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a b s t r a c t 

The long-tailed data distribution is prevalent in real world and it poses great challenge on deep neural 

network training. In this paper, we propose Margin-aware Rectified Augmentation (MRA) to tackle this 

problem. Specifically, the MRA consists of two parts. From the data perspective, we analyze that data 

imbalance will cause the decision boundary be biased, and we propose a novel Margin-aware Rectified 

mixup (MR-mixup) that adaptively rectifies the biased decision boundary. Furthermore, from the model 

perspective, we analyze that the imbalance will also lead to consistent ‘gradient suppression’ on minority 

class logits. Then we propose Reweighted Mutual Learning (RML) that provides extra ‘soft target’ as su- 

pervision signal and augments the ‘encouraging gradients’ on the minority classes. We conduct extensive 

experiments on benchmark datasets CIFAR-LT, ImageNet-LT and iNaturalist18. The results demonstrate 

that the proposed MRA not only achieves state-of-the-art performance, but also yields a better-calibrated 

prediction. 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

In recent years, the development of deep neural networks 

as achieved great success in various applications, such as object 

ecognition, object detection and so on. To train a well-performed 

eep neural network, one has to collect a dataset with sufficient 

raining samples for all categories such as ImageNet [1] . However, 

t is often costly to collect such a balanced dataset in real-world 

pplications. For example, in applications such as large-scale ob- 

ect recognition with thousands of categories, it is easy to collect a 

arge number of images of sparrows, but it would cost much more 

ffort to collect sufficient samples of, let’s say, armadillo. Moreover, 

n some cases, it is even infeasible to collect a balanced training set 

s some samples are so rare to be collected. For example, in med- 

cal image analysis, some types of diseases are so rare that there 

ould be only a few samples available. 

The long-tailed phenomenon greatly limits the robustness and 

eneralizability of current deep learning algorithms in various ap- 

lications [2] . Since most deep learning algorithms are designed 

ith the assumption of a balanced training set, they tend to be 

everely biased when training with long-tailed distributed dataset. 

n such cases, the deep neural networks tend to be overconfident 
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n the majority categories, and perform poorly on minority cate- 

ories. 

Current approaches for long-tailed recognition can be broadly 

ategorized into two types: one-stage and multi-stage. One-stage 

ethods do not change the original training procedure and use 

eweighting or resampling to alleviate the dominance of the ma- 

ority classes. Specifically, reweighting methods design novel loss 

unctions to reweigh instances from different categories, so that 

he impact from the majority classes will be downgraded and the 

ominance is alleviated. The resampling methods, on the other 

and, adopt majority undersampling or minority oversampling, so 

hat a more balanced training distribution can be obtained. The 

ulti-stage methods usually adopt multiple training phases to ob- 

ain a more robust network, including decoupling methods, mix- 

ure of experts and meta/transfer learning methods, etc. The de- 

oupling methods [3] decouples the representation learning and 

lassifier and train them separately in a two-stage stage manner. 

he mixture of experts methods [4,5] learn an ensemble of clas- 

ifiers to debias the data imbalance. The meta learning and trans- 

er learning methods [6] , however, tackle the long-tail problem by 

ransferring the rich knowledge from the majority classes to tail 

lasses. 

Orthogonal to the aforementioned methods, we propose a aug- 

entation method termed Margin-aware Rectified Augmentation 

MRA), to tackle the long-tailed classification problem. The MRA 

tems from the following observations: firstly, from the data per- 

pective, the poor performance of minority classes derives from 

https://doi.org/10.1016/j.patcog.2023.109608
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109608&domain=pdf
mailto:xiangly@bupt.edu.cn
mailto:dinggg@tsinghua.edu.cn
https://doi.org/10.1016/j.patcog.2023.109608
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Fig. 1. The long-tailed distribution brings up two problems: (a) a biased decision boundary and (b) consistent gradient suppression on minority categories, both of which 

we aim to address in this paper. 
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nsufficient training data, or in other words, the lack of varia- 

ions and diversity of minority categories, which can be alleviated 

y the data synthesis or augmentation methods such as Mixup 

7] and SMOTE [8] . However, current augmentation approaches are 

ot particularly designed for (e.g., mixup), or neglect the char- 

cteristics of long-tailed problem (e.g., SMOTE), that is, a biased 

ecision boundary. As shown in Fig. 1 (a), the observed minority 

raining samples (solid circle) can not well represent the under- 

ying distribution due to the lack of sufficient data. When trained 

ith standard empirical risk minimization, the territory of minor- 

ty classes will be narrowed and the decision boundary is biased, 

n which case the minority testing samples (hollow circle) could 

asily fall on the other side of the decision boundary and be mis- 

lassified. To rectify the resulting biased decision boundary, we 

orrow the theoratical analysis of optimal margin from Cao et al. 

9] , which indicates that that for two classes a, b, the optimal mar-

in that minimizes the generalization error bound γa , γb satisfies: 
γb 
γa 

= 

N 
1 / 4 
a 

N 
1 / 4 
b 

. When mixing up two samples from different categories, 

e rectify the mixed up label accordingly so that the decision 

oundary can also be rectified through data augmentation. 

Secondly, from the model perspective, we analyze that the data 

mbalance also leads to an imbalanced gradient distribution. As 

hown in Fig. 1 (b), during deep neural network training, the minor- 

ty class logits will receive much more ‘discouraging gradients’ (the 

ed dashed lines) than ‘encouraging gradients’ (the green dashed 

ines) from the majority categories (e.g., the majority class cat ), due 

o their insufficient training data. In other words, they are consis- 

ently suppressed by the majority classes during training. The re- 

ulting consequence is that majority predictors tend to be over- 

onfident and minority samples tend to be misclassified as ma- 

ority ones. To address the gradient imbalance issue, we propose 

eweighted Mutual Learning (RML) to provide an extra ‘soft tar- 

et’ as supervision and augment the encouraging positive gradients 

n the minority classes. To be more specific, we train two identi- 

al peer networks and teach each other mutually via knowledge 

istillation [10] . Due to the stochastic characteristic of deep neural 

etwork training, the peer network will learn in a complementary 

ay and promote each other [11] . Moreover, we design a reweight- 

ng scheme so that the augmented positive gradients of minority 

amples will be emphasized. 

We conduct extensive experiments on the long-tailed bench- 

ark datasets including CIFAR-LT, ImageNet-LT and iNaturalist18. 

e show that the proposed MRA can be easily combined with 

ne-stage and multi-stage methods and achieve state-of-the-art 

erformances. We also analyze the Expected Calibration Error 
2 
ECE) and show that the MRA can also alleviate the misaligned 

onfidence in long-tailed classification. 

The key contributions of this paper are as follows: 

• From the data aspect, we analyze the necessity of debiasing 

decision boundary and propose Margin-aware Rectified mixup, 

which enlarges the tail class margins by rectifying the labels of 

the augmented samples. 
• From the model aspect, we analyze the gradient suppression on 

minority classes and propose Reweighted Mutual Learning to 

augment ‘encouraging gradients’ for the minority classes. 
• We conduct extensive experiments on three benchmark 

datasets: CIFAR-LT, ImageNet-LT and iNaturalist18 to verify the 

effectiveness of MRA. We also demonstrate through visualiza- 

tions of decision boundary, ablation studies and calibration 

analysis that the proposed MRA not only achieves state-of-the- 

art performance, but is also efficient, flexible and reliable. 

The rest of this paper is organized as follows: related works 

n long-tailed recognition are reviewed in Section 2 . Section 3 de- 

cribes the proposed MRA method in detail. Then the experimental 

esults are demonstrated in Section 4 and finally we draw the con- 

lusion in Section 5 . 

. Related work 

The long-tailed classification problem, especially in the context 

f deep learning, has gained increasing attention in recent years. 

urrent long-tailed classification approaches can be broadly di- 

ided into one-stage and multi-stage methods based on their train- 

ng stages. 

.1. One-stage methods 

One-stage methods maintain the common deep neural network 

raining procedure and use techniques such as resampling and 

eweighting to tackle the data imbalance. 

Resampling methods either under-sampling majority classes or 

ver-sampling minority classes. For undersampling methods, one 

ommon approach is to randomly discard majority class samples so 

hat a more balanced and uniform training distribution is sampled 

12,13] . 

For oversampling methods, one representative is the Synthetic 

inority Oversampling TEchnique (SMOTE) [8] , where minority 

amples are oversampled by interpolating synthetic minority in- 

tances. Han et al. [14] propose borderline-SMOTE that oversam- 

les the borderline instances. Maldonado et al. [15] propose a 
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eature-weighted oversampling approach to tackle the data imbal- 

nce. While resampling could alleviate the imbalance during train- 

ng, it may also lead to information loss (under-sampling) or mi- 

ority class overfitting (over-sampling). More recently, Balanced 

oftmax loss [16] is proposed to optimize a parameterized sam- 

ling strategy via meta-learning. 

Reweighting methods usually design cost-sensitive loss func- 

ions to alleviate the majority class dominance during training. 

his is usually achieved by down-weighting majority class losses. 

ocal Loss [17] proposes to downweigh the loss of well-classified 

xamples. Label-Distribution-Aware Margin Loss (LDAM) [9] pro- 

ide theoretical analysis on the optimal margin between minor- 

ty and majority classes, and encourage the minority categories 

o have larger margins. Class-balanced Effective Number Loss pro- 

oses [18] effective number of samples for reweighting. Equaliza- 

ion Loss and its variants [19,20] analyze that the tail classes are 

onsistently suppressed in terms of gradient in imbalanced object 

etection, and propose reweighting to alleviate the gradient sup- 

ression issue. Du et al. [21] propose parameter-free loss which re- 

uires no hyper-parameter tuning. There are also effort s trying to 

utomatically learn a reweighting function via meta learning [22–

4] . 

.2. Multi-stage methods 

Multi-stage methods modify the original training procedure and 

nvolve multiple training stages, including decoupling methods, 

ixture of experts, head-to-tail transfer learning, etc. 

Decoupling methods is first proposed in Kang et al. [3] where 

epresentation network is first learned with ordinary instance- 

alanced sampling during the first stage and the classifier is re- 

rained in the second stage with class-balanced resampling. There 

re also variants including DisAlign [25] and LogitAdjust [26] . The 

isAlign argues that the representation network is already well- 

rained in the first stage of Decouple and proposes a generalized 

lignment strategy in the second stage. LogitAdjust adjusts the log- 

ts with a label-dependent offset and can be applied either post- 

oc or during training. 

Mixture of experts methods [4,5,27] usually use multiple net- 

orks in an ensemble manner to promote the performance. LFME 

4] trains multiple expert networks on different subsets and distills 

 unified network while RIDE [5] learns a dynamic routing scheme 

etween multiple expert networks with shared parameters. 

Transfer learning or meta learning methods transfer the knowl- 

dge from majority to minority classes so that the performance 

n minority categories is promoted. MetaModelNet [28] proposes 

o progressively learn a transformation mapping from head to tail 

lassifiers/regressors while OLTR [6] proposes to learn a meta em- 

edding with a memory module for head-to-tail knowledge trans- 

er. 

.3. Data augmentation methods 

Apart from common one-stage and multi-stage methods, vari- 

us data augmentation methods [29–31] are also proposed to pro- 

ote the long-tailed performance. Among these methods, LEAP 

29] models the feature distribution as Gaussian distribution and 

ransfers the majority distribution to minority. M2m [32] gener- 

tes minority samples by transforming from majority samples in 

n adversarial-like strategy. DFG (Discriminative Feature Genera- 

ion). Suh et al. [33] is trained to generate discriminative feature 

ia attention maps. MetaSAug [31] on the other hand, adopt meta 

earning to automatically learn an implicit semantic data augmen- 

ation. While these methods have greatly promoted the perfor- 

ance, they usually require sophisticated augmentation calculation 

nd lacks flexibility. The closest method to our proposed MRA is 
3 
emix [30] , which modifies mixup [7] to cope with the imbalance. 

oth Remix and the proposed MR-mixup aim to modify the labels 

f the augmented samples, so that the classifier tends to predict 

ore of tail classes. However, remix is designed with hand-crafted 

ules with several extra hyperparameters. In contrast, the proposed 

R-mixup rectifies the margin continuously with theoretical sup- 

ort and with no hyperparameters. Moreover, we also introduce 

ML that augments the tail class gradient and further improves the 

ong-tailed recognition performance. 

However, it is designed with hand-crafted discrete rectification 

nd requires several extra hyperparameters. By contrast, the pro- 

osed MR-mixup rectifies the margin continuously and requires no 

xtra hyperparameters and can be regarded as a generalization of 

emix. 

Compared with previous augmentations methods, the proposed 

RA can not only be efficiently plugged in to any one or multi- 

tage methods, but are also particularly designed to cope with 

he characteristics of long-tailed recognition, i.e., biased decision 

oundary and consistent minority gradient suppression. 

. Proposed method 

.1. Overview and problem setup 

As illustrated in Fig. 1 , the proposed MRA mainly focuses on 

ddressing two issues: (1) rectifying biased decision boundary 

hrough data augmentation, (2) augmenting positive gradients on 

inority classes via reweighted mutual learning. We first briefly 

ntroduce the problem setting, then elaborate on details of MR- 

ixup and RML. 

Problem setup . Suppose we have a training dataset with long- 

ailed distribution: D train = { x i , y i } , i ∈ { 1 , . . . , N} where x i is the

 -th data point with label y i , and N is the total number of training

amples. We denote C as the total number of classes and n c to be 

he number of samples for class c where 
∑ 

i n i = N. We use imbal- 

nce ratio to indicate the ratio between the largest and smallest n i , 

.e., max { n i } / min { n i } 
Without loss of generality, we assume that the classes are 

orted by their cardinality in decreasing order, such that n 1 ≥ n 2 ≥
 . . ≥ n C . Since the training set is long-tailed, we have n 1 � n C . For

est-time evaluation, we have a balanced test set D test , such that 

 

test 
1 

� N 

test 
C 

. 

.2. Margin-aware rectified mixup 

Firstly, we briefly introduce preliminaries including mixup 

7] augmentation and optimal margin analysis [9] . Then we will 

escribe how to design MR-mixup with theoretical support. 

mixup . is a well-known data augmentation method which 

roves to be beneficial for neural network generalization. Given 

wo samples (x 1 , y 1 ) , (x 2 , y 2 ) , the augmented data point is formu-

ated as follows: 

˜ 
 = λx 1 + (1 − λ) x 2 ˜ y = λy 1 + (1 − λ) y 2 (1) 

here λ ∼ Beta (α, α) 

Optimal margin . is introduced as follows: 

heorem 1 ( [9] ) . For binary classification, let F be a hypothesis class 

f neural networks with Rademacher complexity upper bound R j ≤
 

C(F ) 
n j 

where n j denotes number of samples in class j. Suppose some 

lassifier f ∈ F can achieve a total sum of margins γ ′ 
1 

+ γ ′ 
2 

= β with 

argins γ ′ 
1 
, γ ′ 

2 
> 0 . Then there exists a classifier f ∗ ∈ F with margins

∗
1 = 

βn 

1 / 4 
2 

n 

1 / 4 + n 

1 / 4 
, γ ∗

2 = 

βn 

1 / 4 
1 

n 

1 / 4 + n 

1 / 4 
(2) 
1 2 1 2 
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Fig. 2. Illstration of MR-mixup. Since our goal is to rectify the decision boundary and let margin γ becomes γ ∗ , we propose to rectify the labels of the augmented samples 

where λ is rectified to λRec proportionally. 
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hat obtains the optimal generalization error. 

While mixup improves the neural network’s generalizability, we 

urther incorporate the optimal margin into its formulation and 

ropose MR-mixup. Specifically, we propose to ‘shift’ the label of 

he mixed up sample according to the optimal margin (see the red 

rrow in Fig. 2 ), so that the margin is adjusted and the decision

oundary is rectified. We adopt to linearly rectify the mixed up la- 

el for calculation simplicity. 

First, we consider the case where λ < 0 . 5 , that is, the mixed

p sample falls on the minority side of the decision boundary, 

s illustrated in Fig. 2 . Suppose we have a mixed up sample ˜ x =
x 1 + (1 − λ) x 2 with label ˜ y = λy 1 + (1 − λ) y 2 . When trained with

rdinary empirical risk minimization, the decision boundary with 

argin γ1 = γ2 is biased due to the under-represented minority 

istribution. Then we wish to rectify the decision boundary (or- 

nge solid line) to the one with optimal margin (orange dashed 

ine). Recall the optimal margin in Theorem 1 , the minority class 

argin should be enlarged from γ1 = (γ1 + γ2 ) / 2 to 

∗
1 = 

n 

1 / 4 
2 

(γ1 + γ2 ) 

n 

1 / 4 
1 

+ n 

1 / 4 
2 

(3) 

n order to rectify the decision boundary to reach the optimal mar- 

in γ ∗
1 

, we propose to rectify the label ˜ y of the mixed up sample 

roportionally. Concretely, we linearly ‘shift’ the mixing factor λ1 

o that the rectified λRec 
1 

satisfies: 

λ1 

λRec 
1 

= 

γ1 

γ ∗
1 

= 

(γ1 + γ2 ) / 2 

n 

1 / 4 
2 

(γ1 + γ2 ) 

n 

1 / 4 
1 

+ n 

1 / 4 
2 

(4) 

hen we have: 

Rec 
1 = 

2 λn 

1 / 4 
2 

n 

1 / 4 
1 

+ n 

1 / 4 
2 

(5) 

hen the MR-mixup sample’s label is rectified as: 

˜ 
 

Rec = λRec 
1 y 1 + (1 − λRec 

1 ) y 2 (6) 

Similarly, when λ ≥ 0 . 5 , that is, the mixed up sample falls on

he majority side of the decision boundary. In this case, the opti- 

al majority class margin satisfies: 

∗
2 = 

n 

1 / 4 
1 

(γ1 + γ2 ) 

n 

1 / 4 + n 

1 / 4 
(7) 
1 2 

4 
hen we consider linearly rectifying λ2 to λRec 
2 

so that: 

λ2 

λRec 
2 

= 

γ2 

γ ∗
2 

= 

(γ1 + γ2 ) / 2 

n 

1 / 4 
1 

(γ1 + γ2 ) 

n 

1 / 4 
1 

+ n 

1 / 4 
2 

(8) 

imilarly, we have: 

Rec 
2 = 

2 λn 

1 / 4 
1 

n 

1 / 4 
1 

+ n 

1 / 4 
2 

(9) 

hen the MR-mixup sample’s label is rectified as: 

˜ 
 

Rec = (1 − λRec 
2 ) y 1 + λRec 

2 y 2 (10) 

Note that while the MR-mixup rectifies the labels of the aug- 

ented samples ˜ y , the original augmented input ˜ x is unchanged. 

e wish the prediction of the classifier leaning towards the tail 

lass given the same augmented sample ˜ x . In this way, the tail class 

argin is enlarged accordingly. 

Toy examples To give an intuitive understanding of how MR- 

ixup rectifies decision boundary, we conduct experiments on two 

oy imbalanced datasets two moon and circle . We train a one hid- 

en layer MLP with imbalance ratio = 5 . Then we plot p(y | x ) as

ell as test samples shown in Fig. 3 . We compare MR-mixup with 

1) without any augmentation, (2) with regular mixup, (3) with 

emix, (4) with MR-mixup. From the visualization, we come with 

he following observations: first, the training data imbalance will 

ause the majority class (red) to have a larger territory or mar- 

in than minority class (blue), which will lead to misclassifica- 

ion and is in accordance with our previous analysis. Second, all 

ixup-based methods enlarge the margin of the tail class (blue 

rea) and narrow the margin of the head class (red area). Finally, 

ompared to mixup and Remix, the proposed MR-mixup yields a 

learer and better-rectified boundary. When compared to mixup, 

R-mixup results in a larger minority class margin (see the top- 

ight in two-moon case). When compared to remix, its boundary 

s clearer as remix tends to ‘over-smoothen’ the boundary. For ex- 

mple, on the circle dataset, the leftmost blue point could be mis- 

lassified as head class by remix. The result in Fig. 3 illustrates the 

uperiority of MR-mixup over mixup and remix. 
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Fig. 3. Visualization on toy datasets to illustrate how MR-mixup rectifies the decision boundary. It can be observed that compared to other baselines, the proposed MR-mixup 

enlarges the minority margin while also maintaining a clearer boundary. 
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.3. Reweighted mutual learning 

The MR-mixup augments the minority classes to alleviate the 

ata imbalance, we further propose RML to augment the minority 

radients to alleviate the gradient imbalance issue. First, we give a 

rief review of the gradient suppression on minority classes, which 

as also been similarly analyzed in previous works [19,20] . 

Consider a neural network with pre-softmax logits z = 

 z 1 , . . . , z C ] and y = [ y 1 , . . . , y C ] to be the one-hot ground-truth vec-

or. The neural network is trained with cross entropy loss: 

 CE = −
C ∑ 

i =1 

y i log (σi ) , σi = Softmax (z i ) (11) 

Then the gradient of logit z i with respect to L CE is: 

∂L CE 

∂z i 
= 

{
σi − 1 y i = 1 

σi y i = 0 

(12) 

From Eq. (12) , it can be observed that for a minority category 

 i , it only receives positive gradient σi − 1 when the current sample 

elongs to c i ( y i = 1 ), which is rare. Otherwise, it will suffer from

 negative gradient σi since y i = 0 , which is much more frequent. 

To mitigate the minority gradient suppression, we resort to mu- 

ual learning [11] where an identical peer network f ′ is trained as 

ell. Denote its post-softmax output as p i , the mutual learning loss 

ith respect to f is calculated as: 

 ML (σ, p) = −
C ∑ 

i =1 

p i log ( 
p i 
σi 

) (13) 

Similarly, since KL-divergence is asymmetric, we have mutual 

oss for f ′ as well: 

 

′ 
ML (p, σ ) = −

C ∑ 

i =1 

σi log ( 
σi 

p i 
) (14) 

Then the gradient of z i with respect to L ML is: 

∂L ML (σ, p) 

∂z i 
= p i (σi − 1) + 

∑ 

k 
 = i 
p k σi (15) 
5 
In this case, z i receives both positive gradients p i (σi − 1) and 

egative gradients 
∑ 

k 
 = i p k σi . Compared to the one-hot ‘hard tar- 

et’ in cross-entropy, mutual learning provides a ‘soft target’ p i as 

upervision signal and alleviates the over-confidence of majority 

lassifier. Furthermore, we propose to reweigh the mutual learning 

n an instance-wise manner to augment the minority gradients: 

 RML (σ, p) = −w i 

C ∑ 

i =1 

p i log ( 
p i 
σi 

) (16) 

here w i is the instance-wise weight. Intuitively, if the current 

ample i belongs to minority class c, i.e., y i = c, it is expected to

ave higher p i and should be emphasized. In practice, we adopt 

lass-balanced effective number [18] : 

 i = 

1 − η

1 − ηn c 
(17) 

here η is the hyperparameter. In this way, the RML guides the 

eer networks to learn from each other, with special focus on mi- 

ority samples. With the RML, the long-lasting gradient suppres- 

ion on minority classes is compensated and mitigated. 

During training, we make a copy of the original training batch 

or MR-mixup augmentation and the RML loss is computed on the 

riginal data. The final loss is computed as: 

 = L CE (x, y ) + L CE ( ̃  x , ̃  y Rec ) + L RML (σ, p) + L 

′ 
RML (p, σ ) (18)

During testing, we discard peer network f ′ and use f for 

nference, so that RML will not bring any extra computational 

ost at inference time. The whole training pipeline is shown in 

lgorithm 1 . 

. Experiments 

.1. Datasets 

We conduct experiments on three benchmark datasets: CIFAR- 

T, ImageNet-LT and iNaturalist18. 

• CIFAR-LT is a long-tailed version of CIFAR dataset introduced in 

Cao et al. [9] . It is created with exponential decay imbalance 
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Algorithm 1: Pseudo code for MRA training. 

Input : Imbalanced training set D train , main network f and 

peer network f , total epochs T , Batch size B . 

Output : Learned main network f . 

for epoch = 1 to T do 

Sample mini-batch { (x i , y i ) } B i =1 
from D train 

Randomly sample B pairs of { (x 1 
j 
, y 1 

j 
, x 2 

j 
, y 2 

j 
) } B 

j=1 
from 

mini-batch 

Sample mixup factor λ for each pair, then rectify λ to λRec 

according to Eq. 5 or Eq. 9 

Apply MR-mixup according to Eq. 6 or Eq. 10 

where ̃ x j = λx 1 
j 
+ (1 − λ) x 2 

j 
˜ y Rec 

j 
= λRec 

1 
y 1 

j 
+ (1 − λRec 

1 
) y 2 

j 

Forward pass { (x i , y i ) } through main network f and get 

logits σi 

Forward pass { (x i , y i ) } through peer network f and get 

logits p i 
Forward pass ({ ̃  x j , ̃  y Rec 

j 
) } through main network f and get 

logits ˜ σ j 

Calculate L CE with { (x i , y i ) } , { ( ̃  x j , ̃  y Rec 
j 

) } according to Eq. 11 

Calculate L RML and L RML with σ, p according to Eq. 16 

Calculate total loss according to Eq. 18 

L CE (x, y ) + L CE ( ̃  x , ̃  y Rec ) + L RML (σ, p) + L RML (p, σ ) 

Loss backward, update main network and peer network. 

return network f 
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and controllable imbalance ratio. In our experiments, we evalu- 

ate with imbalance ration 10 and 100 following [9] . 
• ImageNet-LT is a long-tailed version of ImageNet introduced in 

Liu et al. [6] . It is sampled from the original ImageNet dataset 

following the Pareto distribution with power value α = 6 . It has 

10 0 0 categories, 115 K training samples, 50 K testing samples 

and the imbalance ratio is 1280/5. 
• iNaturalist18 is a large-scale dataset collected from real-world 

and is extremely long-tailed. It has 8142 categories, 437 K train- 

ing samples, 24K testing samples and the imbalance ratio is 

10 0 0/2. 

.2. Baselines 

We compare with one-stage methods, multi-stage methods and 

ata augmentation methods in the following experiments. We 

riefly introduce our baseline methods. 

• One-stage methods include (1) vanilla Empirical Risk Minimiza- 

tion (ERM), which is the commonly adopted training strategy 

for most deel learning algorithms, (2) Focal loss [17] , which is 

a re-weighting method, (3) Class-balanced resampling (CB RS), 

where each class is sampled with equal probability, (4) Class- 

balanced reweighting loss based on effetive number of sam- 

ples (CB RW), (5) Class-balanced effective number based Focal 

loss (CB Focal) [18] , (6) Deferred resampling (DRS) [9] , where 

instance-balanced sampling is first used and then switch to 

class-balanced sampling, (7) Label-Distribution-Aware Margin 

loss (LDAM) [9] , which is a state-of-the-art method consisting 

of a re-weighting loss and DRS, (8) Domain Adaptation class- 

balanced reweighting (DA-RW) [24] , which is a state-of-the-art 

adaptive re-weighting loss, (9) Range loss [34] , which is also 

a re-weighting method, and (10) Balanced Meta Softmax [16] , 

which consists of a meta sampler and balanced softmax. 
• Multi-stage methods include (1) Bilateral-Branch Network 

(BBN) [35] , which is a two-branch network with different sam- 

pling strategies, (2) De-confound-TDE [36] , which direct causal 

effect of an input is calculated, (3) Few-shot meta learning 

(FSLwF) [37] , which is a few-shot learning method, (4) OLTR 
6 
[6] , where a meta-embedding is adopted, (5) Multiple Experts 

(LFME) [4] , where several teacher networks are trained to distill 

a unified student model, (6) Decoupling [3] , where the repre- 

sentation network and the classifier are trained in a two-stage 

manner. 
• Data augmentation methods include (1) mixup [7] , (2) Remix 

with Class-balanced Resampling (Remix-CB-RS), with De- 

ferred Resampling (Remix-DRS) and with Deferred re-weighting 

(Remix-DRW), which is an improved version of mixup, (3) 

Majority to minority transfer with LDAM loss (M2m-LDAM) 

[32] , where minority samples are synthesis in a adversarial-like 

method, and (4) SMOTE [8] , which is a traditional data synthe- 

sis method. 

.3. Implementation details 

All experiments are conducted with PyTorch on NVIDIA GeForce 

080 Ti GPUs. For CIFAR-LT experiments, we follow the training 

ules in Cao et al. [9] for a fair comparison. We train ResNet-32 for 

00 epochs with batch size 128, SGD with momentum 0.9, weight 

ecay 2 × 10 −4 . The initial learning rate is 0.1 and decays by 0.1 at

60 and 180 epoch. For ImageNet-LT experiments, we follow the 

etting in Kang et al. [3] , Liu et al. [6] and train ResNet-10 for 90

pochs with batch size 256, SGD with momentum 0.9, with initial 

earning rate 0.2 with cosine annealing learning rate schedule. For 

Naturalist18 experiments, we use random cropping to 224 × 224 

nd train ResNet-50 from scratch for 90 epochs with batch size 

4, SGD with momentum 0.9 and learning rate 0.1 with cosine an- 

ealing schedule. For all experiments η is set to 0.9999 following 

18] and mixup hyperparameter α = 1 following the original im- 

lementation [7] . 

.4. Comparison with state-of-the-art methods 

Performance on CIFAR-LT The result is shown in Table 1 . We 

uild MRA upon two baselines: (1) CB-RS, which is a commonly 

sed re-sampling strategy in one-stage methods, (2) DRS, an im- 

roved version of resampling, where instance-balanced sampling 

s first used, then switch to class-balanced sampling after certain 

umber of epochs. 

The result in Table 1 shows that when combined with deferred 

esampling, MRA outperforms all baselines by a large margin and 

chieves state-of-the-art performance in accuracy. Meanwhile, 

RA-CB-RS also exhibits competitive performance. Moreover, if we 

ompare MRA with its own baseline, i.e., CB-RS and DRS, it can be 

bserved that MRA brings significant improvement. The MRA-CB- 

S even improves CB-RS by 9.83% on CIFAR100-LT with imbalance 

atio 100. The MRA-DRS also improves the DRS with large per- 

ormance gain. Notably, we also observe that the improvement 

rought by MRA becomes larger as the imbalance ratio grows. 

he performance gain increases from 2.32(MRA-CB-RS)/1.68(MRS- 

RS) to 7.78(MRA-CB-RS)/7.27(MRS-DRS) for CIFAR-10-LT when 

he imbalance ratio increases from 10 to 100. Similarly, the per- 

ormance gain increases from 4.44(MRA-CB-RS)/4.54(MRS-DRS) 

o 9.83(MRA-CB-RS)/7.24(MRS-DRS) for CIFAR-100-LT when the 

mbalance ratio increases from 10 to 100. The result demonstrates 

hat MRA is beneficial for the long-tailed recognition, especially in 

he severe imbalance case. 

Performance on ImageNet-LT The result is shown in Table 2 . We 

uild MRA upon two baselines: (1) CB-RS, a commonly used re- 

ampling strategy in one-stage methods, (2) Decouple, which is the 

utting edge of multi-stage methods. We show that MRA can be 

asily combined with either one-stage or multi-stage methods and 

chieves promising performance. 

The result in Table 2 shows that when combined with Decou- 

le [3] , MRA achieves the highest accuracy and outperforms all 
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Table 1 

Results on CIFAR-LT. Baseline results are from Cao et al. [9] or their original papers. 

Dataset CIFAR10-LT CIFAR100-LT 

Imbalance ratio 100 10 100 10 

ERM 70.36 86.39 38.32 55.70 

Focal Loss [17] 70.38 86.67 38.41 55.78 

CB RS 70.55 86.79 33.44 55.06 

CB RW [18] 72.37 86.54 33.99 57.12 

CB Focal [18] 74.57 87.10 36.02 57.99 

DRS [9] 75.07 87.52 40.86 57.75 

LDAM [9] 77.03 88.16 42.04 58.71 

DA-RW [24] 80.00 87.40 44.08 58.00 

BBN [35] 79.82 88.32 42.56 59.12 

De-confound-TDE [36] 80.60 88.50 44.10 59.60 

mixup [7] 73.09 88.00 40.83 58.37 

Remix-CB-RS [30] 76.23 87.70 41.13 58.62 

Remix-DRS [30] 79.53 88.85 46.53 60.52 

Remix-DRW [30] 79.76 89.02 46.77 61.23 

M2m-LDAM [32] 79.10 87.50 43.50 57.60 

MRA-CB-RS 78.33( + 7.78) 89.11( + 2.32) 43.27( + 9.83) 59.50( + 4.44) 

MRA-DRS 82.34 ( + 7.27) 89.20 ( + 1.68) 48.10 ( + 7.24) 62.29 ( + 4.54) 

Table 2 

Results on ImageNet-LT. ∗denotes reproduced results. Other baseline results are from Liu et al. [6] or 

their original papers. 

Many N c > 100 Medium 20 < N C ≤ 100 Few shot N c < 20 Overall 

ERM 40.9 10.7 0.4 20.9 

Lifted Loss [38] 35.8 30.4 17.9 30.8 

Focal Loss [17] 36.4 29.9 16.0 30.5 

Range Loss [34] 35.8 30.3 17.6 30.7 

CB RS ∗ 42.7 34.1 15.7 34.8 

MetaSoftmax [16] 50.3 39.5 25.3 41.8 

FSLwF [37] 40.9 22.1 15.0 28.4 

OLTR [6] 43.2 35.1 18.5 35.6 

LFME [4] 47.0 37.9 19.2 38.8 

Decouple [3] ∗ 51.9 38.1 21.0 41.0 

SMOTE ∗ [8] 41.9 33.4 15.3 34.1 

mixup ∗ [7] 40.2 35.5 20.2 35.1 

MRA-CB-RS 44.2( + 1.5) 37.8( + 3.7) 19.1( + 3.4) 37.6( + 2.8) 

MRA-Decouple 53.0 ( + 1.1) 40.8 ( + 2.7) 27.3 ( + 6.3) 43.6 ( + 2.6) 
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Table 3 

Results on iNaturalist18. 

Method Accuracy 

ERM 57.1 

CB Focal 61.1 

DRW 63.7 

DRS 63.6 

LDAM 66.0 

Decouple 65.6 

BBN 66.3 

MRA-Decouple 67.2 ( + 1.6) 

n

t

i

a

o

l

o

4

c

t

a

a

o

aselines including one-stage, multi-stage and data augmentation 

ethods. Meanwhile, the MRA-CB-RS also demonstrates competi- 

ive performance. It outperforms other data augmentation methods 

nd most one-stage methods. 

More importantly, if we compare the improvement brought by 

RA on each subset of ImageNet-LT (Many, Medium, Few-shot 

ubsets), we find that most improvement comes from the Few 

ubset. The performance gain increases from 1.5% to 3.4% as the 

ubset changes from many to few-shot for MRA-CB-RS. Similarly, 

he performance gain increases from 1.1% to 6.3% as the subset 

hanges from many to few-shot for MRA-Decouple. This result in- 

icates that MRA is extremely effective on augmenting the minor- 

ty classes. 

Performance on iNaturalist18 We also conduct experiments on 

eal-world dataset iNaturalist18, which is directly constructed 

ithout any data sampling. The result in Table 3 shows that MRA- 

ecouple also yields state-of-the-art performance on iNaturalist18. 

ompared with the Decouple baseline, the MRA-Decouple brings 

.6% improvement in accuracy. This result demonstrates the effec- 

iveness of MRA for real-world long-tailed recognition. 

Efficiency analysis While MRA achieves state-of-the-art perfor- 

ance on three benchmark datasets, we argue that it is also com- 

utationally efficient and tuning efficient. First, the MRA is an 

ugmentation-based method and brings little extra computational 

ost. In contrast to many existing state-of-the-art methods (such 

s multi-stage methods) which improve the performance while 

uffering from extra high computational cost, the main compo- 

ent MR-mixup augments the training sample in an online man- 
7 
er which is computationally efficient. Second, it can be observed 

hat MRA requires little hyperparameters. The α in MR-mixup is 

nherited from mixup and kept as default value. The η in RML can 

lso be replaced by other hyperparameter-free reweighting meth- 

ds. Thus, the MRA is tuning efficient. Finally, the MRA is not only 

ightweight but also flexible, as it can be easily combined with 

ther methods. 

.5. Ablation study of MRA 

To verify the effectiveness of each component of MRA, we 

onduct ablation study and the result is shown in Table 4 . From 

he result, we conclude that both MR-mixup and RML contribute 

 lot to the overall improvement. We observe that MR-mixup 

lone already outperforms all other data augmentation meth- 

ds including mixup, Remix-CB-RS, Remix-DRS, Remix-DRW and 
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Table 4 

Ablation study on CIFAR-LT. 

Dataset CIFAR10-LT CIFAR100-LT 

Imbalance ratio 100 10 100 10 

DRS 75.07 87.52 40.86 57.75 

MR-mixup-DRS 82.18 89.13 47.78 61.26 

RML-DRS 80.15 89.10 46.60 62.03 

MRA-DRS 82.34 89.20 48.10 62.29 

Table 5 

Ablation study on RML. 

Dataset CIFAR10-LT CIFAR100-LT 

Imbalance ratio 100 10 100 10 

DRS 75.07 87.52 40.86 57.75 

ML only 78.31 88.60 44.73 60.89 

RML-Focal 79.72 89.05 46.14 61.63 

RML-CB 80.15 89.10 46.60 62.03 
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Table 6 

Comparison of different label shifting strategies. 

Dataset CIFAR10-LT CIFAR100-LT 

Imbalance ratio 100 10 100 10 

DRS 75.07 87.52 40.86 57.75 

τ = 0 (mixup-DRS) 77.93 87.90 44.16 59.25 

τ = 0 . 5 79.85 88.49 45.10 60.09 

τ = 1 (MR-mixup-DRS) 82.18 89.13 47.78 61.26 

τ = 2 81.74 88.97 47.31 61.17 
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2m-LDAM. This demonstrates the superiority of MR-mixup over 

xisting data augmentation methods. The RML, on the other hand, 

lso produces competitive performance. Meanwhile, we observe 

hat both MR-mixup and RML yield larger performance improve- 

ent over DRS when the imbalance ratio increases, indicating 

heir effectiveness of dealing with severe imbalance. They also 

ehave slightly differently under different imbalance ratios. The 

R-mixup achieves higher accuracy when the imbalance ratio is 

00, where RML yields superior performance when the imbalance 

atio is 10. Finally, the combination of MR-mixup and RML, i.e., 

RA, produces the highest performance. 

.6. Ablation study of RML 

In order to verify the effectiveness of RML, we conduct a more 

etailed ablation study on RML. We compare with the follow- 

ng variants: (1) ML only, where only mutual learning is adopted 

ithout the reweighting factor. (2) RML-Focal, where focal loss is 

dopted for reweighting. (3) RML-CB, where class-balanced loss is 

dopted for reweighting. The result is shown in Table 5 . The re- 

ult on CIFAR-10 and CIFAR-100 shows that (1) the improvement 

f RML-CB mostly comes from the mutual learning, as the mutual 

earning alone yields large improvement on the DRS baseline. (2) 

he reweighting strategy is also effective, as both focal loss and CB 

oss reweighting factor bring further improvements upon the mu- 

ual learning. In comparison, the RML-CB yields slightly superior 

erformance than the RML-Focal, and is adopted in the final ver- 

ion of MRA. 

.7. Comparison of different label shifting strategies 

In order to verify the effectiveness of linear shifting, we com- 

are with different shifting strategies. First, we formalize the shift- 

ng strategies as follows: consider the case where λ1 < 0 . 5 , and we

ish to enlarge the tail class margin from γ1 to γ ∗
1 

, i.e., γ1 < γ ∗
1 

. 

hen we rectify the mixup factor from λ1 to λRec 
1 

according to 

λ1 

λRec 
1 

= ( 
γ1 

γ ∗
1 

) τ (19) 

here τ ≥ 0 is the hyper-parameter controlling the scale of the en- 

argement. Then we compare the performance of different shifting 

trategies as shown in Table 6 . The results show that (1) the gen-

ral idea of shifting the augmented label is effective, as it consis- 

ently improves the performance with different τ . (2) The linear 

hifting ( τ = 1 ) is the most effective one among different strate- 

ies. When τ = 0 , there is no shifting at all, and the MR-mixup
8 
egenerates to ordinary mixup with significant performance drop. 

hen τ = 0 . 5 , the tail class margins are enlarged, but not as large

s the linear shifting strategy, the performance becomes superior 

o mixup, but still inferior to MR-mixup. This result verifies the ef- 

ectiveness of shifting strategy and tail class margin enlargement. 

hen τ = 2 , the tail class margins are further enlarged, and be- 

ome larger than the linear strategy, the performance also drops 

lightly. This indicates that a larger tail class margin may not al- 

ays ensure a higher performance, as it may hamper the overall 

erformance. Finally, we conclude that the linear shifting strategy 

s effective, easy to implement and yields the best performance. 

.8. Comparison of class-wise accuracy 

To further investigate where the overall improvement of MRA 

omes from, we plot the class-wise accuracy on CIFAR10-LT with 

mbalance ratio 100 and 10. The results is shown in Fig. 4 . First,

he result shows that the Empirical Risk Minimization (ERM) per- 

orms relatively well on majority classes, but performs poorly on 

he minority classes, indicating the dominance of majority classes 

uring the imbalance training. Second, the previous state-of-the- 

rt method LDAM improves the tail class accuracy by a large mar- 

in, but it also decreases the head class accuracy (e.g., class id = 3 

n the left figure). The result shows that while LDAM improves 

he overall performance, it pays the price of majority class per- 

ormance degradation. Finally, compared with LDAM, the proposed 

RA alleviates the majority degradation (e.g., class id = 3 in both 

gures) while also producing higher tail class accuracy. This result 

emonstrates the effectiveness of the proposed MRA. 

.9. Comparison of confusion matrix 

To investigate the effectiveness of MR-mixup, RML and MRA, we 

hoose DRS as baseline and plot the corresponding confusion ma- 

rix. The result is shown in Fig. 5 . From the result, we observe that

he DRS still has confusion between class 0,1 (majority) and class 

,9 (minority). This may be due to the fact that majority class 0,1 

end to be dominating during training, thus the minority class 8,9 

end to be easily misclassified. Compared with DRS, the proposed 

R-mixup, RML and MRA all improve the class confusion and yield 

uperior performance. 

.10. Confidence calibration 

While MRA achieves SOTA performances, we also wish its pre- 

ictive probability p(y | x ) could reflect the true probability. To this 

nd, we calculate the Expected Calibration Error (ECE) and plot 

he reliability diagrams with 15 bins [39] shown in Fig. 6 . We ex- 

ect a well-calibrated classifier’s output to be close to the actual 

robability and produces low ECE. We compare the reliability di- 

gram of the following variants: (a) Vanilla model, (b) With DRS, 

c) With Remix, (d) With MR-mixup, (e) With MRA. All augmenta- 

ions methods adopt DRS as the baseline. From the results in Fig. 6 ,

e observe the long-tailed distribution would cause the ordinary 

eural network to be miscalibrated. In other words, it may cause 
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Fig. 4. Comparison of classwise accuracy on CIFAR10-LT with imbalance ratio = 100 (left) and imbalance ratio = 10 (right). 

Fig. 5. Confusion matrix of DRS, MR-mixup, RML and MRA respectively on CIFAR10-LT with imbalance ratio = 100. 

Fig. 6. Reliability diagrams of on CIFAR-100-LT with imbalance ratio 100. The result shows that both MR-mixup and RML significantly improves the miscalibration phe- 

nomenon. 
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he deep network to be overconfident on the majority classes. 

oreover, while the DRW improves the accuracy, it worsens the 

CE and leads to a severer miscalibrated classifier. Meanwhile, 

he mixup-based augmentation is overall beneficial for the model 

alibration. Compared with state-of-the-art mixup-based method 

emix, the proposed MR-mixup yields superior calibration results. 

inally, the MRA further improves the result, demonstrating the ef- 

ectiveness of RML in improving model calibration. 

. Conclusion 

In this paper, we propose a novel Margin-aware rectified aug- 

entation method for long-tailed classification. We aim to address 

wo issues: rectifying decision boundary through data augmenta- 

ion, and mitigating minority gradient suppression through mutual 

earning. We first propose MR-mixup, which is derived from op- 

imal margin analysis, to augment the minority classes as well as 

ectify the decision boundary. Moreover, we propose Reweighted 

utual Learning to provide an extra ‘soft supervision signal’ to 

ugment the minority gradients and alleviate the overconfidence 

f majority classes. The proposed MRA is flexible and easy to im- 

lement, and thus can be easily combined with existing methods. 

e conduct extensive experiments on three benchmark datasets: 

IFAR-LT, ImageNet-LT and iNaturalist18. The experimental results 

how that when combined with other one-stage or multi-stage 
9 
ethods, MRA brings significant improvement and outperforms 

aseline methods by a large margin. We also demonstrate through 

he results of class-wise accuracy and confusion matrix that MRA 

s especially beneficial for tail class improvement. Moreover, the 

onfidence calibration experiment shows that MRA produces a 

etter-calibrated classifier. The MRA aims to address the critical 

hallenges in long-tailed recognition [40] . While many state-of- 

he-art methods, such as multi-stage methods, improve the per- 

ormance while suffering from extra high computational costs, the 

RA is designed to improve the overall performance with little ex- 

ra computational cost. It is also flexible as it can be easily com- 

ined with other methods. The MRA also has its limitations. Cur- 

ently, it is designed mainly for image classification, and we plan 

o generalize MRA to more visual understanding tasks such as ob- 

ect detection, and more modalities such as natural language. 
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