that such a design can realize both efficiency and effectiveness in Section 4. Notably, our
method is also applicable for MLP (Lian et al., 2022a) and CNN (Liu et al., 2022) and can reach
good results as in Tab. 4.

3.2 CONSOLIDATOR

For efficient transfer learning, we merely tune and store the parameters in consolidators while freez-
ing other parameters in the pre-trained model. In this subsection, we will introduce our design of
consolidator, an efficient and effective module for adapting vision transformers, in detail.

Grouped connections. Inspired by the success of group convolution in extracting visual features,
we hence assume that the cross-channel information exchange is redundant in visual adaptation, and
aim to design consolidator by reducing the cross-channel connections between sequential features to
minimize the number of stored parameters for downstream tasks while keeping maximum capacity.
Therefore, for each FC layer, we add a concurrent module consisting of a grouped connected layer.
Formally, for an input x ∈ RD, the output x′ ∈ RE of a GC layer with group g, weight W ∈
Rg×E

g ×
D
g and bias b ∈ RE is formulated by x′ = GC(x) =

∑g
j=1 Pad(Wjx (j−1)D

g : jDg
, j) + b.

Here Pad(z, j) prepends (j−1)D
g zeros and appends (g−j)D

g zeros for z ∈ R
E
g according to another

input j. In this way, the output channels in the j-th group only interact with the input channels in
the j-th group, and thus we reduce the cross-channel connections as expected.

To flexibly reach different ratios of stored parameters, we adopt a multi-branch topology in our

consolidator. There is a GC layer with weight W(i) ∈ Rg(i)× E

g(i)
× D

g(i) and bias bi ∈ RE for i-
th branch with group g(i). During adaptation, consolidator and the original FC layer take the same
input and their outputs are summed up to produce the new output y. Formally, for each FC layer with
weight W ∈ RE×D and bias b ∈ RE , the output of the whole layer modified by m GC branches is
y = Wx + b +

∑m
i=1(

∑g(i)

j=1 Pad(W(i)
j x (j−1)D

g(i)
: jD

g(i)

, j) + b(i)).

Channel reorder. To flexibly tune the total number of parameters and enrich the exchange of
information flow, we prepend a “ChannelReorder” operation to every branch in our consolidator by
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manually adjusting the permutation of input features along the channel dimension. In general, we
adopt shuffle operation (Zhang et al., 2018; Ma et al., 2018) to accomplish such a purpose.

Formally, given input x ∈ R∗×D where “∗” means any number of dimensions including none, we
shuffle it into g groups and perform recombination across the last dimension. Formally, we first
reshape x into x′ ∈ R∗×g×

D
g , and then transpose the last two dimension and get x′′ ∈ R∗×

D
g ×g ,

and then reshape x′′ into x′′′ ∈ R∗×D, which is the final output. A pythonic style formulation is
ChannelReorder(g, x) = (x.reshape(∗, g, D

g )).transpose(−2,−1).reshape(∗, D)

We set shuffle groups g = gi in the i-th branch, where gi is the group of the corresponding GC layer.
In this way, there are few overlaps between the weight matrices of distinct branches, and the model
capacity is greatly expanded each time a new branch is contained.

Stochastic depth of pre-trained weight. To further enlarge the model’s adaptation capacity, we ap-
pend a droppath (Huang et al., 2016) layer to each branch. For small downstream datasets, dropping
the consolidator path with a higher ratio p can help reduce overfitting and catastrophic forgetting,
which may be beneficial to the performance. Empirically shown in Section 4.8, droppath is more
effective than standard dropout (Srivastava et al., 2014) in the current situation probably for the fol-
lowing reasons. The parameters of the whole layer degrade into the pre-trained weight parameters
with probability p. The frozen pre-trained parameters contain domain-generic knowledge, which
may help the adaptation. Overall, a model modified by consolidator will have a stochastic depth of
pre-trained state of parameters during each forward pass, and different consolidators will be acti-
vated for different training samples.

Two-stage consolidation. Now we have constructed all the elements of a consolidator. For-
mally, the output of the whole layer after being modified by consolidator is y = Wx + b +

Droppath(p,
∑m

i=1(
∑g(i)

j=1 Pad(W(i)
j ChannelReorder(g(i), x) (j−1)D

g(i)
: jD

g(i)

, j) + b(i))).

Since all the operations in a consolidator are inference-time linear, we can easily consolidate the
domain-specific knowledge into the domain-agnostic knowledge in the pre-trained backbone model,
in both the training-storage phase and the loading-inference phase.

1. Training-storage consolidation. All we need to store in a consolidator are W(i) and b(i). How-
ever, there are some parameters corresponding to the same entry, and thus they can be merged
into a single one. As shown in Fig. 1, we also tune the bias of the original FC layer in addi-
tion to the parameters in consolidator. It is easy to find that the duplicate biases in all branches
and the original bias can be merged into a single one. And there are some duplicate entries
in the weight matrix as well, so we can merge all weight matrices into one single sparse ma-
trix. Consolidating such duplicate entries can largely benefit storage. Formally, we use W̃ and
b̃ to denote the matrix that we need to store on the disk. Since channel reorder is a linear op-
eration, we can apply a reverse operation to W(i) to simulate the effect of the reorder applied
to x. And we have W̃ =

∑m
i=1 ChannelReorder−1(g(i),Compact(W(i))). Here Compact re-

shapes the input matrix for the preparation of reordering its channels. It is easy to verify that
ChannelReorder−1(g(i), •) = ChannelReorder( D

g(i) , •).

2. Loading-inference consolidation. After loading the merged sparse weight matrix and merged
bias matrix to memory, we can directly add them back to the weight matrix and bias matrix of the
original FC layer. Formally, we use Ŵ and b̂ to denote the final weight and bias of the FC layer for
inference. Then Ŵ = W + W̃, b̂ = b̃. In this way, no additional inference cost is brought.

Overall, our consolidator reduces the storage space by using grouped connected layers and consol-
idating some duplicate entries. The training time non-linearity, e.g., droppath, which turns out to
be linear in inference time, effectively enriches model capacity under a constrained storage budget.
Finally, we can consolidate the task-specific knowledge into the backbone model by merging the
inference time linear components to enjoy free, efficient, and effective transfer learning.
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Table 1: Full results on the VTAB-1k (Zhai et al., 2019) benchmark. The bold font denotes the
best accuracy and the underline font denotes the second best accuracy in each column. Consolidator
gives the strongest results, surpasses full fine-tuning by 7.56 accuracy on average, and outperforms
the state-of-the-art methods with low storage overhead and no inference cost.
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Full 100% 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.97
Head 0.04% 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.64
Bias 0.10% 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.22

VPT 0.75% 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 71.97
Adapter 0.36% 69.8 91.2 68.8 99.0 89.9 85.7 53.8 82.3 95.5 83.7 76.1 82.4 65.0 48.2 80.5 74.5 49.7 29.8 39.2 74.28
LoRA 0.34% 68.1 90.1 69.8 98.9 90.8 84.8 54.0 83.2 95.6 84.2 73.9 82.4 68.7 49.4 80.0 81.7 46.1 31.4 41.8 74.64
AdaptFormer 0.36% 71.0 91.1 69.9 99.3 90.5 87.4 54.8 84.1 95.9 85.9 75.8 83.1 63.8 49.6 79.6 76.5 45.1 30.9 39.2 74.82
NOAH 0.52% 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.48
SSF 0.29% 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.69
Ours 0.35% 74.2 90.9 73.9 99.4 91.6 91.5 55.5 86.9 95.7 86.6 75.9 81.2 68.2 51.6 83.5 79.8 52.3 31.9 38.5 76.53

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We select several state-of-the-art parameter-efficient methods as our baselines, includ-
ing Full, Head, Bias (Zaken et al., 2021), Adapter (Houlsby et al., 2019), VPT (Jia et al., 2022),
LoRA (Hu et al., 2021), AdaptFormer (Chen et al., 2022), NOAH (Zhang et al., 2022) and SSF (Lian
et al., 2022b). Note that Adapter, AdaptFormer, VPT, and NOAH will bring heavy inference cost to
the pre-trained model which may cause troubles in resource-limited devices, while LoRA, SSF and
our consolidator are more friendly for deployment with no extra inference cost brought.

VTAB-1k. We first run experiments on VTAB-1k (Zhai et al., 2019) benchmark, which covers a
wide range of visual domains in 19 datasets. Each dataset contains 1000 images picked from the
original dataset for training, and the size of test set stays unchanged, varying from 711 to 73728.

Full data setting. VTAB-1k merely has a small number of training images, and thus the capacity of
a huge transformer is redundant to some extent. Therefore, to check the performance of parameter-
efficient methods in a data-sufficient situation, we select 10 widely-used datasets for visual recog-
nition in various domains and use the original training, validation, and test split for experiments.
On average, a dataset in this setting contains a lot more images for training, leaving huge space for
the model to adapt. The chosen datasets include natural pictures (Caltech101 (Fei-Fei et al., 2004),
Cifar10 (Krizhevsky et al., 2009), Cifar100 (Krizhevsky et al., 2009)), fine-grained classification
(CUB200 (Wah et al., 2011), OxfordFlowers (Nilsback & Zisserman, 2008), OxfordPets (Parkhi
et al., 2012), StanfordDogs (Khosla et al., 2011)), textures (DTD (Cimpoi et al., 2014)), scene clas-
sification (SUN397 (Xiao et al., 2010)) and satellite images (EuroSAT (Helber et al., 2019)).

4.2 MAIN RESULTS

We first choose a ViT-B (Dosovitskiy et al., 2020) with 86M parameters as a base model.

VTAB-1k Tab. 1 presents the full results on VTAB-1k benchmark. Overall, our consolidator is the
best parameter-efficient method. On 12 of 19 datasets, consolidator achieves the best or second best
top-1 accuracy. Notably, consolidator surpasses the state-of-the-art methods NOAH and SSF by a
clear margin, with low storage overhead and no inference cost.

Full data setting Tab. 2 presents the full results on full data setting. Overall, our consolidator still
performs best. An interesting observation is that the rank of full fine-tuning rises as the training
data increase. None of the parameter-efficient methods can reach comparable performance with
full tine-tuning other than our consolidator within 0.5% parameter storage overhead. In contrast, the
parameter-efficient methods can reach at least 5% higher accuracy on VTAB-1k than full fine-tuning
under comparable or even lower storage budget (around 0.5%), as shown in Tab. 1.
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Table 2: Full results on data-sufficient scenarios. It is more
challenging to take full advantage of a large amount of data
within a fairly small number of stored parameters. Consolida-
tor earns the best or second best in all 10 datasets.
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Bias 0.22% 90.2 99.0 91.9 86.4 73.5 98.5 92.6 85.4 71.0 97.7 88.62

Adapter 0.55% 91.0 99.0 92.2 86.3 72.6 98.7 92.5 85.9 71.9 97.4 88.75
LoRA 0.53% 90.1 99.0 91.8 85.4 71.9 98.1 92.1 85.6 71.3 97.2 88.25
AdaptFormer 0.55% 90.9 99.0 92.3 86.5 73.4 98.9 92.9 85.2 71.4 97.1 88.76
SSF 0.30% 90.9 99.0 92.1 85.7 72.6 98.3 92.3 85.7 71.6 97.8 88.60
Ours 0.50% 91.4 99.1 92.5 87.0 74.5 99.0 93.2 86.4 72.1 97.9 89.31

Table 3: Adaptation results for
a self-supervised model, MoCo
v3 ViT-B. Consolidator earns
the best average accuracy

.
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Full 100% 69.55 100% 86.24
Head 0.04% 59.62 0.10% 75.42
Bias 0.10% 69.15 0.22% 80.96

Adapter 0.36% 73.22 0.55% 86.15
LoRA 0.34% 72.73 0.53% 79.70
AdaptFormer 0.36% 74.03 0.55% 86.26
NOAH 0.42% 73.55 —— ——
SSF 0.29% 51.41 0.30% 80.73
Ours 0.35% 74.71 0.50% 86.41

Table 4: Adaptation performance for more models in full data setting. Consolidator consistently
reaches a better result than full fine-tuning within a very small set of parameters which is needed to
be stored. Generally, it is more difficult to reach a better result than full fine-tuning when the model
capacity is insufficient, i.e., the model does not accommodate enough parameters in total.

Supervised Learning MAE
Architecture ViT-S ViT-L Swin-B AS-MLP-B ConvNeXt-B ViT-B

Total Parameters 22M 303M 87M 87M 88M 86M

Full Average 89.10 90.07 91.00 87.75 91.92 82.77
# params 100% 100% 100% 100% 100% 100%

Head Average 81.87 87.92 90.45 83.49 90.62 58.10
# params 0.20% 0.04% 0.13% 0.13% 0.13% 0.10%

Bias Average 87.86 89.81 91.00 86.26 91.61 79.80
# params 0.44% 0.13% 0.36% 0.32% 0.28% 0.22%

LoRA Average 87.55 89.86 90.95 – – 82.22
# params 5.12% 0.33% 0.80% 1.82%

Adapter Average 88.28 89.91 90.98 – – 82.89
# params 5.09% 0.35% 0.78% 1.80%

Ours Average 89.12 90.52 91.28 86.71 91.79 83.32
# params 5.06% 0.33% 0.77% 1.13% 1.04% 1.78%

4.3 RESULTS FOR SELF-SUPERVISED VISION TRANSFORMER

Then we use a self-supervised trained transformer by MoCov3 (He et al., 2020) as our target model.
Seen from Tab. 3, on both VTAB-1k and full data setting, consolidator consistently reaches the
highest average top-1 accuracy. AdaptFormer gives the second highest accuracy. SSF significantly
falls behind others (51.41 on VTAB and 80.73 on full data setting) when dealing with MoCo v3
ViT-B, showing limited generalization ability for self-supervised visual models.

4.4 RESULTS FOR MORE PRE-TRAINED MODELS

To further verify the generalization ability of consolidator, we conduct extensive experiments in
Tab. 4 based on full data setting. First, we apply consolidator to supervised learned models with
larger (ViT-L) or smaller (ViT-S) size than standard ViT-B. Compared with full fine-tuning, we
achieve a comparable performance for ViT-S with 5.06% parameters. For ViT-L, merely 0.33%
parameters can lead to 0.45 higher than full fine-tuning. Then we experiment on Swin-B, a hierar-
chical architecture using shifted windows to introduce locality for better recognition. We observe a
0.28 improvement while storing only 0.77% parameters. Next, we further verify the effectiveness of
consolidator on other vision architectures other than transformers, e.g. AS-MLP (Lian et al., 2022a)
and ConvNeXt (Liu et al., 2022). Finally, we experiment on ViT-B pre-trained by a generative SSL
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Figure 2: Left: the Adaptation results corresponding to varying ratios of stored parameters. Clearly,
consolidator consistently outperforms LoRA, adapter, and full fine-tuning by a significant margin
across a wide range of parameter scales from 0.5% to 10%. And each of the three methods will
reach higher accuracy if we increase its storage budget and tune more parameters. Right: adapta-
tion results corresponding to varying sampling rates of data. Consolidator performs best across all
sampling rates. As the sampling rate decreases, full fine-tuning slightly falls off its advantage over
adapter and LoRA, which is consistent with our previous observations.

method, MAE, as a comparison with the contrastive SSL method MoCo v3. Our method stores
1.78% parameters onto the disk while enjoying 0.55 higher accuracy.

Generally, it is more difficult to perfom better than full fine-tuning when the model does not have
enough parameters to fully leverage the information from massive training data.

4.5 ADAPTATION ACROSS VARYING SCALES OF STORED PARAMETERS

Next, we seek to find the principle between downstream accuracy and the number of stored param-
eters for all parameter-efficient methods with flexible parameter scales, based on full data setting.
Results are shown in Fig. 2 left. LoRA, adapter, and consolidator reach better performance as the
number of parameters increases. In various parameter scales (from 0.5% to 10%), our consolidator
consistently outperforms all competitors by a clear margin.

4.6 ADAPTATION ACROSS VARYING DATA SAMPLING RATIOS

Fig. 2 right shows adaptation results corresponding to varying sampling rates of datasets, based on
full data setting. For all sampling rates, consolidator keeps the best adaptation ability. In addition, as
the sampling rate decreases, full fine-tuning slightly falls off its advantage over Adapter and LoRA,
which is consistent with previous observations on VTAB-1k and full data setting.

4.7 RESULTS ON OBJECT DETECTION AND SEMANTIC SEGMENTATION.

We further verify our method on downstream object detection and semantic segmentation tasks. We
adopt Swin-Base as the backbone which can provide hierarchical features. Experiments are done on
PASCAL VOC 07+12 (Everingham et al., 2010) for detection and PASCAL VOC 12 (Everingham
et al., 2010) for segmentation. We adopt Faster R-CNN (Ren et al., 2015) and UperNet (Xiao et al.,
2018) separately for detection and segmentation framework. Seen from Tab. 5, our consolidator
significantly outperforms full training and detection/segmentation head training with a small number
of parameters stored, showing great potential for broader usage.

4.8 ABLATION STUDIES

We do controlled experiments to identify the effect of individual components in our module design.
We report tuned parameters, stored parameters, and accuracy in Tab. 6. We experiment on 5 datasets
with different domains: Caltech101, DTD, OxfordFlowers, StanfordDogs, and EuroSAT.

Droppath v.s. Dropout. We first investigate our choice of Droppath. Droppath with a consolidator
of (g(1) = 96, g(2) = 192) as the base model. As shown in Tab. 6, compared with dropout and
no drop-type layer, droppath can obtain 0.44 and 0.48 performance improvement, respectively, well
demonstrating the effectiveness of encouraging stochastic depth for consolidator.
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Table 5: Performance on downstream object detection and semantic segmentation tasks. Compared
with tuning detection/segmentation head only, consolidator reaches much better mAP/mIoU with
negligible parameters increase and surpasses the performance of tuning all parameters in both back-
bone and task head as well.

Method Backbone
Object Detection Semantic Segmentation

Framework # params mAP Framework # params mIoU

Full
Swin-B Faster-RCNN

100% 85.85
UperNet

100% 83.24
Head 16.74% 84.89 28.48% 82.31
Consolidator 17.22% 86.64 28.89% 83.96

Table 6: Effect of individual designs for a consolidator module.
Branches Original

Bias
Extra
Bias

Channel
Reorder Dropout Droppath Tuned

Params
stored
Params Accuracy ∆Accuracy

96, 192 1.95% 1.75% 87.36 -0.00
96, 192 1.95% 1.75% 86.92 -0.44
96, 192 1.95% 1.75% 86.88 -0.48
96, 192 1.95% 1.24% 86.98 -0.38
96, 192 1.85% 1.75% 87.26 -0.10
96, 192 1.76% 1.75% 86.92 -0.44
96, 192 1.66% 1.65% 86.82 -0.54

384 0.56% 0.47% 87.08 -0.00
384 0.56% 0.47% 86.98 -0.10

384, 384 0.92% 0.47% 86.96 -0.12
384 0.37% 0.37% 86.84 -0.00

384 (unst) N/A 0.37% 0.37% 86.70 -0.14

ChannelReorder. The effect of ChannelReorder operation mainly lies in separating the entries into
different branches to reduce the repetitive ones. In a multi-branch case like (g(1) = 96, g(2) = 192),
ChannelReorder brings 0.38 accuracy improvement. Furthermore, it is helpful even if there is only
one branch like (g(1) = 384), where ChannelReorder still slightly raises the accuracy by 0.1.

Duplication of bias and weight. Based on the consolidator with (g(1) = 96, g(2) = 192), we
can see duplicating bias is relatively effective. Compared with tuning the original bias and only
tuning two extra biases, tuning all three biases can lead to 0.44 and 0.1 performance improvement,
respectively, with the same storage cost. Additionally, we also compare tuning original bias v.s.
not tuning bias, and the former only has a slight 0.1 accuracy advantage, which further verifies the
effectiveness owes mostly to the delicate consolidation design instead of simple bias tuning. Besides
bias, we test on a consolidator with (g(1) = 96) to investigate the effect of integrating duplicate
weights. However, this kind of consolidation does not bring notable improvement.

Structured v.s. Unstructured. One potential limitation of consolidator is that g(i) can not be
selected arbitrarily for it must be a factor of the channels. This may cause trouble when fairly few
parameters other than head parameters, e.g. 0.0001%, are required to be tuned. A solution is to adopt
unstructured sparsity instead of structured block-wise sparsity in consolidator branches to flexibly
control the parameter number. We simulate the situation with (g(1) = 384) for comparison with a
unstructured implementation. Seen from Tab. 6, the unstructured branch whose tunable parameter
number equals that of a branch with g = 384 faces a slight accuracy drop, 0.14. In summary, the
unstructured consolidator can be a sub-optimal choice when needed, with a slight performance drop
and more training cost due to the unstructured sparse matrix being unfriendly to the hardware.

5 CONCLUSIONS

We propose consolidator, a novel method to achieve both parameter- and inference-efficient visual
adaptation. Consolidator adds a few tunable, mergeable modules along each fully connected layer
in the pre-trained model and keeps most of the original parameters frozen during adaptation. We
design a two-stage consolidation to dramatically boost performance under a given storage budget.
The duplicate entries in a consolidator will be merged into a single matrix and stored on disk. Finally,
we consolidate the task-specific parameters in consolidator into the tasks-agnostic parameters in the
pre-trained model, bringing no extra inference cost. On various tasks, consolidator outperforms all
state-of-the-art competitors significantly, showing strong scalability and generalization ability.
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A EXPERIMENT SETTINGS

A.1 IMAGE RECOGNITION

A.1.1 DATASETS

VTAB-1k. VTAB-1k (Zhai et al., 2019) consists of 19 visual datasets in three groups: Natural,
Specialized, and Structured, containing images collected from a wide range of visual domains. Each
dataset is divided into the training set (800 images), validation set (200 images), and test set (the
original set). The final adaptation accuracy is reported on the test set. All models are fine-tuned
on the full 1000 labeled images, i.e., train+val set. The validation set is used for tuning some
hyperparameters.

Full data. We select 10 widely-used visual datasets with sufficient data to further verify the effec-
tiveness of the parameter-efficient methods. The datasets are shown in the following part:

Caltech101 (Fei-Fei et al., 2004) contains pictures of natural objects belonging to 101 classes, with
3060 images for training and 6084 images for testing.

CIFAR-10/100 (Krizhevsky et al., 2009) contains pictures of natural objects belonging to 10/100
classes, with 50000 images for training and 10000 images for testing.

Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011) contains pictures of birds belonging to 200
fine-grained bird classes, with 5994 images for training and 5794 images for testing.

Describable Textures Dataset (DTD) (Cimpoi et al., 2014) contains texture images in the wild be-
longing to 47 human-centric classes, with 5640 images in total which are equally split into the
training, validation, and test set.
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OxfordFlowers102 (Nilsback & Zisserman, 2008) contains pictures of flowers belonging to 102 fine-
grained flower classes, with 1020 images for training, 1020 images for validating, and 6149 images
for testing.

Oxford-IIITPets (Parkhi et al., 2012) contains pictures of pets belonging to 37 fine-grained pet
classes, with 3680 images for training and 3669 images for testing.

StanfordDogs (Khosla et al., 2011) contains pictures of dogs belonging to 120 fine-grained dog
classes, with 12000 images for training and 8580 images for testing.

Scene UNderstanding (SUN397) (Xiao et al., 2010) contains pictures of scenes belonging to 397
classes, with 76128 images for training, 10875 images for validating, and 21750 images for testing.

EuroSAT (Helber et al., 2019) contains pictures based on Sentinel-2 satellite images belonging to 10
classes, with 27000 images in total.

Some of the datasets do not contain a validation split, and we will manually select 1̃0% random
images from the training set as the validation set.

To better utilize the massive data in various domains, we follow the practice in (Junguang Jiang &
Long, 2020; Jiang et al., 2022) to make preparation and divide data splits. For data augmentation, we
adopt a standard pipeline. In training, we do a random resize crop to 224×224, random horizontal
flip, and normalization for each input image. In test, we do a resize to 256×256, center crop to
224×224, and normalization for each input image.

A.1.2 TRAINING HYPERPARAMETERS.

On VTAB-1k, we follow the hyperparameters in VPT (Jia et al., 2022) for full fine-tuning, Head,
Bias, and VPT, and mainly follow the hyperparameters in NOAH (Zhang et al., 2022) and SSF (Lian
et al., 2022b) for adapter, LoRA, NOAH, and consolidator. The detailed hyperparameters for each
tuning method can be found in Tab. 7.

On full data setting, we do a quick grid search to choose a proper set of training hyperparame-
ters based on the performance of full fine-tuning for every well-trained visual representation. All
training hyperparameters are shown in Tabs. 7 and 8. Following the practice in (Jiang et al., 2022;
Junguang Jiang & Long, 2020), we reduce the learning rate of backbone parameters to 0.1x that of
head parameters. We then adopt the same hyperparameters for all parameter-efficient variants as
well as our consolidator after the hyperparameters have been chosen according to full fine-tuning
results.

A.1.3 METHODS.

Full: Ordinary fine-tuning. It tunes all parameters and stores all parameters to disk for every down-
stream task, leading to heavy storage cost.

Head: Also known as linear probing. It only tunes the classification head and freezes other parame-
ters.

Bias (Zaken et al., 2021): Bias only tunes the biases and freezes all the weights in a pre-trained
model.

Adapter (Houlsby et al., 2019): Adapter inserts a sequence of tunable parameters, including a down
projection, a non-linearity (here we use GELU (Hendrycks & Gimpel, 2016)) and an up projection
layer, into each encoder block. The adapters are serially connected with the backbone layers.

LoRA (Hu et al., 2021): LoRA adds a concurrent branch containing low-rank weight matrices for
efficient parameter update. A LoRA module contains serial down projection and up projection layers
without non-linearity, and thus it can be merged into the backbone parameters before inference.

VPT (Li & Liang, 2021; Jia et al., 2022): VPT appends tunable virtual tokens to the inputs of
transformer blocks, which will participate in the calculation of the subsequent blocks along with the
actual tokens.

NOAH (Zhang et al., 2022): NOAH first trains a large supernet with all three modules, VPT, LoRA,
and adapter, and then searches for the optimal configurations of each module for each layer using
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the NAS algorithm introduced by AutoFormer (Chen et al., 2021). In the end, NOAH retrains the
best subnet candidates to produce the final result.

AdaptFormer (Chen et al., 2022): AdaptFormer adopts parallel adapters (Houlsby et al., 2019) and
a scale operation for each encoder block.

SSF (Lian et al., 2022b): SSF adds tunable scale and shift parameters for each operation of the
backbone model. The added parameters can be merged into the original model and thus SSF brings
no inference cost.

Implementation details. On VTAB-1k, we follow the same implementations for LoRA and adapter
with NOAH (Zhang et al., 2022).

On Full data setting, the detailed implementations are shown as follows. For LoRA (Hu et al.,
2021), we follow its original implementation to do low-rank re-parameterization and tune merely
two weight matrices Wq and Wv , which generate the attention matrices Q and V, in every trans-
former encoder block. For bias, we tune all the biases (including the parameters outside encoder
blocks) in the model. For adapter, we follow its original implementation to additionally tune the
parameters of LayerNorm (Ba et al., 2016) and add the tunable adapter modules to the end of each
MHSA and MLP before calculating the residual connections. For consolidator, we follow the prac-
tice of adapter to tune the LayerNorm as well and only add consolidator to the linear layers in MHSA
and MLP of each transformer encoder block. We sweep the drop ratio in {0.0, 0.2, 0.5, 0.8}. We
choose training hyperparameters according to the performance of full-finetuning for each visual rep-
resentation. The hyperparameters are finally configured as in Tab. 7. When applying consolidator
to Swin-B, we skip the first stage of transformer encoder blocks that contain a relatively small part
of parameters (0.6% of total parameters) compared with others and merely insert consolidator for
linear layers in MHSA and MLP of blocks of last 3 stages.

A.2 OBJECT DETECTION

On the downstream object detection task, we adopt Faster R-CNN (Ren et al., 2015) framework with
FPN (Lin et al., 2017) to verify the effectiveness of consolidator on Pascal VOC 07+12 dataset (Ev-
eringham et al., 2010). We use a Swin-B pre-trained on IN-21k as the backbone model. The consol-
idator setting is the same as the setting of Swin-B in Tab. 7. For hyperparameters, we adopt AdamW
as the optimizer with a learning rate of 1e-4 and weight decay of 5e-2, and train for 8 epochs in to-
tal. The learning rate is decayed by a factor of 10 after 6 epochs. The first 300 iterations are trained
with a warmup ratio of 1e-3 for the learning rate. The data augmentation is the same as the default
strategy in mmdetection (Chen et al., 2019).

A.3 SEMANTIC SEGMENTATION

On the downstream semantic segmentation task, we adopt UperNet (Xiao et al., 2018) to verify the
effectiveness of consolidator on Pascal VOC 12 dataset (Everingham et al., 2010). We use a Swin-B
pre-trained on IN-21k as the backbone model. The consolidator setting is the same as the setting of
Swin-B in Tab. 7. For hyperparameters, we adopt AdamW as the optimizer with a learning rate of
6e-5 and weight decay of 1e-2, and train for 20000 iterations in total. The learning rate is decayed
by a polynomial scheduler with a power of 1.0. The first 200 iterations are trained with a warmup
ratio of 1e-6 for the learning rate. The data augmentation is the same as the default strategy in
mmsegmentation (Contributors, 2020).

B TRAINING AND INFERENCE COST

Many the classic parameter-efficient tuning methods, e.g. adapter (Houlsby et al., 2019) and Adapt-
former (Chen et al., 2022) introduce non-negligible extra cost in inference period and thus slow
down the processing speed. In contrast, consolidator tuning shares identical structure with the orig-
inal model and bring no extra inference cost. We quantitatively show the training cost and inference
cost across different parameter scales in Fig. 3. Here we do not show the cost of SSF for it can not
be adapted to different scales of parameter budget. In addition, VPT and NOAH both search for an
optimal structure from a large searching space and thus it is hard to fairly measure their cost as well.
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Table 7: The method-related hyperparameters.
model Setting LoRA Adapter Consolidator

Supervised, MoCo v3 ViT-B
VTAB-1k rank=8 hidden=16 (g(1)=384)

Full data rank=10 hidden=9 (g(1)=384)

Supervised ViT-S Full data rank=58 hidden=56 (g(1)=48, g(2)=64, g(3)=96)

Supervised ViT-L Full data rank=9 hidden=8 (g(1)=512)

Supervised Swin-B Full data rank=12 hidden=10 (g(1)=256)

Supervised AS-MLP-B Full data —— —— (g(1)=128)

Supervised ConvNeXt-B Full data —— —— (g(1)=128)

MAE ViT-B Full data rank=40 hidden=38 (g(1)=96, g(2)=192)

Table 8: The training hyperparameters on full data setting.
Supervised MAE MoCo v3

model ViT-S ViT-L Swin-B AS-MLP-B ConvNeXt-B ViT-B ViT-B

pretraining dataset IN-21k IN-21k IN-21k IN-1k IN-21k IN-1k IN-1k

optimizer sgd sgd sgd sgd sgd sgd sgd

warmup epochs 5 5 5 5 5 5 5

epochs 40 40 40 40 40 40 40

batch size 128 32 64 48 64 64 64

lr 1e-3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-2

wd 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
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Figure 3: Left: comparison of the inference speed (images/second). Right: comparison of the train-
ing speed (images/second). We can conclude that consolidator tuning maintains good throughput
during training across various storage budgets, and bring no extra cost compared with normal fine-
tuning in inference period.

Table 9: Sensitivity test on consolidator’s hyperparameters. Given a particular target storage budget,
we may have several choices in selecting the branches and groups. As seen below, such choices
make little influence on the final results. The performance of consolidator is relatively stable under
a given storage budget.

# params 0.75% 1.01% 4.88% 6.42%

branchesmore (256,768) (256,384,768) (48,64,96) (24,48)
accmore 87.02 87.04 87.18 87.28

branchesless (192) (128) (32,64) (16)
accless 86.98 87.00 87.14 87.36

∆acc 0.04 0.04 0.04 -0.08
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C SENSITIVITY OF GROUPS AND BRANCHES IN CONSOLIDATOR

Given a particular target storage budget, we may have several choices in selecting the branches and
groups. As seen in Tab. 9, such choices make little influence on the final results. The performance
of consolidator is relatively stable under a given storage budget. When the budget increases, the
performance of consolidator increases as well. Such monotonical property is helpful for real-world
applications, making it easy to tune hyperparameters and rapidly find an optimal candidate under a
given storage budget.
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