
This is a repository copy of Manipulating identical filter redundancy for efficient pruning on
deep and complicated CNN.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201659/

Version: Accepted Version

Article:

Hao, T., Ding, X., Han, J. et al. (2 more authors) (2023) Manipulating identical filter
redundancy for efficient pruning on deep and complicated CNN. IEEE Transactions on
Neural Networks and Learning Systems. ISSN 2162-237X

https://doi.org/10.1109/TNNLS.2023.3298263

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Neural Networks and Learning Systems is made
available via the University of Sheffield Research Publications and Copyright Policy under
the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0),
which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 1

Manipulating Identical Filter Redundancy for

Efficient Pruning on Deep and Complicated CNN
Tianxiang Hao, Xiaohan Ding, Jungong Han, Yuchen Guo, Guiguang Ding

Abstract—The existence of redundancy in Convolutional Neu-
ral Networks (CNNs) enables us to remove some filters/channels
with acceptable performance drops. However, the training ob-
jective of CNNs usually tends to minimize an accuracy-related
loss function without any attention paid to the redundancy,
making the redundancy distribute randomly on all the filters,
such that removing any of them may trigger information loss
and accuracy drop, necessitating a fine-tuning step for recovery.
In this paper, we propose to manipulate the redundancy during
training to facilitate network pruning. To this end, we propose a
novel Centripetal SGD (C-SGD) to make some filters identical,
resulting in ideal redundancy patterns, as such filters become
purely redundant due to their duplicates; hence removing them
does not harm the network. As shown on CIFAR and ImageNet,
C-SGD delivers better performance because the redundancy
is better organized, compared to the existing methods. The
efficiency also characterizes C-SGD because it is as fast as
regular SGD, requires no fine-tuning, and can be conducted
simultaneously on all the layers even in very deep CNNs. Besides,
C-SGD can improve the accuracy of CNNs by first training a
model with the same architecture but wider layers then squeezing
it into the original width.

Index Terms—Deep Learning, Convolutional Neural Network,
Model Compression, Filter Pruning, Channel Pruning.

I. INTRODUCTION

C
ONVOLUTIONAL Neural Networks (CNNs) have be-

come the de facto standard for computer vision and

very deep architectures are much sought-after by visual tasks,

such as image recognition, due to their approaching human-

level performance. As CNNs grow wider and deeper, their

memory footprint, power consumption and required floating-

point operations (FLOPs) have increased dramatically. In this

context, CNN compression and acceleration methods have

been prevalent during the past few years. This paper focuses

on filter pruning, a.k.a. channel pruning [1] or network slim-

ming [2], because of its three unique features: 1) generic

- it can handle various CNNs with no assumptions on the

application field, the network architecture or the deployment

platform; 2) effective - it can significantly reduce the required

FLOPs of the network, which serve as the main criterion of

T. Hao, G. Ding are with the School of Software, Tsinghua Univer-
sity, Beijing 100084, China. X. Ding is with Tencent AI Lab, Shen-
zhen 518054, China. J. Han is with the Computer Science Depart-
ment, University of Sheffield, S1 4DP, UK. Y. Guo is with the Depart-
ment of Automation, Tsinghua University, Beijing 100084, China. (e-mail:
beyondhtx@gmail.com; xiaohding@gmail.com; jungonghan77@gmail.com;
yuchen.w.guo@gmail.com; dinggg@tsinghua.edu.cn.)

This work was supported by the National Key R&D Program of China
(2022ZD0119401), National Natural Science Foundation of China (Nos.
61925107, U1936202, 62021002), Beijing Natural Science Foundation (No.
L223023).

Corresponding author: Yuchen Guo, Guiguang Ding.

computational burden; 3) complementary to other techniques

- it simply produces a thinner network with no customized

structure or extra operation, which is orthogonal to the other

model compression and acceleration methods.

In the past few years, tremendous efforts have been devoted

to filter pruning techniques. Due to the widely observed

redundancy in CNNs [3]–[8], it is shown that if a CNN is

pruned without a big decline in performance, a follow-up fine-

tuning procedure may restore the performance to a certain

degree. Some prior works [9]–[13] estimate the importance

of filters by a variety of metrics, directly remove some

filters and re-construct the network with the remaining ones.

However, though the pruned filters are less important in some

sense, they are not purely redundant, hence the performance

will be degraded. Moreover, some recent powerful networks

adopt complicated structures, like shortcut [14] and dense

connection [15], where some layers must be pruned in the

same pattern as others, raising an open problem of constrained

filter pruning. This further challenges such pruning techniques,

as the important filters at different layers usually reside in

different positions, such that some important filters have to be

pruned due to constraints. To reduce the destructive impact

of pruning, another family of methods [16]–[21] seeks to

zero out some filters in advance, where group-Lasso Regu-

larization [22] is frequently used. The rationale behind this

is simple: the model undergoes less damage during pruning if

the magnitudes of the pruned parameters have been reduced in

advance because pruning filters is mathematically equivalent

to setting all of their parameters to zero. However, such

regularizations cannot literally zero out the filters but merely

reduce the magnitudes to some extent (Sect. V-E), hence the

pruning still damages the model and a fine-tuning process

remains necessary [16]–[18].

We note that zeroing filters out can be regarded as produc-

ing a redundancy pattern, which we refer to as small-norm

redundancy for convenience. As some filters become more

redundant (i.e., smaller in magnitude) than before but still not

purely redundant, the small-norm redundancy pattern is non-

ideal. In this paper, we also aim to produce some redundancy

patterns in CNNs for filter pruning. However, unlike the non-

ideal small-norm redundancy pattern, we seek to produce ideal

patterns, where some filters are purely redundant, such that

removing them is not harmful to the model. To this end, we

intend to merge multiple filters into one, thus generating a

redundancy pattern where some filters are identical. Mean-

while, supervised by the model’s original objective function,

the performance is maintained. Compared to the importance-

based filter pruning methods, doing so requires no heuristic

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 2

conv2conv1conv2conv1

add to

Fig. 1: Zeroing-out vs. centripetal constraint. This figure shows a CNN with 4 and 6 filters at the 1st and 2nd conv layer,

respectively, which takes a 2-channel input. Left: the 3rd filter at conv1 is zeroed out (i.e., all the entries in the parameter

tensor of the 3rd filter are close to zero, more precisely, K
(1)
:,:,:,3 ≈ 0 using the formulation described in Sect. III-A), thus the

3rd channel is close to zero (M
(1)
:,:,3 ≈ 0), implying that the 3rd input channels of the 6 filters at conv2 are useless. During

pruning, the 3rd filter at conv1 and the 3rd input channels of the 6 filters at conv2 are removed. Right: the 3rd and 4th filters

at conv1 are forced to grow close by the centripetal constraint until the 3rd and 4th channels become identical. But the 3rd

and 4th input channels of the 6 filters at conv2 can still grow without constraints, making the encoded information still in full

use. Then the 4th filter at conv1 is pruned, and the 4th input channel of every filter at conv2 is added to the 3rd channel.

knowledge about the importance of a filter. In contrast to the

small-norm methods, the redundancy pattern is ideal, which

enables absolutely lossless pruning and eliminates the need

for a time-consuming fine-tuning process.

The motivation is an observation of the information flow in

CNNs (Fig. 1). It reveals 1) if two or more filters are trained to

become identical, due to the linearity of convolution, we can

simply retain only one filter and discard others, and add up the

parameters along the corresponding input channels of the next

layer. Doing so will lead to ZERO damage on performance;

2) by encouraging multiple filters to grow closer in the

parameter hyperspace, which we refer to as the centripetal

constraint, though they start to produce increasingly similar

information, the information conveyed from the corresponding

input channels of the next layer is still in full use. Therefore,

the representational capacity of our model is probably weaker

than that of the original expensive model, but stronger than

a counterpart with the filters being zeroed out (Sect. V-E),

as the input channels corresponding to the zeroed-out filters

no longer contribute to the information flow [18]. On the

other hand, we will show that compared with a model without

any manipulated redundancy, training with identical filters

delivers higher accuracy (Sect. V-G). Our code is released at

https://github.com/DingXiaoH/Centripetal-SGD to encourage

further studies. Our contributions are summarized as follows:

• We propose to produce ideal redundancy patterns in

CNNs by training some filters to become identical (Fig. 2)

via Centripetal SGD (C-SGD), an efficient SGD method

which can solve constrained filter pruning. Here “cen-

tripetal” means “several objects moving towards a cen-

ter”, which describes the behavior of the filters in C-SGD.

• We present an efficient implementation of C-SGD with

matrix multiplications, which introduces no observable

computational burden, compared to normal SGD.

• As a theoretical contribution, we show training a model

with identical filters using C-SGD from scratch delivers

higher accuracy than a counterpart without such redun-

dancy. This serves as evidence for supporting our moti-

vation (Fig. 1) as well as the assumption that redundancy

helps the convergence of neural networks [23], [24].

• We propose a novel approach, Structural Squeezing, to

1

2
3

4

5

6

7

8 8

5/7

1/4/6

2/3

Train

2

1

5

8

Prune

1 2 3 4 5 6 7 8

…

…

1 2 5 8

…

…

Network

Structure

Parameter

Hyperspace

1 2 3 4 5 6 7 8

…

…

Fig. 2: The C-SGD pruning pipeline. When we seek to slim

an 8-filter convolutional layer down to 4 filters, we divide

the filters into 4 clusters according to their location in the

parameter hyperspace. For instance, for a 3× 3 convolutional

layer which takes a 64-channel feature map as input, every

filter kernel has 3×3×64 = 576 parameters, thus the dimen-

sionality of hyperspace is 576. During C-SGD training, the

filters in each cluster become closer and eventually identical.

When the training is completed, we remove all but one filter

for each cluster, and adjust the following layer as Fig. 1.

improve the accuracy of CNNs, which first trains a model

with wider layers and then squeezes it into the original

width via C-SGD. Compared to the prior methods which

fail to utilize the weights inherited from a wider model by

pruning and fine-tuning, Structural Squeezing improves

the performance by a clear margin.

• We do pruning experiments on CIFAR-10 and ImageNet,

and earn much better performance compared with many

recent competitors. Our results on COCO detection and

VOC segmentation demonstrate the generalization perfor-

mance of C-SGD on the downstream tasks.

II. RELATED WORK

Numerous works [25]–[33] have shown it is feasible to

remove a large portion of connections (i.e., weights) from

a neural network without a significant performance drop.

However, as such methods do not make the parameter ten-

sors smaller but just sparser, little or no acceleration can

be observed without support from specialized software and

hardware platforms. In contrast, by removing filters instead of

sporadic connections, we transform the wide conv layers into

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 3

narrower ones, hence the FLOPs, memory footprint and power

consumption are significantly reduced. One kind of method

estimates the importance of filters by some means, then

selects and prunes the unimportant filters carefully to minimize

performance loss. Some methods measure a filter’s importance

by the classification accuracy reduction (CAR) [12], [34],

the Taylor-expansion criterion [11], the magnitude of conv

kernels [10] and the average percentage of zero activations

(APoZ) [9], respectively. Measuring the importance of some

transformation form of the original conv kernel is also feasible,

such as SVD decomposition [35]. Another category seeks to

train the network under certain constraints to zero out some

filters [16]–[21], [36], [37], where the representative is group-

Lasso Regularization. In addition, the similarities between

filters [31], [38] can also be used as a metric to select the

redundant ones that will be pruned.

Some major drawbacks of the prior works are as follows.

1) For the importance-based methods, the filter importance

metrics are essentially heuristic, as it is not clear why the pro-

posed metrics reflect the inherent importance of filters. Also,

it is hard to judge if a heuristic metric is theoretically better

than another. 2) Since removing whole filters can degrade the

performance a lot, the models are usually pruned in a layer-by-

layer [9], [17] or filter-by-filter [11], [12] manner. On modern

very deep CNNs, such pruning processes may not only become

time-consuming but also suffer from the notorious problem of

error propagation and amplification through multiple layers

when estimating the filter importance [8]. 3) Many of these

works require one or more fine-tuning processes after pruning

to restore the accuracy [9], [11], [17], [18], [35], [36], [38].

However, Liu et al. [39] have empirically found out that

fine-tuning a pruned model may not always guarantee higher

accuracy, compared to training from scratch, as the pruned

model might be trapped into a bad local minimum. 4) The

regularization-based methods may bring a significantly higher

computational burden. For example, Sect. V-E shows group-

Lasso Regularization [22] slows down the training by about

2×, as it requires costly square root operations. 5) Many

of the methods cannot handle the constrained filter pruning

problem on ResNets (Fig. 3), so the researchers choose to

sidestep this problem by only pruning the internal layers in

residual blocks [1], [2], [10]. Li et al. [10] and Ding et

al. [19] tried pruning the troublesome layers according to

the importance scores of others to meet the constraints, but

predictably resulted in inferior accuracy. 6) Simply grouping

the filters [31] based on cosine similarities and collapsing each

group into one average filter suffer from severe accuracy loss,

for the reason that the filters in a normally trained CNN are

actually dissimilar [31] and thus the forward processes before

and after collapsing are not mathematically equivalent.

In contrast, our method features 1) no heuristic knowledge

about the filter importance, 2) the capability of pruning every

target layer simultaneously, 3) no need for fine-tuning, 4)

negligible extra computations, 5) global slimming on all the

layers in complicated CNN architectures and 6) equivalent

collapsing transformation.

This paper represents a substantial extension of our previous

conference paper [40]. The main technical novelties, compared

with [40], are as follows. 1) We propose a novel CNN training

methodology, Structural Squeezing, in order to improve the

performance of CNN based on C-SGD. 2) We present more

experimental results including the pruning results on VGG

[41], the torchvision [42] version of ResNet-50, and the object

detection and semantic segmentation results on COCO and

VOC. 3) We present more illustrations and discussions of the

motivation and derivation of C-SGD together with its relation

to the prior works. 4) We present thorough comparisons

and discussions of different clustering methods, including k-

means, even and imbalanced clustering, on several benchmark

models. 5) We perform controlled experiments to justify the

significance of solving the constrained filter pruning problem.

6) We present more detailed discussions of the efficiency of

C-SGD and its applications.

III. FILTER PRUNING VIA CENTRIPETAL SGD

A. Formulation

In modern CNNs, batch normalization [43] (BN) and linear

scaling commonly follow conv layers. For simplicity and

generality, we regard a conv layer together with its subsequent

BN and scaling layer, if any, as a whole. Let i be the layer

index, M (i) ∈ R
hi×wi×ci be the output feature map of layer

i with a spatial resolution of hi × wi and ci channels, and

M
(i)
:,:,j be the j-th channel. The convolutional layer i with

kernel size ui × vi has one 4th-order tensor and four vectors

as parameters at most, namely, µ(i),σ(i),γ(i),β(i) ∈ R
ci

and K(i) ∈ R
ui×vi×ci−1×ci , where K(i) is the convolution

kernel, µ(i) and σ(i) are the mean and standard deviation of

BN, γ(i) and β(i) are the scaling factor and bias term of

the linear transformation, respectively. Then we use P (i) =
(K(i),µ(i),σ(i),γ(i),β(i)) to denote the parameters of layer

i. In this paper, a filter j at layer i refers to the five-

tuple comprising all the parameter slices related to the output

channel j of layer i, formally,

F (j) = (K
(i)
:,:,:,j , µ

(i)
j , σ

(i)
j , γ

(i)
j , β

(i)
j) , (1)

where K
(i)
:,:,:,j is the j-th slice along the axis which differen-

tiates the c filters, i.e., the 4th axis in our formulation. This

layer takes M (i−1) ∈ R
hi−1×wi−1×ci−1 as input and outputs

M (i). Let ∗ be the 2D convolution, the j-th output channel is

M
(i)
:,:,j =

∑ci−1

k=1 M
(i−1)
:,:,k ∗K

(i)
:,:,k,j − µ

(i)
j

σ
(i)
j

γ
(i)
j + β

(i)
j . (2)

Pruning filters at a certain layer normally involves three

steps: 1) deciding which filters to prune, 2) deleting the

corresponding parameters in the kernel, e.g., along the 4th

axis in our formulation, and 3) handling the vector parameters

µ,σ,γ,β accordingly. For example, the importance-based

filter pruning methods [8]–[12] define the importance of filters

by some means to guide the selection of filters. Let Ii be the

filter index set of layer i (e.g., I2 = {1, 2, 3, 4} if the 2nd layer

has 4 filters), T be the filter importance evaluation function

and θi be the threshold, the remaining set, i.e., the index set

of the filters which survive the pruning, is

Ri = {j ∈ Ii | T (F
(j)) > θi} . (3)

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 4

We construct the parameters for the slimmed layer by

assembling the parameters sliced from the original tensor and

vectors into the new parameters P̂ (i). That is,

P̂ (i) = (K
(i)
:,:,:,Ri

,µ
(i)
Ri

,σ
(i)
Ri

,γ
(i)
Ri

,β
(i)
Ri

) . (4)

The input channels of the next layer corresponding to the

pruned filters should also be discarded (Fig. 1),

P̂ (i+1) = (K
(i+1)
:,:,Ri,:

,µ(i+1),σ(i+1),γ(i+1),β(i+1)) . (5)

Then we initialize the new network using P̂ (i) and P̂ (i+1).

B. Centripetal SGD

In this subsection, we present the rule of updating C-SGD

together with some discussions of its properties.

For each layer, we first divide the filters into clusters,

where the number of clusters equals the desired number of

filters, as we preserve only one filter for each cluster. We

use Ci and H to denote the set of all filter clusters of layer

i and a specific cluster in the form of a filter index set,

respectively. We generate the clusters by k-means [44] or

arbitrarily, between which our experiments demonstrate only

minor difference (Sect. V-D). In the following sections, we

use k-means clustering unless otherwise noted.

• K-means clustering. We aim to generate clusters with

low intra-cluster distance in the parameter hyperspace,

such that collapsing them into a single point less impacts

the model. To this end, we simply flatten the filter’s kernel

and use it as the feature vector for k-means clustering.

• Even clustering. We can generate clusters with no con-

sideration of the filters’ inherent properties. Let ci and ri
be the number of original filters and desired remaining

filters (i.e., number of clusters) at layer i, respectively,

each cluster will have ⌈ci/ri⌉ filters at most. For example,

if the 2nd layer has 6 filters and we wish to slim

it to 4 filters, we will have C2 = {H1,H2,H3,H4},
H1 = {1, 2},H2 = {3, 4},H3 = {5},H4 = {6}.

• Imbalanced clustering. An extreme solution is to put

ci − ri + 1 filters into one single cluster, such that each

of the other clusters has only one filter. In the above

example, we will have H1 = {1, 2, 3},H2 = {4},H3 =
{5},H4 = {6}.

We use H(j) to denote the cluster containing filter j, e.g.,

H(3) = H1 and H(6) = H4 in the above example of

imbalanced clustering. Let F
(i)
j (t) be the kernel or a vector

parameter of filter j in layer i at iteration t, the update rule

of C-SGD is

F
(i)
j (t+ 1) =F

(i)
j (t) + τ∆F

(i)
j (t) ,

∆F
(i)
j (t) = −

∑

k∈H(j)
∂L(t)

∂F
(i)
k

(t)

|H(j)|
− ηF

(i)
j (t)

+ ϵ(

∑

k∈H(j) F
(i)
k (t)

|H(j)|
− F

(i)
j (t)) ,

(6)

where L(t) is the original objective function at iteration t, τ
is the learning rate, η is the original weight decay factor, and

ϵ is the only hyper-parameter we introduced, the centripetal

strength.

The intuition behind Eq. 6 is quite simple: for the filters

in the same cluster, the increments derived by the objective

function are averaged (the first term), the normal weight decay

is applied as well (the second term), and the difference in the

initial values is gradually eliminated (the last term), so the

filters will move towards their center in the hyperspace.

Let L be the layer index set, e.g., L = {1, 2, 3} if the model

has 3 convolutional layers, we use the sum of squared kernel

deviation χ to measure the intra-cluster similarity, i.e., how

close filters are in each cluster,

χ =
∑

i∈L

∑

j∈Ii

∥K
(i)
:,:,:,j −

∑

k∈H(j) K
(i)
:,:,:,k

|H(j)|
∥22 . (7)

It is easy to derive from Eq. 6 that χ is lowered monotonically

and exponentially with a constant learning rate τ , if the

floating-point operation errors are ignored. We will give proof

in the next section.

In practice, we fix η and reduce τ with time just as we do

in regular SGD training. For ϵ, the performance of C-SGD

is not sensitive to it. Setting ϵ without careful selection still

leads to good results. Intuitively, C-SGD training with a large

ϵ prefers rapid change to a stable transition. If ϵ is too large,

e.g., 10, the filters are merged immediately such that the whole

process becomes equivalent to training a destroyed model from

scratch. If ϵ is extremely small, like 1× 10−10, the difference

between C-SGD training and normal SGD is negligible for

a long time. However, since the difference among filters in

each cluster is reduced monotonically and exponentially, even

an extremely small ϵ can make the filters close enough for

absolutely lossless pruning, sooner or later. In this sense, we

claim that such a redundancy pattern is ideal.

C. Properties of C-SGD

In this section, we will dive deeper into the properties of

C-SGD. We start by analyzing the parameters in the same

cluster.

Theorem 1. ∀t ≥ 0, i ∈ L, j1 ∈ Ii, j2 ∈ H(j1), we have

F
(i)
j1

(t+1)−F
(i)
j2

(t+1) = (1− τ(ϵ+ η))(F
(i)
j1

(t)−F
(i)
j2

(t))

Proof. According to Eq. 6,

F
(i)
j1

(t+ 1)− F
(i)
j2

(t+ 1)

=F
(i)
j1

(t) + τ∆F
(i)
j1

(t)− (F
(i)
j2

(t) + τ∆F
(i)
j2

(t))

= (1− τ(ϵ+ η))(F
(i)
j1

(t)− F
(i)
j2

(t))

From Theorem 1 we can derive that for two arbitrary points

in the same cluster, the vector from one point to the other keeps

its direction unchanged and reduces its length according to a

fixed ratio (1−τ(ϵ+η)) as the iteration increases. From a wider

perspective, the hyper-polygon constructed by the points in the

same cluster keeps its shape unchanged and merely shrinks to

(1− τ(ϵ+ η)) the original scale every time the training goes

on.

Theorem 2. χ is lowered monotonically and exponentially, as

iteration t increases.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 5

Proof.

χ(t+ 1)

=
∑

i∈L

∑

H∈Ci

∑

j∈H

∥F
(i)
j (t+ 1)−

∑

k∈H
F

(i)
k (t+ 1)

|H|
∥22

=
∑

i∈L

∑

H∈Ci

∑

j∈H

∥
|H|F

(i)
j (t+ 1)−

∑

k∈H
F

(i)
k (t+ 1)

|H|
∥22

=
∑

i∈L

∑

H∈Ci

∑

j∈H

∥

∑

k∈H
(F

(i)
j (t+ 1)− F

(i)
k (t+ 1))

|H|
∥22

=(1− τ(ϵ+ η))2
∑

i∈L

∑

H∈Ci

∑

j∈H

∥

∑

k∈H
(F

(i)
j (t)− F

(i)
k (t))

|H|
∥22

=(1− τ(ϵ+ η))2χ(t)

Therefore, {χ(t)} is a geometric progression with common

ratio (1−τ(ϵ+η))2. In practice, since 0 < (1−τ(ϵ+η))2 < 1
and χ(0) > 0, χ is lowered monotonically and exponentially.

According to Theorem 2, the update rule of C-SGD ensures

that the intra-cluster distance χ rapidly decreases in the

training. A good clustering method like k-means leads to a

good starting of C-SGD. However, each cluster will collapse

to a single point finally if the training time is long enough,

whatever the cluster looks like in the beginning. Such property

indicates that C-SGD is not very sensitive to the division

of the initial clusters. As we will show in Sect. V-D, the

pruning results of different clustering methods (k-means, even

or imbalanced) are close.

D. Efficient Implementation of C-SGD

The efficiency of modern CNN training and deployment

platforms is dependent on large-scale tensor operations. We,

therefore, seek to implement C-SGD by efficient matrix

multiplications which introduce minimal computational bur-

den. Concretely, given a convolutional layer i, the kernel

K ∈ R
ui×vi×ci−1×ci and the gradient ∂L

∂K
, we reshape K

to W ∈ R
uivici−1×ci and ∂L

∂K
to ∂L

∂W
accordingly. We

construct the averaging matrix Γ ∈ R
ci×ci and decaying

matrix Λ ∈ R
ci×ci as Eq. 9 and Eq. 10 such that Eq. 8 is

equivalent to Eq. 6, which can be easily verified. Obviously,

when the number of clusters equals that of the filters, Eq. 8

degrades into normal SGD with Γ = diag(1),Λ = diag(η).
The other trainable parameters (i.e., γ and β) are reshaped

into W ∈ R
1×ci and handled in the same way. In practice,

we observe almost no difference in the speed between normal

SGD and C-SGD.

W (t+ 1) = W (t)− τ(
∂L(t)

∂W (t)
Γ+W (t)Λ) . (8)

Γm,n =







1

|H(m)|
if H(m) = H(n) ,

0 elsewise .

(9)

2 3 4 5 6 7 81

1 2 3 4 5 6 7 8

2 3 4 5 6 7 81

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 3 4 5 6 81

1 2 3 4 5 6 8

3 4 5 6 7 81

1 3 4 5 6 7 8

1 2 3 4 5 6 8

1 3 4 5 6 7 8

Prune

Fig. 3: We explain the problem of constrained filter pruning

in a ResNet where some layers must be pruned in the same

pattern as others. Here an 8-channel feature map (denoted by

C
(i)
in ∈ R

h×w, 1 ≤ i ≤ 8) is fed into a residual block, and the

output of the last layer of residual block C
(i)
res is added onto

C
(i)
in . Therefore, we have C

(i)
out = C

(i)
in + C

(i)
res, ∀1 ≤ i ≤ 8.

By filter pruning, we expect to remove one or several channels

without breaking the correspondence between the remaining

channels which are added up. Therefore, the remaining sets

of the first and last layers must be the same. Otherwise, if we

prune the 7th filter at the first layer and the 2nd filter at the

last layer of the residual block, for example, we will end up

with C
(2)
out = C

(2)
in +C

(3)
res,C

(6)
out = C

(6)
in +C

(7)
res . . . Hence the

correspondence breaks, and the model is destroyed.

Λm,n =



















η + ϵ−
ϵ

|H(m)|
if m = n ,

−
ϵ

|H(m)|
if m ̸= n, H(m) = H(n) ,

0 elsewise .
(10)

E. Filter Trimming after C-SGD Training

After training, we simply pick up the first filter (i.e., the filter

with the smallest index) in each cluster to form the remaining

set for each layer. Since the ideal redundancy patterns have

emerged, i.e., the filters in each cluster have become identical,

such choice is unimportant and different choices lead to the

same results.

Ri = {min(H) | ∀H ∈ Ci} . (11)

For the following layer, we add the to-be-deleted input

channels to the corresponding remaining one (Fig. 1),

K
(i+1)
:,:,k,: ←

∑

K
(i+1)
:,:,H(k),: ∀k ∈ Ri ,

then we delete the redundant filters and the input channels of

the following layer as Eq. 4, 5. Due to the linearity of conv

(Eq. 2), no damage is caused, hence no fine-tuning is needed.

F. C-SGD for Constrained Filter Pruning

Recently, several efficient and compact CNN architec-

tures [14], [15] have emerged. Although some works [7]–[9],

[11], [45] have shown that the classical plain CNNs, e.g.,

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 6

C-SGD Training

A
B

C
D

I J

K
L

E F
G

H

2 3 4 5 6 7 81

Clustering

filter clusters

in the parameter hyperspace

(pacesetter)
k-means

Slimmed NetworkOriginal Network Trimming

k-means

k-means

2 3 4 5 6 7 81

2 3 4 5 6 7 81 (follower)

(internal)

2 3 4 5 6 7 81

2 3 4 5 6 7 81 (follower)

(internal)

C D A C B D DD

G F G E G E HF

C D A C B D DD

L I J K J L JK

C D A C B D DD

C D A C B D DD

G F G E G E HF

C D A C B D DD

L I J K J L JK

C D A C B D DD

C A BD

G E HF

L I JK

C A BD

C A BD

5 7

2 4 6

3 1

8

8 1
3 7

64

2

5

5

1

3 6 4 8

2
7

Fig. 4: Sketch for slimming ResNets. We take the first stage of a toy ResNet where every layer has 8 filters for example.

Since every convolutional layer is directly followed by exactly one batch normalization (BN) layer, we view them as a whole.

We generate clusters for the pacesetter and internal layers in each stage by k-means for example. Before C-SGD training, the

clustering result of a pacesetter is assigned to its followers in order to produce the same redundancy pattern.

A
B

C
D

H I

J

E F
G

filter clusters

in the parameter hyperspace

k-means

k-means

k-means

2

4

3 1

8 1
3 7

64

2

5

4

1 3

2 3 4 5 6 7 81

1 2 3 4

1 2 3 4
2

C D A C B D DD

C D A C B D DD

F E F G

C D A C B D DD

H H I J

A C B D D F EDD C F G

C D A C B D DD

C D A C B D DD

F E F G

C D A C B D DD

H H I J

A C B D D F EDD C F G

D C A B

D C A B

D C A B

H J

D C A F E G

F E G

B

C-SGD TrainingClustering Slimmed NetworkOriginal Network Trimming

I

Fig. 5: Sketch for slimming DenseNets. We take a toy DenseNet with a growth rate of 4 for example. Considering the

special dense connection and pre-activation structure of DenseNets, we treat the BN layers separately, which are denoted

by rectangles with a chessboard-like background. As the output of every conv layer serves as the input of one or more BN

layers, we generate clusters for every convolutional layer and apply the clustering results C to every following BN layer at the

corresponding position, such that the gradients of γ and β are transformed as the preceding convolutional layers. Note that a

BN layer can be regarded as a degraded case of the definition in Sect. III-A without loss of generality.

AlexNet [46] and VGG [41], are highly redundant and can

be pruned significantly, the pruned versions are usually still

inferior to the more up-to-date and complicated CNNs in terms

of both accuracy and efficiency. Filter pruning for very deep

and complicated CNNs is challenging due to: 1) Firstly, these

models are designed in consideration of the computational

efficiency, which makes them inherently compact and efficient.

2) Secondly, these networks are significantly deeper than the

classical ones, thus layer-by-layer pruning becomes too time-

consuming, and the errors can increase dramatically when

propagated through multiple layers, thus making the estimation

of filter importance less accurate [8]. 3) Most importantly,

some innovative structures are heavily used in these networks,

e.g., shortcuts [14] and dense connections [15], raising an open

problem of constrained filter pruning.

For example, in each stage of ResNets, every residual block

is expected to add the learned residuals to the stem feature

maps produced by the first or the projection layer (referred

to as pacesetter), thus the last layer of every residual block

(referred to as follower) must be pruned in the same pattern

as the pacesetter, i.e., the remaining set R of all the followers

and the pacesetter must be the same, or the model will be

damaged so badly that fine-tuning cannot restore its accuracy.

However, important filters in the pacesetters and followers

usually reside in different positions, such that we have to prune

some important filters in some layers due to constraints. An

intuitive explanation is shown in Fig. 3.

In some prior explorations, Li et al. [10] sidestep this

problem by only pruning the internal layers on ResNet-56,

i.e., the first layers in the residual blocks. Liu et al. [2] and

He et al. [1] skip these troublesome layers and insert an extra

sampler layer before the internal layers during inference time

to reduce the input channels. From a holistic perspective, the

networks are not literally “slimmed” but actually “clipped”.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 7

We present a solution to this open problem with C-SGD,

where the key is to force different layers to learn the same

redundancy pattern. For example, if the layer p and q have

to be pruned in the same pattern, we only generate clusters

for the layer p by some means and assign the resulting cluster

set to the layer q, namely, Cq ← Cp. Then during training, the

same redundancy patterns among filters at both layer p and q
are produced. I.e., if the j-th and k-th filters at layer p become

identical, we ensure the sameness of the j-th and k-th filters

at layer q as well, thus the troublesome layers can be pruned

along with others with no performance loss. Fig. 4 and Fig. 5

illustrate how we prune ResNets and DenseNets, respectively,

where each rectangle represents a filter, and different filters

labeled by the same letter become identical during training.

IV. STRUCTURAL SQUEEZING: A NEW TRAINING

METHODOLOGY WITH C-SGD

In this paper, we propose Structural Squeezing, a novel

CNN training methodology based on C-SGD, to improve the

performance of CNN without any extra parameters or FLOPs.

Concretely, given an off-the-shelf CNN architecture, we first

train a model with regular SGD from scratch, where some

layers are wider than the original. Naturally, such a wide

model will be more powerful than the original one but at the

cost of more parameters and computations. Then we use C-

SGD to slim it down to the original structure. As will be

shown in Sect. V-I, the performance of the resulting model

will be lower than the wide one, but higher than a counterpart

with the same structure trained with regular SGD. Intuitively,

when the filters in each cluster are constrained to grow

closer, the learned knowledge is gradually “squeezed” into the

cluster center, i.e., the merged filter, such that the resulting

model becomes more powerful than the normal counterpart.

Interestingly, it is observed that scaling and pruning globally,

including those troublesome layers, yields better performance

than only scaling and pruning the easy-to-prune layers. This

observation highlights the significance of C-SGD in solving

the constrained filter pruning problem.

The key distinguishing Structural Squeezing from simply

pruning a bigger model into a smaller one with the traditional

pruning methods is that the former improves the performance

by a significant margin while the latter cannot outperform a

regularly trained counterpart due to the weakness of their non-

ideal redundancy patterns. Recently, Liu et al. [39] validated

several pruning-and-fine-tuning methods [1], [2], [10], [11],

[29], [47] and empirically found out that with the same

width, the network obtained by pruning delivers no better

performance than a counterpart trained from scratch. The

authors state that though the remaining weights are considered

important by the pruning criteria, inheriting them does not help

the fine-tuning process achieve better accuracy, but might trap

the pruned model into a bad local minimum. However, our

method does not judge the parameters by their importance and

discard the unimportant ones, nor fine-tune a model after lossy

pruning. On the contrary, by averaging the gradients of filters

in each cluster (Eq. 6), we fully utilize the information encoded

in the objective function to supervise the whole cluster and

reduce the possibility of being trapped into a local minimum.

Note that Structural Squeezing is complementary to the

other techniques for improving CNN performance like stronger

data augmentation, advanced loss functions, etc. The fact that

Structural Squeezing increases the training costs does not

hinder its practical application because we usually care about

the inference-time performance and efficiency more than the

training costs in real-world applications, as we commonly train

models on powerful workstations and deploy them to multiple

front-end devices where the efficiency matters. By Structural

Squeezing, we obtain a model of the same structure as a

normally trained counterpart with better performance.

V. EXPERIMENTS

We performed several experiments to evaluate C-SGD.

1) We validated the effectiveness of C-SGD by pruning several

common benchmark models on CIFAR-10, ImageNet, COCO

detection and VOC segmentation. 2) We compared different

clustering methods and discovered a minor difference. 3) We

demonstrated the superiority of C-SGD over the zeroing-out

methods in the sense that C-SGD converges faster and enables

lossless pruning by producing ideal redundancy patterns. 4)

A series of controlled experiments were conducted to fairly

compare C-SGD and some other pruning methods with the

same training settings. 5) We found out that when both

were trained from scratch, a model with identical filters

outperforms another one without, thus providing empirical

evidence supporting the assumption that redundancy can help

the convergence of the neural network. 6) We justified the

significance of solving the constrained filter pruning problem

by showing that global slimming on ResNet yields better

performance than simply clipping the easy-to-prune layers.

7) We verified the effectiveness of Structural Squeezing by

training a model with the same architecture but wider layers,

squeezing it into the original width and comparing it with the

normally trained counterparts.

A. Pruning Results on CIFAR-10

We first evaluate C-SGD on CIFAR-10 (Table. I). Since our

base models deliver different accuracy than the competitors,

we present the absolute and relative error increase as the

metrics to compare the change of accuracy on different base

models. For example, the Top1 accuracy is 93.53% for our

base VGG [41] model and 93.59% for the result labeled as C-

SGD-VGG-C, such that the absolute and relative error increase

are 93.53% − 93.59% = −0.06% and −0.06
100−93.53 = −0.92%,

respectively. For each trial we start from a well-trained base

model, cluster the filters by k-means, apply C-SGD training

on all the layers simultaneously, prune every layer and test the

resulting model. The base models are trained from scratch for

600 epochs with the standard data augmentation techniques

[14]: padding to 40 × 40, random cropping and flipping. We

perform C-SGD training for 600 epochs with batch size 64 and

a learning rate initialized as 3× 10−2 then multiplied by 0.1

after 200 and 400 epochs, respectively. The hyper-parameter

ϵ is casually set to 3× 10−3.

We start with VGG, a 13-layer plain network. As a common

practice, a BN follows every conv layer. To compare with

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 8

TABLE I: Pruning Results on CIFAR-10 sorted by the FLOPs reduction ratio. Note that a negative error increase denotes an

improvement in accuracy. For ResNets, “internal” and “sampler” denote that the architecture is still 16-32-64, but the internal

layers of residual blocks are clipped, or the sampler layers are inserted in front of the blocks.

Model Result Base Top1 Pruned Top1
Top1 Error

Abs/Rel ↑%
FLOPs
↓%

Params
↓%

Architecture

VGG Li et al. [10] 93.25 93.40 -0.15 / -2.22 34.2 64.0 -
VGG EigenDamage [48] 93.44 93.40 0.04 / 0.61 45.53 85.83 -
VGG Network Slimming [2] 93.66 93.80 -0.14 / -2.20 51.0 88.5 -
VGG C-SGD-VGG-A 93.53 94.10 -0.57 / -8.80 61.69 86.28 -
VGG Jiang et al. [49] 93.46 93.40 0.06 / 0.91 67.6 92.7 -
VGG C-SGD-VGG-B 93.53 93.78 -0.25 / -3.86 75.15 90.09 -
VGG AOFP [50] 93.38 93.28 0.10 / 1.51 75.27 - -
VGG Huang et al. [51] 92.77 89.37 3.40 / 47.02 80.6 92.8 -
VGG AFP [19] 92.92 92.44 0.48 / 6.77 81.39 93.51 -
VGG Singh et al. [52] 93.49 93.02 0.47 / 7.21 83.43 95.83 -
VGG C-SGD-VGG-C 93.53 93.59 -0.06 / -0.92 85.02 96.54 -

Res56 Channel Pruning [1] 92.8 91.8 1.0 / 13.88 50 - sampler
Res56 ADC [53] 92.8 91.9 0.9 / 12.5 50 - sampler
Res56 FPGM [54] 93.59 93.26 0.33 / 5.14 52.6 - -
Res56 AFP [19] 93.93 92.94 0.99 / 16.30 60.85 60.90 10-20-40
Res56 C-SGD-Res56-10-20-40 93.39 93.62 -0.23 / -3.47 60.85 60.90 10-20-40

Res110 NISP-110 [8] - - 0.18 / - 43.78 43.25 -
Res110 GAL-0.5 [55] 93.50 92.74 0.76 / 11.6 48.5 - -
Res110 HRank [56] 93.50 93.36 0.14 / 2.15 58.2 - -
Res110 C-SGD-Res110-10-20-40 94.38 94.41 -0.03 / -0.53 60.89 60.92 10-20-40

Res164 Network Slimming [2] 94.58 94.73 -0.15 / -2.76 44.90 35.2 sampler
Res164 C-SGD-Res164-12-24-46 94.83 95.08 -0.25 / -4.83 45.24 54.75 12-24-46

Dense40 Network Slimming [2] 93.89 94.35 -0.46 / -7.52 55.00 65.2 -
Dense40 C-SGD-Dense40-5-8-10 93.81 94.56 -0.75 / 12.11 60.05 36.16 5-8-10

other competitors with different pruning ratios, we prune the

base model with three target width settings labeled from A

to C to reach around 60%, 75%, and 85% FLOPs reduction,

respectively. As we do not intend to push the state-of-the-

art results on such a simple network, we set the target width

casually. E.g., the 13 layers of the model labeled as C-SGD-

VGG-C has 20, 50, 80, 80, 80, 80, 80, 60, 60, 60, 60, 60, 60

filters, respectively, such that around 85% FLOPs are reduced.

The comparison shows the superiority of C-SGD. Though

some prior works succeeded in pruning VGG with improved

performance, they did not achieve an increase so significant at

such high pruning ratios (e.g., 0.25% at 75.15%). Moreover,

we observe no accuracy drop even when the FLOPs reduction

reaches 85%.

For ResNets, we aim to reduce around 60% FLOPs of every

model by pruning 3/8 of every conv layer, thus the parameters

and FLOPs are reduced by 1− (5/8)2 = 61%. As the original

ResNets have 16, 32 and 64 filters at each layer in the three

stages, respectively, we denote their structure as 16-32-64, and

our pruned models as 10-20-40. Aggressive as the pruning

is, we observe no obvious accuracy drop. Better still, as the

depth of ResNet increases, the effectiveness of C-SGD does

not degrade, which distinguishes C-SGD from the layer-by-

layer methods. We also produced a ResNet-164 labeled as 12-

24-46, such that its FLOPs are comparable with Liu et al. [2].

The original DenseNet-40 has 12 filters at every incremental

conv layer, while the pruned model has 5, 8 and 10 filters for

the three stages, respectively, such that the FLOPs are reduced

by 60.05%, and an accuracy increase is achieved, which is

consistent with but better than that of Liu et al. [2].

B. Pruning Results on ImageNet

Table. II shows the results on the original ResNet-50 [14],

which is a common benchmark in the filter pruning literature.

Since many competitors experimented with the torchvision

[42] version of ResNet-50 (denoted by Res50B), we also prune

it for fair comparison (Table. III). The only difference between

the original ResNet-50 and Res50B is that the former conducts

downsampling by the 1 × 1 conv at the beginning of a stage

while the latter uses the 3×3 conv. For pruning each model, we

train with C-SGD for 70 epochs with a learning rate initialized

as 0.03 and multiplied by 0.1 at the 30th, 50th and 60th epochs,

respectively. We use a batch size of 256 on 8 GPUs, weight

decay of 10−4, centripetal strength ϵ = 0.05.

We present the comparison of C-SGD and some recent com-

petitors using the standard data augmentation methods includ-

ing bounding box distortions and color shift (Table. II). Our

base model reaches a Top1/Top5 accuracy of 75.33%/92.56%.

Though the base models of some competitors have different

accuracies, the results are still comparable in terms of the

absolute and relative error increase. Following ThiNet and Lin

et al. [21], we slim the internal layers down to 70%, 60% and

50% of the original width, respectively.

For Res50B, we use the official pre-trained model and the

default data preprocessing [61] (Table. III). Our pruned models

exhibit fewer FLOPs and lower error increases. Of note is that,

instead of carefully tuning the target network width, we simply

apply the same pruning ratio for each internal layer. In other

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 9

TABLE II: Pruning ResNet-50 on ImageNet using bounding box distortions and color shift, sorted by the FLOPs reduction.

Result Base Top1 Base Top5 Pruned Top1 Pruned Top5
Top1 Error

Abs/Rel ↑%
Top5 Error

Abs/Rel ↑%
FLOPs
↓%

Params
↓%

C-SGD-Res50-70 75.33 92.56 75.27 92.46 0.06 / 0.24 0.10 / 1.34 36.75 33.38
NISP [8] - - - - 0.89 / - - / - 44.01 43.82
Singh et al. [52] - 92.65 - 92.2 - / - 0.45 / 6.13 44.45 40.92
C-SGD-Res50-60 75.33 92.56 74.93 92.27 0.40 / 1.62 0.29 / 3.89 46.24 42.83
CFP [57] 75.3 92.2 73.4 91.4 1.9 / 7.69 0.8 / 10.25 49.6 -
Channel Pr [1] - 92.2 - 90.8 - / - 1.4 / 17.94 50 -
HP [58] 76.01 92.93 74.87 92.43 1.14 / 4.75 0.50 / 7.07 50 32.5
ELR [59] - 92.2 - 91.2 - / - 1 / 12.82 50 -
SSR-L2 [21] 75.12 92.30 71.47 90.19 3.65 / 14.67 2.11 / 27.40 55.76 51.56
C-SGD-Res50-50 75.33 92.56 74.54 92.09 0.79 / 3.20 0.47 / 6.31 55.76 51.50

ThiNet [60] 75.30 92.20 72.03 90.99 3.27 / 13.23 1.21 / 15.51 55.83 -

TABLE III: Pruning the standard torchvision ResNet-50 (denoted by Res50B) on ImageNet using default data augmentation.

Result Base Top1 Base Top5 Pruned Top1 Pruned Top5
Top1 Error

Abs/Rel ↑%
Top5 Error

Abs/Rel ↑%
FLOPs
↓%

Params
↓%

C-SGD-Res50B-70 76.15 92.87 75.94 92.88 0.21 / 0.88 -0.01 / -0.14 36.38 33.38
GAL-0.5 [55] 76.15 92.87 71.95 90.94 4.20 / 17.61 1.93 / 27.06 43.03 -
HRank [56] 76.15 92.87 74.98 92.33 1.17 / 4.90 0.54 / 7.57 43.76 -
C-SGD-Res50B-60 76.15 92.87 75.80 92.65 0.35 / 1.46 0.22 / 3.08 46.51 42.83
FPGM [54] 76.15 92.87 74.83 92.32 1.32 / 5.53 0.55 / 7.71 53.5 -
C-SGD-Res50B-50 76.15 92.87 75.29 92.39 0.86 / 3.60 0.48 / 6.73 55.44 51.50

TABLE IV: Pruning DenseNet-121 on ImageNet.

Result Base Top1 Base Top5 Pruned Top1 Pruned Top5
Top1 Error

Abs/Rel ↑%
Top5 Error

Abs/Rel ↑%
FLOPs
↓%

Params
↓%

C-SGD-Dense121-A 74.47 92.14 74.25 91.76 0.22 / 0.86 0.38 / 4.83 34.65 21.53
C-SGD-Dense121-B 74.47 92.14 73.73 91.55 0.74 / 2.89 0.59 / 7.50 42.28 29.89

words, if more layer sensitivity analyzing experiments [1], [8],

[10] are conducted and the target network structures are tuned

accordingly, we may well get better results.

On DenseNet-121 [15] (Table. IV), without consideration

of the layers’ sensitivity or the filters’ importance, the same

pruning ratio is applied for each stage. For C-SGD-Dense121-

A, the internal layers, i.e., the first layers in each dense block,

are shrunk to 7/8 of the original width, and the incremental

factors of the first three stages become 18, 20, 24, respectively.

For C-SGD-Dense121-B, the internal layers are slimmed down

to 3/4 of the original width. We prune the lower-level layers

harder than the higher-level ones not because of any prior

knowledge, but simply because such layers operate on higher-

resolution feature maps so that reducing their width results

in higher acceleration. Though DenseNet-121 is not usually

chosen as a benchmark model for pruning because of its com-

plicated and compact structure, we can slim it with a minor

decrease in accuracy. Such success shows the significance of

C-SGD in solving the constrained filter pruning problem and

the effectiveness of our strategy (Fig. 5).

C. Semantic Segmentation and Object Detection

We verify the effectiveness of C-SGD on the downstream

tasks including semantic segmentation and object detection.

First, we use the augmented VOC 2012 dataset for semantic

segmentation as a common practice [62], [63], which has

10,582 images for training (trainaug set) and 1449 images

for validation (val set). We construct a PSPNet [64] with the

original pre-trained ResNet-50B as the backbone and fine-tune

TABLE V: Semantic segmentation results on VOC2012 and

object detection results on COCO with the original and pruned

ResNet-50B backbones.

Backbone
Top-1 acc on

ImageNet
mIoU on

VOC
AP on
COCO

Original ResNet-50B 76.15 76.29 33.2
C-SGD-Res50B-70 75.94 76.36 32.8
C-SGD-Res50B-60 75.80 75.78 33.1

with a poly learning rate policy with the base of 0.01 and

power of 0.9, weight decay of 10−4 and a global batch size of

16 on 4 GPUs for 50 epochs. Then we use the pruned models

denoted as C-SGD-Res50B-70 and C-SGD-Res50B-60 (Table.

III) as the backbones and fine-tune with identical settings.

Then we experiment with COCO detection. More specifi-

cally, the training set is COCO2017train and the validation set

is COCO2017val. We construct a Faster RCNN [65] with FPN

[66] and the original pre-trained ResNet-50B as the backbone.

We fine-tune for 12 epochs with a learning rate initialized

as 0.02 and multiplied by 0.1 at the 8th and 11th epochs

respectively. Then we use C-SGD-Res50B-70 and C-SGD-

Res50B-60 as the backbones with identical settings.

Table. V demonstrates the generalization performance of the

pruned models, which show very minor or even no decrease

in the mIoU on VOC and AP on COCO.

D. Studies on the Clustering Methods

To study the effects of different clustering methods, we

experiment with the same settings as before except for even

or imbalanced clustering. Table. VI shows that k-means

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 10

TABLE VI: Pruning results with k-means, even, or imbalanced clustering.

Dataset Model Result Base Top1
Pruned Top1

K-means Clustering
Pruned Top1

Even Clustering
Pruned Top1

Imbalanced Clustering

CIFAR-10 VGG C-SGD-VGG-C 93.53 93.59 93.25 93.19
CIFAR-10 ResNet-56 C-SGD-Res56-10-20-40 93.39 93.62 93.44 93.45
CIFAR-10 DenseNet-40 C-SGD-Dense40-5-8-10 93.81 94.56 94.37 93.94
ImageNet ResNet-50 C-SGD-Res50-70 75.33 75.27 75.14 74.93

outperforms the other two clustering methods by a narrow

margin, due to the lower intra-cluster distance in the parameter

hyperspace. Interestingly, our experiments indicate that the

effectiveness of C-SGD-based pruning does not significantly

depend on the quality of filter clusters C, since reasonable per-

formance can be achieved with arbitrarily generated clusters.

E. Making Filters Identical vs. Zeroing Filters Out

As making filters identical and zeroing filters out [7], [16]–

[19], [21] are two means of producing redundancy patterns for

filter pruning, we perform controlled experiments on ResNet-

56 to investigate the difference. For fair comparison, we aim

to produce the same number of redundant filters in both the

network trained with C-SGD and the one with group-Lasso

Regularization [22]. For C-SGD, the number of clusters at

each layer is 5/8 of the number of filters. For Lasso, 3/8 of

the original filters in the pacesetters and the internal layers are

regularized by group-Lasso, and the followers are handled in

the same pattern. We use the aforementioned sum of squared

kernel deviation χ (Eq. 7) and the sum of squared kernel

residuals ϕ as follows to measure the redundancy, respectively.

Let L be the layer index set and Pi be the to-be-pruned filter

set of layer i, i.e., the set of the 3/8 filters with group-Lasso,

ϕ =
∑

i∈L

∑

j∈Pi

∥K
(i)
:,:,:,j∥

2
2 . (12)

Fig. 6 shows the curves of χ, ϕ and the validation accuracy

both before and after pruning. The learning rate τ is initially

set to 3 × 10−2 and decayed by 0.1 at epoch 100 and 200,

respectively. It can be observed that: 1) Group Lasso cannot

literally zero out filters, but can decrease their magnitude to

some extent, as ϕ plateaus when the gradients derived from

the regularization term become close to those derived from

the original objective function. We empirically find out that

even when ϕ reaches around 4× 10−4 (2× 106 times smaller

than the initial value), pruning still causes obvious damage

(10% accuracy drop). When the learning rate is decayed and

ϕ is reduced at epoch 200, we observe no improvement in

the pruned accuracy, therefore no more experiments with a

smaller learning rate or stronger group-Lasso Regularization

are conducted. We reckon this is due to the error propagation

and accumulation in very deep CNNs [8]. 2) By C-SGD, χ
is reduced monotonically and perfectly exponentially, which

suggests faster convergence. In other words, the filters in each

cluster can become infinitely close to each other at a constant

rate with a constant learning rate. In the early stage of training,

the filters have not become close enough such that pruning

degrades the performance (seen from the difference between

“C-SGD before pruning” and “C-SGD after pruning” during

the beginning 100 epochs). But after 100 epochs, the pruning

0 50 100 150 200
epochs

8

6

4

2

0

2

lo
g 1

0
 o

r l
og

10

C-SGD
Lasso

0 50 100 150 200
epochs

0.2

0.4

0.6

0.8

to
p-

1
ac

cu
ra

cy
C-SGD before pruning
Lasso before pruning
C-SGD after pruning
Lasso after pruning

Fig. 6: Training process with C-SGD or group-Lasso on

ResNet-56. Note the logarithmic scale of the upper figure.

Left: values of χ or ϕ. Right: validation accuracy.

causes absolutely no damage. 3) Training with group-Lasso is

2× slower than C-SGD due to its computational intensity.

F. C-SGD vs. Other Filter Pruning Methods

In this subsection, we compare C-SGD with other filter

pruning methods through a series of controlled experiments

on DenseNet-40 [15]. We slim every incremental convolutional

layer of a well-trained DenseNet-40 to 3 and 6 filters, respec-

tively. The experiments are repeated 3 times, and the mean

± std curves are presented in Fig. 7. The training setting

is kept the same for every model: learning rate τ = 3 ×
10−3, 3×10−4, 3×10−5, 3×10−6 for 200, 200, 100 and 100

epochs, respectively, to guarantee the complete convergence of

every competitor to ensure the fairness of comparison. For our

method, the models are trained with C-SGD and trimmed. For

Magnitude- [10], APoZ- [9] and Taylor-expansion-based [11],

the models are pruned by the different criteria and fine-tuned.

The models labeled as Lasso are trained with group-Lasso

Regularization for 600 epochs in advance, pruned, then fine-

tuned for another 600 epochs with the same learning rate

schedule, such that the comparison is actually biased towards

the Lasso method. The models are tested on the validation

set every 10,000 iterations (12.8 epochs), and the collected

results reveal the superiority of C-SGD in terms of higher

accuracy and also better stability. Especially, though group-

Lasso Regularization can indeed reduce the performance drop

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 11

0 100 200 300 400 500 600
epochs

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

va
l a

cc
ur

ac
y

APoZ-
Lasso-
Magnitude-
C-SGD-
Taylor-

(a) Three filters per layer.

0 100 200 300 400 500 600
epochs

0.87

0.88

0.89

0.90

0.91

0.92

0.93

va
l a

cc
ur

ac
y

APoZ-
Lasso-
Magnitude-
C-SGD-
Taylor-

(b) Six filters per layer.

Fig. 7: Controlled pruning experiments on DenseNet-40

TABLE VII: Accuracy of scratch-trained DenseNet-40, VGG,

ResNets using normal SGD or C-SGD with identical filters.

Dataset Model Normal SGD C-SGD

CIFAR-10 DenseNet-3 88.60 89.96
CIFAR-10 VGG-1/2 92.49 93.22
CIFAR-10 ResNet-56-10-20-40 91.78 92.81
ImageNet ResNet-50-30 69.67 72.54

caused by pruning, it is outperformed by C-SGD by a large

margin. Another interesting observation is that the models

pruned by the importance metrics are unstable and trapped

into a bad local minimum, which is consistent with [39], as the

accuracy curves increase steeply in the beginning but slightly

decline afterward.

These observations suggest it is better to train a wide

network and equivalently transform it into a narrower one

than to fine-tune it after pruning, which is consistent with

prior works [23], [24] that highlighted the redundancy was

necessary for overcoming a non-convex optimization problem.

G. Redundant Training vs. Normal Training

We verify the significance of training with manipulated

redundant filters. However, we need to eliminate the effects

of the well-trained base model, or we cannot tell whether the

difference in the final accuracy is due to the redundancy during

the training process or the powerful weights of the well-trained

big model. Concretely, we train a narrow CNN with normal

SGD and compare it with another model trained using C-SGD

with the equivalent width from scratch. To be specific, after

random initialization, the latter produces some identical filters

during C-SGD training and will have the same width as the

former after pruning. For example, if a model has 2× number

of filters as the normal counterpart but every two filters are

identical, they will end up with the same structure.

TABLE VIII: Top1 accuracy of ResNet-56 pruned by global

slimming or clipping the internal layers.

Resulting width Top1 acc FLOPs ↓

Global slimming [10,10]-[20,20]-[40,40] 93.62 60.85
Clipping [6,16]-[12,32]-[24,64] 91.77 61.76

On DenseNet-40, we evenly divide the 12 filters at each

incremental conv layer into 3 clusters, use C-SGD to train the

network from scratch, then trim it into a model with 3 filters

per incremental layer. I.e., every 4 filters grow centripetally. In

contrast, we train a DenseNet-40 with originally 3 filters per

layer with normal SGD. After that, we experiment on VGG,

slimming each layer to 1/2 of the original width. We also

experiment on ResNet-56 with a target structure of 10-20-

40 and on ResNet-50 where every internal layer is reduced to

30% of the original. Table. VII shows that the redundant filters

do help, compared to a normally trained counterpart with the

equivalent width. This observation supports our intuition and

assumption that the centripetally growing filters can enhance

the model’s representational capacity because though these

filters are constrained, their corresponding input channels of

the succeeding layers are still in full use and can grow without

constraints in the parameter hyperspace (Fig. 1).

In other words, though C-SGD is originally designed for

filter pruning on an off-the-shelf model, in some cases when a

well-trained model is unavailable, we can use C-SGD to train a

wide model from scratch and trim it into the desired structure.

Though doing so delivers a lower accuracy than pruning a

well-trained model (e.g., 92.81 vs. 93.62 on ResNet-56-10-

20-40, Table. VII and I), we can still obtain a more powerful

model than training from scratch using normal SGD.

H. Global Slimming vs. Clipping Some Layers

We show that with the same target FLOPs, global “slim-

ming” yields better results than simply “clipping” some of

the layers. Concretely, we prune a ResNet-56 on CIFAR-10

to reach a comparable level of FLOPs as C-SGD-Res56-10-

20-40 (Table. I). Instead of slimming every layer to 5/8 of

the original width, we use C-SGD to prune the internal layers

only, i.e., the first layers in each residual block. To realize 60%

FLOPs reduction, we slim such layers to 3/8 of the original

width. We use [x, y] to denote the structure of a ResNet stage

where the first layer in every residual block has x filters and the

second has y. Table. VIII shows clipping the internal layers

delivers a significantly lower accuracy, which demonstrates

the superiority of global slimming over simply clipping some

layers, given a specific overall pruning ratio.

I. Structural Squeezing for More Powerful CNNs

Structural Squeezing is a methodology to improve CNN

based on C-SGD. The resulting model will deliver a higher

level of accuracy with the same computational budgets as a

normally trained counterpart. Concretely, we choose a mature

CNN as the baseline, train a network with the same archi-

tecture but wider layers from scratch using regular SGD, and

then use C-SGD to squeeze it into the original width.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 12

TABLE IX: Structural Squeezing on VGG and ResNet-50. Of note is that we calculate the required FLOPs of every model in

the same manner as Luo et al. [47], [60], such that the FLOPs are 2× as those reported in other papers [10], [14].

Dataset Model Result Top1 FLOPs Layer Width

CIFAR-10 VGG Baseline 93.53 626M 64-128-256-512
CIFAR-10 VGG 2× scaled 93.69 2499M 128-256-512-1024
CIFAR-10 VGG 2× pruned 93.97 626M 64-128-256-512

ImageNet ResNet-50 Baseline 75.33 7.71B 64-[64-64-256]-[128-128-512]-[256-256-1024]-[512,512,2048]
ImageNet ResNet-50 Global 1.25× 76.97 11.98B 80-[80-80-320]-[160-160-640]-[320-320-1280]-[640,640,2560]
ImageNet ResNet-50 Global 1.25× pruned 76.23 7.71B 64-[64-64-256]-[128-128-512]-[256-256-1024]-[512,512,2048]
ImageNet ResNet-50 Bottleneck 2× 76.82 13.05B 64-[64-128-256]-[128-256-512]-[256-512-1024]-[512,1024,2048]
ImageNet ResNet-50 Bottleneck 2× pruned 75.88 7.71B 64-[64-64-256]-[128-128-512]-[256-256-1024]-[512,512,2048]

On CIFAR-10, a 2× scaled VGG is trained from scratch

with normal SGD, i.e., every layer of the model is 2× as

wide as the normal VGG architecture. We then slim it down

to the original structure by pruning half of the filters at each

layer. On ImageNet, we train a 1.25× scaled ResNet-50 from

scratch, and slim it down to the original structure. Note that

every conv layer is widened to 1.25× of its original width,

including the pacesetters and followers, which are considered

troublesome by the prior works. We then use C-SGD to prune

every layer simultaneously. We also experiment with another

model scaled differently, where only the bottleneck layers (i.e.,

the internal 3× 3 layers in residual blocks) are scaled by 2×.

Table. IX shows the pruned models consistently beat the

counterparts trained with regular SGD by a clear margin.

Intuitively, when the filters in each cluster are constrained to

grow closer, the learned knowledge is gradually “squeezed”

into the cluster center, i.e., the merged filters, such that the

resulting model becomes more powerful than the normal

counterpart. Interestingly, Global 1.25× pruned outperforms

Bottleneck 2× pruned (76.25 vs. 75.88 Top1 accuracy, 0.74

vs. 0.94 error increase), though Bottleneck 2× requires more

computations. It suggests scaling and squeezing globally,

including those troublesome layers, yields better performance.

This observation again highlights the significance of C-SGD

in solving the constrained filter pruning problem together with

the results shown in Sect. V-H.

VI. DISCUSSIONS ON THE EFFICIENCY

The total time required for pruning is determined by the

training (plus fine-tuning, if any) epochs, the training speed,

the time consumed by the other algorithms (for those non-end-

to-end methods), and the pruning granularity (i.e., the number

of layers/filters to prune at a time). C-SGD is efficient because

it is end-to-end, requires no fine-tuning, runs as fast as regular

SGD and prunes all the layers simultaneously.

C-SGD requires no fine-tuning after pruning. Sect. V-E

shows the filters in each cluster become infinitely close to

each other at a constant rate with a constant learning rate.

This property shows the superiority of the identical-filter

redundancy pattern over the small-norm pattern, as the latter

cannot zero out the filters, but only reduce the magnitude

of their parameters. As trimming the identical filters causes

no performance drop, there is no need for a fine-tuning

process, which is essential in many prior works [1], [2], [8]–

[13], [17], [18], [47], [53]. C-SGD allows one-step pruning

on very deep CNNs. The effectiveness and efficiency of

C-SGD on very deep CNNs distinguish C-SGD from the

layer-by-layer [1], [9], [17], [47], [53] or filter-by-filter [11],

[12] pruning methods. Many prior works choose to prune

layer by layer because pruning too many layers at once may

damage the network so severely that it cannot be fine-tuned to

reach a satisfactory level of accuracy. In addition, the relative

importance of filters is usually affected by the subsequent

layers [8], such that pruning several layers stacked together

at once may lead to poor estimation of the importance of

filters. In contrast, C-SGD can produce the desired redundancy

patterns on all the layers simultaneously to prune them all

at once. In practice, we observe no accuracy drop caused

by the trimming step, even in very deep CNNs like ResNet-

164 and DenseNet-121. C-SGD introduces negligible extra

computational burden. We construct the averaging matrix

Γ and decaying matrix Λ according to the clustering results

C as two constants, and store them in the GPU memory.

Compared to normal SGD, for each kernel tensor at each

training iteration, the only extra computations introduced are

two matrix multiplications (Eq. 8), which consume minimal

extra time and energy. In practice, the difference in the training

speed between C-SGD and normal SGD is not observed. On

the same machine with 8 GPUs, normal SGD processes 2298

images/s, and C-SGD processes 2273 images/s, for the training

of the same ResNet-50. The relative difference is merely 1%.

In contrast, group-Lasso slows down the training significantly,

as it requires costly square root operations.

VII. CONCLUSION

We proposed to manipulate redundancy patterns by making

some filters identical for pruning. By C-SGD, we have 1)

solved an open problem of constrained filter pruning on very

deep CNNs with complicated architectures, 2) beaten many

recent competitors on common benchmarks under comparable

FLOPs reduction ratio, 3) presented empirical evidence for

the assumption that redundancy facilitates training, which

may encourage future studies, and 4) proposed Structural

Squeezing, a methodology to improve CNNs.

REFERENCES

[1] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in International Conference on Computer Vision

(ICCV), vol. 2, 2017, p. 6.
[2] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning

efficient convolutional networks through network slimming,” in 2017

IEEE International Conference on Computer Vision (ICCV). IEEE,
2017, pp. 2755–2763.

[3] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing

systems, 2013, pp. 2148–2156.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 13

[4] M. D. Collins and P. Kohli, “Memory bounded deep convolutional
networks,” arXiv preprint arXiv:1412.1442, 2014.

[5] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-
F. Chang, “An exploration of parameter redundancy in deep networks
with circulant projections,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2857–2865.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th International Conference on Learning Representations, 2016.

[7] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
cnns,” in European Conference on Computer Vision. Springer, 2016,
pp. 662–677.

[8] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 9194–9203.

[9] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[10] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in 5th International Conference on Learning

Representations, 2017.

[11] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in 5th

International Conference on Learning Representations, 2017.

[12] R. Abbasi-Asl and B. Yu, “Structural compression of convolutional
neural networks based on greedy filter pruning,” arXiv preprint

arXiv:1705.07356, 2017.

[13] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies

in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[15] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 2261–2269.

[16] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 806–814.

[17] J. M. Alvarez and M. Salzmann, “Learning the number of neurons in
deep networks,” in Advances in Neural Information Processing Systems,
2016, pp. 2270–2278.

[18] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information

Processing Systems, 2016, pp. 2074–2082.

[19] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018, pp. 6797–6804.

[20] H. Wang, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured pruning
for efficient convnets via incremental regularization,” in International

Joint Conference on Neural Networks, 2019, pp. 1–8.

[21] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, “Towards compact con-
vnets via structure-sparsity regularized filter pruning,” arXiv preprint

arXiv:1901.07827, 2019.

[22] V. Roth and B. Fischer, “The group-lasso for generalized linear models:
uniqueness of solutions and efficient algorithms,” in Proceedings of the

25th international conference on Machine learning. ACM, 2008, pp.
848–855.

[23] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems, 2014,
pp. 1269–1277.

[24] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[25] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[26] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information

processing systems, 1993, pp. 164–171.

[27] G. Castellano, A. M. Fanelli, and M. Pelillo, “An iterative pruning
algorithm for feedforward neural networks,” IEEE transactions on

Neural networks, vol. 8, no. 3, pp. 519–531, 1997.

[28] S. W. Stepniewski and A. J. Keane, “Pruning backpropagation neural
networks using modern stochastic optimisation techniques,” Neural

Computing & Applications, vol. 5, no. 2, pp. 76–98, 1997.

[29] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information

Processing Systems, 2015, pp. 1135–1143.

[30] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances In Neural Information Processing Systems, 2016, pp.
1379–1387.

[31] A. RoyChowdhury, P. Sharma, E. Learned-Miller, and A. Roy, “Reduc-
ing duplicate filters in deep neural networks,” in NIPS workshop on

Deep Learning: Bridging Theory and Practice, vol. 1, 2017, p. 1.

[32] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 184–199.

[33] S. Vadera and S. Ameen, “Methods for pruning deep neural networks,”
IEEE Access, vol. 10, pp. 63 280–63 300, 2022.

[34] Z. Chen, T.-B. Xu, C. Du, C.-L. Liu, and H. He, “Dynamical channel
pruning by conditional accuracy change for deep neural networks,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 32, no. 2,
pp. 799–813, 2021.

[35] M. Lin, L. Cao, S. Li, Q. Ye, Y. Tian, J. Liu, Q. Tian, and R. Ji, “Filter
sketch for network pruning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 33, no. 12, pp. 7091–7100, 2022.

[36] H. Salehinejad and S. Valaee, “Edropout: Energy-based dropout and
pruning of deep neural networks,” IEEE Transactions on Neural Net-

works and Learning Systems, vol. 33, no. 10, pp. 5279–5292, 2022.

[37] T. Zhang, S. Ye, X. Feng, X. Ma, K. Zhang, Z. Li, J. Tang, S. Liu, X. Lin,
Y. Liu, M. Fardad, and Y. Wang, “Structadmm: Achieving ultrahigh
efficiency in structured pruning for dnns,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 5, pp. 2259–2273, 2022.

[38] M. Lin, R. Ji, S. Li, Y. Wang, Y. Wu, F. Huang, and Q. Ye, “Network
pruning using adaptive exemplar filters,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 12, pp. 7357–7366, 2022.

[39] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in 7th International Conference on Learning

Representations, 2019.

[40] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning
very deep convolutional networks with complicated structure,” in 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2019, pp. 4938–4948.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on

Learning Representations, 2015.

[42] PyTorch, Torchvision Official Models, 2020. [Online]. Available:
https://pytorch.org/docs/stable/torchvision/models.html

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International

Conference on Machine Learning, 2015, pp. 448–456.

[44] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[45] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in 4th International Conference on Learning Representa-

tions, 2016.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.

[47] J. H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in IEEE International Conference

on Computer Vision, 2017, pp. 5068–5076.

[48] C. Wang, R. Grosse, S. Fidler, and G. Zhang, “Eigendamage: Structured
pruning in the kronecker-factored eigenbasis,” in International Confer-

ence on Machine Learning. PMLR, 2019, pp. 6566–6575.

[49] C. Jiang, G. Li, C. Qian, and K. Tang, “Efficient dnn neuron pruning by
minimizing layer-wise nonlinear reconstruction error,” in Proceedings of

the 27th International Joint Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 2298–2304.

[50] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle
filter pruning for destructive cnn width optimization,” in International

Conference on Machine Learning. PMLR, 2019, pp. 1607–1616.

[51] Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning to prune filters
in convolutional neural networks,” in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, 2018, pp. 709–718.

[52] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri, “Stability based
filter pruning for accelerating deep cnns,” in IEEE Winter Conference

on Applications of Computer Vision, 2019, pp. 1166–1174.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JULY 2022 14

[53] Y. He and S. Han, “Adc: Automated deep compression and acceleration
with reinforcement learning,” arXiv preprint arXiv:1802.03494, 2018.

[54] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning
via geometric median for deep convolutional neural networks
acceleration,” in IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 2019, pp. 4340–4349. [Online].
Available: http://openaccess.thecvf.com/content CVPR 2019/html/
He Filter Pruning via Geometric Median for Deep Convolutional
Neural Networks CVPR 2019 paper.html

[55] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. S.
Doermann, “Towards optimal structured CNN pruning via generative
adversarial learning,” in IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,

2019. Computer Vision Foundation / IEEE, 2019, pp. 2790–2799.
[Online]. Available: http://openaccess.thecvf.com/content CVPR 2019/
html/Lin Towards Optimal Structured CNN Pruning via Generative
Adversarial Learning CVPR 2019 paper.html

[56] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
“Hrank: Filter pruning using high-rank feature map,” CoRR, vol.
abs/2002.10179, 2020. [Online]. Available: https://arxiv.org/abs/2002.
10179

[57] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Leverag-
ing filter correlations for deep model compression,” arXiv preprint

arXiv:1811.10559, 2018.
[58] X. Xu, M. S. Park, and C. Brick, “Hybrid pruning: Thinner

sparse networks for fast inference on edge devices,” arXiv preprint

arXiv:1811.00482, 2018.
[59] D. Wang, L. Zhou, X. Zhang, X. Bai, and J. Zhou, “Exploring linear

relationship in feature map subspace for convnets compression,” arXiv

preprint arXiv:1803.05729, 2018.
[60] J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, and W. Lin, “Thinet:

Pruning CNN filters for a thinner net,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 41, no. 10, pp. 2525–2538, 2019. [Online]. Available:
https://doi.org/10.1109/TPAMI.2018.2858232

[61] PyTorch, PyTorch Official Example, 2020. [Online]. Available:
https://github.com/pytorch/examples/blob/master/imagenet/main.py

[62] B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in IEEE International

Conference on Computer Vision, ICCV 2011, Barcelona, Spain,

November 6-13, 2011, D. N. Metaxas, L. Quan, A. Sanfeliu, and L. V.
Gool, Eds. IEEE Computer Society, 2011, pp. 991–998. [Online].
Available: https://doi.org/10.1109/ICCV.2011.6126343

[63] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018. [Online].
Available: https://doi.org/10.1109/TPAMI.2017.2699184

[64] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, pp. 6230–6239. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.660

[65] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint

arXiv:1506.01497, 2015.
[66] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

	Introduction
	Related Work
	Filter Pruning via Centripetal SGD
	Formulation
	Centripetal SGD
	Properties of C-SGD
	Efficient Implementation of C-SGD
	Filter Trimming after C-SGD Training
	C-SGD for Constrained Filter Pruning

	Structural Squeezing: a New Training Methodology with C-SGD
	Experiments
	Pruning Results on CIFAR-10
	Pruning Results on ImageNet
	Semantic Segmentation and Object Detection
	Studies on the Clustering Methods
	Making Filters Identical vs@汥瑀瑯步渠. Zeroing Filters Out
	C-SGD vs@汥瑀瑯步渠. Other Filter Pruning Methods
	Redundant Training vs@汥瑀瑯步渠. Normal Training
	Global Slimming vs@汥瑀瑯步渠. Clipping Some Layers
	Structural Squeezing for More Powerful CNNs

	Discussions on the Efficiency
	Conclusion
	References

