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Abstract—Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of

emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image

content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially

focusing on the state-of-the-art methods with respect to three main challenges – the affective gap, perception subjectivity, and label

noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA

and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then

summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep

features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and

learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research

directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Index Terms—Affective computing, image emotion, emotion feature extraction, machine learning, emotional intelligence
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1 INTRODUCTION

IN the book “The Society of Mind” [1], Minsky (a Turing
Award winner in 1970) claimed that “The question is not

whether intelligent machines can have any emotions, but whether
machines can be intelligent without emotions.” Although emo-
tions play a vitally important role in machine and artificial
intelligence, much less attention has been paid to affective
computing than objective semantic understanding, such as
object classification in computer vision. The rapid develop-
ment of artificial intelligence has made remarkable success
in semantic understanding and raised higher demand to
emotional interaction. For example, the companion robots
that can recognize and express emotions can provide more
harmonious companionship for human beings, especially
the elderly and single children. To have human-like emo-
tions, machines should first understand how humans
express emotions through multiple channels, such as
speech, gesture, facial expression, and physiological

signals [2]. While other signals can be easily suppressed or
masked, physiological signals that are controlled by the
sympathetic nervous systems are independent of humans’
will and thus provide more reliable information. However,
to capture accurate physiological signals is quite difficult
and impractical, as it requires special types of wearable sen-
sors. On the other hand, the recent convenient access of
cameras in mobile devices and wide popularity of social
networks (such as Twitter, Flickr, and Weibo) have enabled
people to habitually share their experiences and express
their opinions online using images and videos together
with text [3]. Recognizing the affective content of this large
volume of multimedia data provides an alternate way to
understand users’ behaviors and emotions.

As we know, “a picture is worth a thousand words”,
which indicates that images can convey rich semantics. Dif-
ferent from existing research on analyzing the perceptual
aspects of images, such as object detection and semantic
segmentation, affective image content analysis (AICA)
focuses on understanding the semantics at a higher level –
the cognitive level, i.e., understanding the emotions that can
be induced by the images in viewers, which is more chal-
lenging. The automatic inference of humans’ emotional sta-
tus using AICA can help to evaluate their psychological
health, discover affective anomaly, and prevent extreme
behaviors to themselves and even to the whole society. For
example, in Fig. 1, the users posting images (b) are more
likely to have negative emotions than the users posting
images (a).

1.1 Main Goals and Challenges

Main Goals. Given an input image, AICA mainly aims to (1)
recognize the emotions that can be induced to specific view-
ers or to the majority (Based on psychology, the emotions
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might be represented in different models, e.g., categorical or
dimensional. Please see Section 2 for details.), (2) analyze
what stimuli contained in the image evoke such emotion
(e.g., specific objects or color combinations), and (3) apply
the recognized emotions to different real-world applications
to improve the ability of emotional intelligence.

Challenges. (1) Affective Gap. Similar to the semantic gap in
computer vision, the affective gap is one main challenge for
AICA, which can be defined as “the lack of coincidence
between the features and the expected affective state in
which the user is brought by perceiving the signal” [5], as
shown in Fig. 2.

To bridge the affective gap, researchers primarily focus
on extracting discriminative features that can better distin-
guish the difference among different emotions, ranging
from hand-crafted features like Gabor [6], Gist [7], artistic
elements [8], artistic principles [9], and adjective noun pairs
(ANPs) [10] to deep ones like convolutional neural net-
works (CNNs) [4], [11] and regions [12]. Based on the
assumption that different viewers can reach a consensus on
the perceived emotions of images, these AICA methods
mainly assign an image with the dominant (average) emo-
tion category (DEC). This task can be performed as a tradi-
tional single-label learning problem.

Besides extracting visual features, incorporating avail-
able context information can also contribute to the AICA
task [13], as shown in Fig. 3. The same image under differ-
ent contexts may evoke different emotions. For example, in
Fig. 3a, if we just see the kid, we may feel surprise based on
his expression; but with the context that the kid is blowing
the candles to celebrate his birthday, it is more likely to
make us feel happy. In Fig. 3b, if we see a volleyball player
crying, we may feel sad; but if there is a comment for the
image, “Finally, we won, after ten years!”, we, especially
the volleyball amateurs of the team, may feel excited.

(2) Perception Subjectivity. Different viewers may have
totally different emotional reactions to the same image,
which is caused by many personal and contextual factors,
such as the cultural background, personality and social con-
text [14], [15], [16]. For example, for the “Light in Darkness”
image in Fig. 4a, viewers who are interested in capturing
natural phenomena are probably excited to see this specta-
cle, while the viewers who are scared of thunder and storm
might feel fear. This fact causes the so-called subjective per-
ception problem. Therefore, for this highly subjective vari-
able, simply predicting the DEC is insufficient, since it
cannot well reflect the difference among different viewers.

To tackle the subjectivity issue,we can conduct two kinds of
AICA tasks [15]: for each viewer, we can predict personalized
emotion perceptions; for each image, we can assign multiple
emotion labels. For the latter one, we can employ multi-label
learning methods, which associate one image with multiple
emotion labels. However, since the importance or extent of dif-
ferent emotion labels is in fact unequal, emotion distribution
learning would make more sense, which aims to learn the
degree towhich each emotion describes the image [16]

(3) Label Noise and Absence. Recent methods on AICA based
on deep learning, especially CNN, have achieved promising
results. However, training these models requires large-scale
labeled data, which is prohibitively expensive and time-con-
suming to obtain, not only because labeling the emotions in
ground-truth generation is highly inconsistent, but also
because in some cases like artistic works only experts are able
to provide reliable labels. In real-world applications, there
might be only few or even no labeled emotion data. How to
deal with this situation is significantly worth investigating.
Unsupervised/weakly supervised learning and few/zero
shot learning are two interesting directions.

One possible solution is to leverage the unlimited
amount of web images with associated tags as labels [19].

Fig. 1. Examples of relevance and importance of AICA to infer humans’
emotional status. Images are from the FI dataset [4].

Fig. 2. Illustration of the affective gap. (a) Overview: the commonly
extracted low-level features cannot well represent high-level emotions.
(b) Examples: the first pair of images have a similar object (rose) but
evoke different emotions, while the second pair of images exhibit entirely
different content (car versus house) but evoke similar emotions.

Fig. 3. The context information also plays an important role in AICA. (a)
The image without and with the detailed scene context evoke different
emotions (surprise versus happy). (b) The textual contexts can also influ-
ence the emotion perception of the same image (sad versus excited).

Fig. 4. Illustration of the perception subjectivity [17]. For the original
image (a) uploaded to Flickr, different viewers may have different emo-
tion perceptions (b). The emotion labels are obtained using the keywords
in italic based on the comments from these viewers.
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However, such tags can be incomplete and noisy. An image
might be associated with tags that are unrelated or remotely
related. How to learn from noisily labeled images is the
main challenge. Imposing some constraints for visual repre-
sentation based on the semantic correlations between image
and text is one direct solution. First learning text models
and embeddings in unsupervised or semi-supervised man-
ners and then denoising the keyword labels can help to
“clean” the label noise.

Furthermore, if we have sufficient labeled data in one
domain, such as abstract paintings, how can we effectively
transfer the well-trained models to another unlabeled or
sparsely labeled domain? Because of the presence of domain
shift or dataset bias [20], [21], direct transfer often results in
poor performance, as shown in Fig. 5. Specifically, Panda
et al. [22] classified the dataset bias in AICA into two catego-
ries. One is positive set bias. Due to the lack of diversity in
visual concepts for each emotion category (e.g., amusement)
in the source domain, the models learned based on such
data are easily to memorize all its idiosyncrasies and lose
the ability to generalize to the target domain. The other is
negative set bias. The rest of the dataset (e.g., the data com-
ing from other categories excluding amusement) in the
source domain does not well represent the rest of the visual
world. For example, some of the negative samples from the
target domain are confused with the positive samples in the
source domain. As a result, the learned classifiers might be
overconfident. Domain adaptation and domain generaliza-
tion might help to address this issue.

1.2 Organization of This Survey

In this survey, we concentrate on reviewing the state-of-the-
art methods on AICA and outlining research trends. First,
we introduce the brief history in Section 1.3 and its compari-
son with other related topics in Section 1.4. Second, we
describe the widely-used emotion representation models in
Section 2. Third, we summarize the available datasets for
performing AICA evaluation in Section 3 and quantitatively
compare the label noise and dataset bias. Fourth, based on
the main goals and challenges in Section 1.1, we summarize
and compare the representative approaches on emotion fea-
ture extraction, learning methods (for dominant emotion
recognition, personalized emotion prediction, emotion dis-
tribution learning, and learning from noisy data or few

labels), and AICA based applications in Sections 4, 5, and 6,
respectively, as shown in Fig. 6. Finally, we discuss poten-
tial research directions to pursue in Section 7.

1.3 Brief History

Affective Computing. Before affective computing was known
by this term, early first works include a 1978 filed patent on
an analyzer for determining the emotion of a speaker
speech [23], and scientific papers on generation of affect in
synthesized speech in 1990 [24], or the recognition of facial
expressions by neural networks in 1992 [25].

Since Minsky proposed the emotion recognition problem
of intelligent machines [1], much attention has been paid to
emotion related research, such as the definition of emotional
intelligence [26]. In 1997, Picard first proposed the concept
of affective computing [27]: “affective computing is comput-
ing that relates to, arises from, or deliberately influences
emotion or other affective phenomena”. Some influential
events include: the first International Conference on Affec-
tive Computing and Intelligent Interaction (ACII) by IEEE
and AAAI in 2005, the foundation of the Association for the
Advancement of Affective Computing (AAAC) in 2007
(originally named HUMAINE Association), the first ever
public ‘emotion challenge’ held at Interspeech 2009, the
launch of the IEEE Transactions on Affective Computing
(TAFFC) in 2010, the first International Audio/Visual Emo-
tion Challenge and Workshop (AVEC) in 2011, the proposal
of the Emotional and Social Signals in Multimedia area in
ACMMultimedia 2014, and the first ACII Asia in 2018, etc.

Affective Image Content Analysis. The development of
AICA begins in the psychology and behavior research, such
as the International Affective Picture System (IAPS) [28],
[29], to investigate the relation between visual stimuli and
emotion. One of the first emotion recognition methods is
based on low-level holistic Wiccest and Gabor features [6].
Since then, several representative hand-crafted features have
been designed, such as the low-level artistic elements [8],
mid-level artistic principles [9], and high-level Adjective
Noun Pairs (ANPs) [10]. In 2014, transfer learning is con-
ducted from a CNN in which parameters are pre-trained by
large-scale data [30]. To tackle the subjectivity challenge,
both personalized emotion prediction [15], [31] and emotion

Fig. 5. Illustration of domain shift. (a) The images from ArtPhoto [8] and
FI [4] datasets have different styles: artistic versus social. (b) The emo-
tion classification performance (%) significantly drops if the trained data-
set is different from the tested dataset on both ArtPhoto and FI datasets
by fine-tuning the ResNet-101 model [18].

Fig. 6. Organization of different technical components in this survey.
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distribution learning [14], [32], [33], [34] are considered.
More recently, domain adaptation [35], [36], [37] and zero-
shot learning [38] are studied for the label absence challenge.
The representative milestones in both general affective com-
puting andAICA are summarized in Fig. 7.

1.4 Comparison With Other Related Topics

Comparison With Affective Computing of Other Modalities.
Affective content analysis has also been widely studied in
other modalities, such as text [39], [40], speech acoustics [41],
[42] and linguistics [43], music [44], [45], sound [46], facial
expression [47], [48], [49], [50], video [51], [52], physiological
signals [53], [54], [55], and multi-modal data [56], [57], [58],
[59]. Although the employed emotion models and learning
methods are similar, there is a clear difference between
affective computing of images and other modalities, espe-
cially the extracted features to represent emotions. While
the surveys on other modalities are well-conducted, there is
no comprehensive survey on AICA. As an image is an
important channel to express emotions, we believe an in-
depth analysis of AICA could boost the development of
affective computing. One preliminary version on this sur-
vey was previously introduced in our IJCAI 2018 conference
paper [60]. As compared to the conference paper, this jour-
nal version has the following five aspects of extensive
enhancements. First, the detailed challenges and a brief his-
tory are incorporated. Second, we summarize and compare
more representative works on emotion models, available
datasets, emotion features, and learning methods. Third, we
conduct extensive experiments to fairly compare the effec-
tiveness of different AICA methods. Fourth, we add some
AICA-based applications. Finally, we discuss more poten-
tial research directions.

Comparison With Computer Vision. The task of AICA is
often composed of three steps: human annotation, visual
feature extraction, and learning of mapping between visual
features and perceived emotions [61]. Although the three
steps seem to be very similar to computer vision (CV, the
third step is a mapping learning between visual features
and image labels, such as an object), there are significant dif-
ferences between AICA and CV. Take object classification
and emotion classification for instance. (1) Even if the
semantic gap is bridged in object classification, there still

exists an affective gap. For example, an image with a lovely
dog and an image with a barking dog can evoke different
emotions. (2) Object is an objective concept (both a lovely
dog and a barking dog are dogs), while emotion is a rela-
tively subjective concept (happy and fear for the two
images). (3) Correspondingly, object classification belongs
to the perceptual aspects of images, while AICA focuses on
the cognitive level. Object classification is mainly studied by
the CV community, while AICA is an interdisciplinary task
requiring psychology, cognitive science, multimedia, and
machine learning, etc.

2 EMOTION MODELS FROM PSYCHOLOGY

In psychology, there are several different affective comput-
ing related concepts, such as emotion, affect, mood, and
sentiment. Discussing the difference or correlation of these
concepts is out of the scope of this survey. Interested read-
ers can refer to [67] for more details. Appraisal theory is
well-known for explaining the development of emotional
experience [68]. It accounts for individual variability in
emotional reactions to the same stimulus. According to the
Ortony, Clore and Collins (OCC) model [69], the emergence
of emotions originates from the cognitive evaluation or
appraisal of stimuli in terms of events, agents, and objects.
How individuals actually perceive and interpret the stimuli
determines how emotions might emerge.

Psychologists mainly employ two kinds of emotion
representation models to measure emotion: categorical emo-
tion states (CES) and dimensional emotion space (DES), as
shown in Table 1. CES models classify emotions into a few
basic categories. The simplest CES model is binary positive
and negative (polarity) [55], [70]. In such cases, “emotion” is
often called “sentiment”, which sometimes also includes
neutral. Since sentiment is too coarse-grained, some rela-
tively fine-grained emotion models are designed, such as
Ekman’s six emotions (anger, disgust, fear, happiness, sad-
ness, surprise) [62] and Mikels’s eight emotions (amuse-
ment, anger, awe, contentment, disgust, excitement, fear,
and sadness) [29]. With the development of psychological
theories, categorical emotions are becoming increasingly
diverse and fine-grained such as by also considering social
emotions [71]. Besides the eight basic emotion categories
(anger, anticipation, disgust, fear, joy, sadness, surprise,

Fig. 7. Milestones in both general affective computing (above line, blue) and affective image content analysis (below line, red).
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trust), Plutchik [63] organized each of them into 3 intensi-
ties which thus provides a richer set. For example, the 3
intensities of joy and fear are ecstasy!joy!serenity and ter-
ror!fear!apprehension, respectively. Another representa-
tive CES model is Parrott’s tree hierarchical grouping [64],
which represents emotions with primary, secondary, and
tertiary categories. For example, a three-level emotion hier-
archy is designed as two basic categories (positive and neg-
ative) at level-1, six categories (anger, fear, joy, love,
sadness, and surprise) at level-2, and 25 fine-grained emo-
tion categories at level-3.

Although CES models are easy for users to understand,
limited emotion categories cannot well reflect the complex-
ity and subtlety of emotions. Further, psychologists have
not reached a consensus on how many discrete emotion cat-
egories should be included. Differently, DES models
employ continuous 2D, 3D, or higher dimensional Cartesian
space to represent emotions, such as valence-arousal-domi-
nance (VAD) [65] and potentially added intensity, novelty,
or others, and activity-temperature-weight [66]. VAD is the
most widely used DES model [72], where valence represents
the pleasantness ranging from positive to negative, arousal
represents the intensity of emotion ranging from excited to
calm, and dominance represents the degree of control rang-
ing from controlled to in control. In practice, dominance is
difficult to measure and is often omitted, leading to the
commonly used two-dimensional VA space [5]. Theoreti-
cally, every emotion can be represented as a coordinate
point in the Cartesian space. However, the absolute continu-
ous values are difficult for users to distinguish, which con-
straints the employment of DES models.

The comparison between CES and DES is shown in
Table 2. Compared to CES, DES is able to represent finer-
grained and more comprehensive emotions, which reflects
their difference on granularity and describability, respec-
tively. Further, instead of being independent from each
other, they are actually related. The relationship between
CES and DES and the transformation from one to the other
are studied in [73], [74]. For example, positive valence
relates to a happy state, while negative valence relates to a
sad or angry state; a relaxed state relates to low arousal,
while anger relates to high arousal. To further distinguish

for example anger and fear (both negative valence, but high
arousal), one needs dominance (high for anger, but low for
fear). CES and DES are mainly employed in classification
and regression tasks, respectively, with discrete and contin-
uous emotion labels. As a result, the employed learning
models are different. For the affective image retrieval task,
both models can be employed with different emotion dis-
tance measurements (e.g., Mikels’ emotion wheel [15] for
CES and euclidean distance for DES). If we discretize DES
into several constant values, we can also use it for classifica-
tion [66]. We can consider easing DEC comprehension diffi-
culties in raters by ranking based labeling.

Another relevant concept worth mentioning is that emo-
tion in response to images can be expected, induced, or per-
ceived emotion. Expected emotion is the emotion that the
images creator intends to make people feel, perceived emo-
tion is what people perceive as being expressed, while
induced/felt emotion is the actual emotion that is felt by a
viewer. We do not aim discussing the difference or correla-
tion of various emotion models in this survey and believe
that the achievements from psychology and cognitive sci-
ence are beneficial for the AICA task.

3 DATASETS

In the early years, the affective datasets only contain small-
scale images built from psychology or artistic communities.
With the development of digital photography and online
social networks, an increasing number of large-scale data-
sets have been created by crawling the images posted on
Internet. We summarize all the datasets for AICA in Table 3.

3.1 Brief Introduction to Different Datasets

The International Affective Picture System (IAPS) [28] is an
image dataset for visual emotional stimuli used in experi-
mental investigations of emotion and attention in psychol-
ogy [28]. The dataset contains 1,182 documentary-style
natural color images with various contents or scenes, such
as portraits, babies, animals, landscapes, etc. About one
hundred college students took part in the VAD rating on a
9-point scale. The mean and standard deviation (STD) of
scores for each image can be derived easily.

The subset A of IAPS (IAPSa) [29] is collected from IAPS
to characterize the images by a descriptive discrete emotion
category. Specifically, 203 negative images and 187 positive
images are selected, and then labeled by twenty undergrad-
uate participants. To the best of our knowledge, it is the first
affective image dataset which is labeled using a discrete
emotion category.

TABLE 1
Representative Emotion Models Employed in AICA

Model Ref Type Emotion states/dimensions

Ekman [62] CES happiness, sadness, anger,
disgust, fear, surprise

Mikels [29] CES amusement, anger, awe,
contentment, disgust,

excitement, fear, sadness
Plutchik [63] CES (� 3 scales) anger,

anticipation, disgust, joy,
sadness, surprise, fear, trust

Parrott [64] CES a tree hierarchical grouping
with primary, secondary and
tertiary emotion categories

Sentiment CES positive, negative, (and
neutral)

VA(D) [65] DES valence-arousal(-dominance)
ATW [66] DES activity-temperature-weight

TABLE 2
Comparison Between CES and DES

CES DES

understandability easy difficult
describability limited unlimited
perspective qualitative quantitative
examples Mikels, Plutchik VAD
granularity coarse-grained fine-grained
AICA tasks classification, retrieval regression, retrieval

ZHAO ETAL.: AFFECTIVE IMAGE CONTENTANALYSIS: TWO DECADES REVIEW AND NEW PERSPECTIVES 6733

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:24:43 UTC from IEEE Xplore.  Restrictions apply. 



The Abstract dataset [8] consists of 280 paintings which
are combinations only of color and texture. They are anno-
tated by about 230 people, and each image is voted 14 times.
For each image, the category obtaining the most number of
votes is regarded as the ground truth. After filtering the
images whose votes are inconclusive, 228 images are
retained.

The Artphoto dataset [8] contains 806 artistic photos col-
lected from an art sharing site. The photos are obtained by
searching the site with the emotion categories as keywords.
The ground truth of each image is determined by the user
who uploads it.

The Geneva affective picture database (GAPED) [75] con-
tains 730 pictures which are collected to make full use of
visual emotion stimuli. Several specific types of negative or
positive content are presented in these images. The 520 neg-
ative images, 121 positive images, and 89 neutral images are
labeled by 60 people ranging from 19 to 43 years (mean=24,
STD=5.9). In addition, the continuous VA scales are rated
from 0 to 100 points.

The MART dataset [76] contains 500 abstract paintings
collected from more than 20,000 artworks of professional
artists guided by an art historian. There are 25 participants
(11 females and 14 males) annotating these images with
negative or positive rating. Each person annotated 145
paintings on average.

The devArt [76] is a dataset of Amateur paintings from
the deviantArt (dA) website. The 500 paintings created by
406 different authors are labeled by 60 people including 27
females and 33 males.

The Twitter I dataset [77] consists of 1,269 images. A total
of 5 Amazon Mechanical Turk (AMT) workers were
employed to label the images. The dataset contains three
subsets, including “Five agree” (Twitter I-5), “At least four
agree” (Twitter I-4) and “At least three agree” (Twitter I-3).
“Five agree” indicates that all the 5 AMT workers reached
an agreement on the sentiment label of an image. Twitter I-5
contains 882 images, while all the images obtain at least
three same votes on sentiment.

The Twitter II dataset [10] includes 470 positive images
and 133 negative images collected using over 20 twitter
hashtags. Three different labeling runs, namely image-
based, text-based, and image-text based, were conducted by
3 random AMT workers (each worker for each run), respec-
tively. The final selected images all receive unanimous sen-
timent votes.

The images labeled with 1,553 ANPs in VSO [10] are
retrieved and downloaded using the Flickr API. The corre-
sponding ANP should be contained in the title, tag, or cap-
tion of the image. As psychological principles for
construction of datasets, Plutchik’s Wheel of Emotions cov-
ers 3 intensities based on 8 basic emotions. MVSO [78] is the
extension of the VSO. The dataset consists of more than
7.36M images annotated with ANPs from 12 different lan-
guages including Arabic, Chinese, Dutch, English, French,
German, Italian, Persian, Polish, Russian, Spanish, and
Turkish. A total of 4,342 English ANPs were constructed.

Flickr I [79] is proposed to study the correlation between
emotions and friends’ discussions on the images. It contains
354,192 images posted by 4,807 users, of which all the

TABLE 3
Released Datasets for AICA, Where ‘# Images’ and ‘# Annotators’ Represent the Total Number of Images and Annotators

(f: Female, m: Male)

Dataset Ref # Images Type # Annotators Emotion model Label detail

IAPS [28] 1,182 natural �100 (half f) VAD empirically derived mean and standard deviation
IAPSa [29] 390 natural 20 (10f,10m) Mikels at least one emotion category for each image
Abstract [8] 280 abstract �230 Mikels the detailed votes of all emotions for each image
ArtPhoto [8] 806 artistic – Mikels one DEC for each image
GAPED [75] 730 natural 60 Sentiment, VA one DEC and average VA values for each image
MART [76] 500 abstract 25 (11f,14m) Sentiment one DEC for each image
devArt [76] 500 abstract 60 (27f,33m) Sentiment one DEC for each image
Twitter I [77] 1,269 social 5 per image Sentiment one sentiment category for each image
Twitter II [10] 603 social 3 per image Sentiment one sentiment category for each image
VSO [10] �500,000 social – Plutchik one emotion category for each image
MVSO [78] 7.36M social – Plutchik one emotion category for each image
Flickr I [79] 354,192 social 6,735 Ekman one emotion category for each image
Flickr II [80] 60,745 social 3 per image Sentiment one sentiment category for each image
Instagram [80] 42,856 social 3 per image Sentiment one sentiment category for each image
Emotion6 [14] 1,980 social 432 Ekman+neutral, VA the discrete probability distribution
FI [4] 23,308 social 225 Mikels one DEC for each image
IESN [15] 1,012,901 social 118,035 Mikels, VAD the emotion of involved users for each image
T4SA [81] 1,473,394 social - Sentiment+neutral one sentiment category for each image
B-T4SA [81] 470,586 social - Sentiment+neutral one sentiment category for each image
Comics [82] 11,821 comic 10 (5f,5m) Mikels one DEC for each image
Event [83] 8,748 social 3 each image Sentiment+neutral one sentiment category for each image
EMOTIC [84] 18,316 social 3 each image Ekman, VAD one DEC and VAD values for each image
EMOd [85] 1,019 natural 3 Sentiment+neutral object contour, object name, sentiment category
WEBEmo [22] 268,000 social - Parrott one DEC for each image
LUCFER [86] 3.6M social - Plutchik, VAD, context one DEC, average VAD values, and context for each image
FlickrLDL [16] 10,700 social 11 Mikels the discrete probability distribution
TwitterLDL [16] 10,045 social 8 Mikels the discrete probability distribution
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comments and tags are included. To model the friends’
interactions well, the detailed information of users is also
recorded in the dataset, including ID, alias, and contact list.

Flickr II [80] and Instagram [80] are collected from Flickr
and Instagram, respectively, based on query keywords. The
sentiment polarity labels are provided via online crowd-
sourcing. Specifically, each image was shown to three ran-
dom workers, who should choose a rating from the five
scales including highly positive, positive, neutral, negative,
and highly negative. The final ground-truth of each image
is determined by the major ratings of polarity. After dis-
carding the images that are labeled as ‘neutral’ or received
opposite sentiment annotations, 48,139 positive and 12,606
negative images are left in the Flickr II dataset, while Insta-
gram contains 33,076 positive and 9,780 negative images.

Emotion6 [14] contains 1,980 images which are obtained
from Flickr by six category keywords and corresponding
synonyms. Each image is annotated by 15 participants with
both valence-arousal scores and discrete emotion distribu-
tion. The categories include Ekman’s six basic emotions [62]
and neutral.

FI [4] is a large-scale affective image dataset constructed
based on Mikel’s emotions. All the images are collected from
Flickr and Instagram with the eight emotions as search key-
words. A total millions of weakly labeled images are crawled.
After deleting noisy data, a total of 225 AMT workers were
employed to assess the emotions of images. Finally, 23,308
images receive at least three agreements from the assigned
annotators.

The IESN dataset [15] consists of more than one million
images crawled from Flickr uploaded by 11,347 users, and
it is constructed to study the personalized emotion percep-
tion. Therefore, various metadata of corresponding images
are also collected, including tags, descriptions, comments,
and uploaders’ social context. For each image, the labels of
expected emotion from the uploader and actual emotion
from the viewer are both generated. In addition, by leverag-
ing the VAD norms of 13,915 English lemmas [87], the aver-
age values of VAD are computed as label of DES.
According to the descriptions and the comments of the
images, the emotion distribution is also easy to obtain.

The T4SA dataset [81] consists of about one million
tweets and corresponding images. According to the textual
sentiment classification, the images are classified into posi-
tive, negative, and neutral. However, the dataset contains
501,037 positive, 214,462 negative, and 757,895 neutral
images, which is imbalanced. As a balanced subset, B-
T4SA [81] is extracted from T4SA, in which there is an
equivalent of 156,862 images in each class.

The Comics dataset [82] is composed of 11,821 images
selected from seventy comics, including One Piece, Spider-
man, Sponge Bob, The Avengers, etc. A total of 10 partici-
pants (mean age=20.3 years) were employed to label these
images using Mikel’s eight emotion categories. The dataset
is further divided into two subsets: A Comics subset and a
Manga subset. The Comics subset includes samples from
European and American comics which are drawn in the
realism style, while the Manga subset contains Asian comics
with an abstract style.

The Event dataset [83] has 8,748 images that are obtained
fromMicrosoft Bing by using search keywords from 24 event

categories. The types of events are diverse, including per-
sonal and actual public events. In the annotation process, an
image could be retained if at least 2 out of 3 crowdworkers
reach an agreement on its label. The sentiment labels of these
event images contain positive, negative, and neutral.

The EMOTIC dataset [84] contains 18,316 images which
are selected from the MSCOCO [88] and Ade20k [89] data-
sets and were downloaded via the Google search engine
based on 26 emotional keywords. The dataset has two types
of annotated information. One is the DES comprising 26
emotions, while the other is continuous VAD dimensions. A
total of 23,788 people (66 percent males, 34 percent females)
are annotated in the images.

The EMOd dataset [85] consists of 1,019 emotional
images, in which 321 images are selected from IAPS [28]
and 698 images are collected via online image search engine.
Each image owns eye-tracking data collected from 16 partic-
ipants, and is labeled with detailed information including
object contour, object sentiment, semantic category, and
high-level perceptual attributes such as image aesthetics
and emotions. Three undergraduate students were
employed to label the characteristic of the objects in the
images. The emotion of the object is labeled by ‘neutral’
when the agreements are different.

The WEBEmo dataset [22] is a large-scale web emotion
dataset constructed based on Parrott’s hierarchical emotion
model. First, about 300,000 weakly labeled images are col-
lected by searching with keywords for each of the 25 emo-
tions. Then, the duplicate images and those with non-English
tags are removed, leading to 268,000 high-quality images.

The LUCFER dataset [86] contains over 3.6M images,
which are labeled with 24 emotional categories from Plu-
tchik’s model, 3 continuous emotional dimensions, and
image contexts. By combining contexts and emotions, a total
of 275 emotion-context pairs are generated. First, 80,649
images are collected from the wild, and 35,239 images of
them pass the AMT workers’ validation. With over 30 thou-
sand images, a large-scale dataset is obtained employing
Bing’s feature available in its Image Search API.

Flickr_LDL [16] and Twitter_LDL [16] are constructed to
study the emotion ambiguity. Each image is labeled by
more than one viewer based on their own emotional reac-
tions. Flickr_LDL contains 10,700 images extracted from
VSO dataset. A total of 11 participants were hired to view
each image and label the images with one of the Mikel’s
eight emotions. Twitter_LDL is collected from Twitter with
various sentiment keywords, and 8 viewers were employed
to label these images within the same eight emotions.
Finally, 10,045 images are retained after deduplication.

3.2 Comparison Among Different Datasets

Here we compare several released datasets from the perspec-
tives of label noise anddataset bias for readers to better under-
stand how to select required datasets in real applications.

3.2.1 Label Noise

For quantitative comparison in terms of label noise, we esti-
mate the noise rate by pre-training a CNN with softmax
loss [101]. It is assumed that the probability of positive (+1)
images being assigned to negative (�1) is rþ1 ¼ pðŷ ¼ �1jy ¼
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þ1Þ, where y represent the ground truth and ŷ is the predicted
label. Similarly, the probability of negative images being
assigned to positive is r�1 ¼ pðŷ ¼ þ1jy ¼ �1Þ. If there is no
label noise, the values of r�1 and rþ1 will approach 0. In
Fig. 8a, we estimate the values of rþ1 and r�1 using the algo-
rithm in [101], [102]. First, we resort images based on the pre-
dicted probability values from small to large

p̂ðŷjxnþ1Þ � p̂ðŷjxnÞ; p̂ðŷjxNŷ
Þ ¼ maxp̂ðŷjxnÞ; (1)

where n ¼ 1; 2; . . . ; Nŷ, and Nŷ denotes the number of
images that is predicted as ŷ. Second, we build a fitting
Gaussian function gð�Þ between the predicted probability
and the corresponding numbers of it

np̂ðŷnjxnÞ ¼ gŷnðp̂ðŷnjxnÞÞ; Np̂ðŷnjxnÞ ¼
Z 1

0

gŷnðp̂ðŷnjxnÞÞ;
(2)

where np̂ðŷnjxnÞ is the number of images that are predicted as
ŷn with probability p̂ðŷnjxnÞ. Third, the noise ratio is
regarded as the deviation between the probability that
obtains the maximum value on the fitting function and 1

rþ1 ¼ 1� argmaxgþ1ðp̂ðŷn ¼ þ1jxnÞÞ;
r�1 ¼ 1� argmaxg�1ðp̂ðŷn ¼ �1jxnÞÞ:

(3)

Finally, we compute the mean noise ratio rm weighted by
the proportion of each category

rm ¼
Xc

i
vi � ri; (4)

where vi is the proportion of images from the ith category, ri
is the noise ratio of the ith category, and c is the number of cat-
egories. From Fig. 8a, we can observe that Event is the dataset
with the least label noise. However, Abstract has the largest
label noise. It is mainly because the abstract images are diffi-
cult to distinctly understand, leading tomore label noise.

3.2.2 Dataset Bias

To explore the dataset bias of emotion recognition, we con-
duct extensive transfer learning experiments among various
datasets by training a classifier on one dataset and testing on
another. These datasets have wide ranges on the number of
images, ranging from a few hundred to a few hundred

thousand. Meanwhile, these datasets include various types,
such as natural images and abstract images. We split each
dataset into 80 percent training images and 20 percent test
images. For a fair experiment, we fine-tune a ResNet-50 [18]
on each dataset and test the model on all the datasets.

The confusion matrix is shown in Fig. 8b, where each row
represents the results of one model on different datasets. We
have some observations as follows. First, there is a larger bias
between datasets that belong to different types, such as
abstract, comic, and natural images. For example, the types of
Abstract, Comics, and GAPED are abstract, comic, and natu-
ral, respectively. The model trained on Comics only obtains
0.522 and 0.546 accuracy on Abstract and GAPED datasets.
Second, the bias between the two datasets is not mutual. This
means that the evaluated bias is smaller when the cleaner one
of two datasets is regarded as the target. For instance, as the
shown experimental results between the Event (the cleanest
dataset, rm = 0.074) and other datasets, the results are better
when Event is the target dataset. Third, the similarity of class
distribution can influence the dataset bias. For example, Twit-
ter II and Flickr_LDL (Twitter_LDL) have similar class distri-
bution, where there are significantly more positive images
than negative images. However, Flickr and Instagram have a
balanced class distribution, which is different from that of
Twitter II. Therefore, it is observed that the model trained on
Twitter II has better performance on Flickr_LDL and Twit-
ter_LDL than that on Flickr and Instagram. Finally, as the
most widely-used dataset, FI has the best generalization abil-
ity among these datasets. As shown in the first row of Fig. 8b,
the model trained on FI dataset obtains over 60 percent classi-
fication accuracy on all the datasets.

4 EMOTION FEATURE EXTRACTION

To describe image emotion with informative representa-
tions, many studies explore extraction of various types of
features. In terms of hand-crafted features, we introduce the
designed features on different levels. Besides, we review
the emerging deep features in recent years with the devel-
opment of CNNs.

4.1 Hand-Crafted Features

The hand-crafted features on different levels focus on differ-
ent aspects, as summarized in Table 4.

Fig. 8. Quantitative comparison and ranking of different datasets. (a) Estimated label noise ratio of different datasets. r�1 means the noise ratio of
negative sentiment, and rþ1 means the noise ratio of positive sentiment. rm is the mean noise ratio. (b) The confusion matrix between different data-
sets on sentiment polarity classification, which can reflect the bias between any two datasets.
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4.1.1 Low-Level Features

Various low-level features were designed to represent emo-
tional content in the early years, although they lack reason-
able interpretation. As one pioneering study on hand-
crafted features, [90] explores the relationship between line
directions and image emotion. Specifically, horizontal lines
relate to the static horizon and always express the relaxation
and calmness, while the direct and clear vertical lines con-
vey eternality and dignity. Lines with various directions
can convey different emotions. With the degree of long,
thick, and straight lines increasing, the expressed emotions
will be stronger. However, to capture more informative
information, guided by the theories of color psychology,
Wang et al. [91] constructed three kinds of image features in
an orthogonal three-dimensional emotion factor space,
respectively. The features include luminance-warm-cool
representation, saturation-warm-cool-contrast representa-
tion, and contrast-sharpness representation. By mining
these proposed emotional information, they designed an
emotion-based image retrieval system.

When it comes to hand-crafted features, one cannot
ignore a milestone [8], in which different types of features
are combined. Particularly, color and texture are the repre-
sentative low-level features in composition. Color is repre-
sented with a 70-dimensional vector consisting of eight
kinds of statistical information, while texture is encoded
with a 27-dimensional vector containing three types of
image statistics. Later in [66], another complex feature com-
bination consisting of color and texture, named MPEG-7, is
proposed. Besides, a fuzzy similarity relation is applied to
computing the weights of different components. Zhang
et al. [92] listed eleven groups of features referring to

texture, shape, and edge, which are extracted from several
transforms of the image. The influence of the visual shapes
on the image emotions is systematically explored in [93].
The experimental results demonstrate the effectiveness of
shape features for emotion prediction. In addition, Gist,
2�2 Histogram of Oriented Gradients (HOG), self-similar-
ity, and geometric context color histogram features are
widely used due to their ability to represent the distinct
visual scenes [7]. Based on Itten’s color wheel, Sartori et al.
[94] investigated the different color combinations in abstract
paintings, and used the factors to analyze the emotions
evoked in the viewers.

4.1.2 Mid-Level Features

Compared with low-level features, mid-level ones are easier
to understand by humans, and they can largely bridge the
gap between low-level features and high-level emotions.
Patterson and Hays [7] designed a large-scale attribute data-
base, named the SUN attribute database, which consists of
102 attributes that belong to different types, including mate-
rials, surface properties, and others. Based on these mid-
level attributes, Yuan et al. [95] proposed an image emotion
recognition algorithm, named Sentribute, in which eigen-
face-based facial expression detection is also added as a cru-
cial element to determine the polarity of emotions.

As an essential feature in artworks, harmonious compo-
sition [8] is introduced for emotion representation. Guided
by the theories of art, Wang et al. [97] designed more inter-
pretable and understandable features, in which the descrip-
tion of the contrast between the figure and the ground is
included. Apart from the studies that extract features of the
overall image with the single scale, there are also some

TABLE 4
Summary of Hand-Crafted Features on Different Levels That Have Been Used for AICA

Feature Ref Level Short description # Feat

WLDLV [90] low orientation and length information of lines 12
EFS [91] low luminance-warm-cool fuzzy histogram, saturation-warm-cool fuzzy histogram,

luminance contrast
10, 7, 2

Eleven Groups [92] low shape, edge, texture, polynomial, image statistics 691
LOW_C [7] low Gist, HOG2x2, self-similarity and geometric context color histogram features 17,032
Elements [8] low color: mean saturation, brightness and hue, emotional coordinates, colorfulness,

color names, Itten contrast, Wang’s semantic descriptions of colors, area statistics;
texture: Tamura, Wavelet and gray-level co-occurrence matrix

97

MPEG-7 [66] low color: layout, structure, scalable color, dominant color; texture: edge histogram,
texture browsing

�200

Shape [93] low line segments, continuous lines, angles, curves 219
IttenColor [94] low color co-occurrence features and patch-based color-combination features 16,485
Attributes [7] mid scene attributes 102
Sentributes [95] mid scene attributes, eigenfaces 109
Constructs [96] mid roundness, angularity, complexity 3
Composition [8] mid level of detail, low depth of field, dynamics, rule of thirds 45
Aesthetics [97] mid figure-ground relationship, color pattern, shape, composition 13
Principles [9] mid principles-of-art: balance, contrast, harmony, variety, gradation, movement 165
SIFT [98] mid bag-of-visual-words on SIFT, latent topics 330
FS [8] high number of faces and skin pixels, size of the biggest face, amount of skin w.r.t. the

size of faces
4

ANP [10] high semantic concepts based on adjective noun pairs 1,200
Expressions [99] high automatically assessed facial expressions (anger, contempt, disgust, fear, happiness,

sadness, surprise, neutral)
8

HLCs [100] high object information and scene information 1,205

‘# Feat’ indicates the dimension of each feature.
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researchers that pay attention to mining informative repre-
sentation in the multi-scale blocks of each image. For
instance, Rao et al. [98] used two different image segmenta-
tion types for extracting multi-scale blocks in each image.
With SIFT as the basic feature, they employed bag-of-
visual-words (BoVW) to encode each block, and then
adopted probabilistic latent semantic analysis to further
estimate the latent topic used as a mid-level representation.
This study reveals that the BoVW can well model the emo-
tional information of different local regions, and the features
directly extracted from the whole image may lead to wrong
classification results.

Based on different artistic principles, the combined emo-
tion representation named principles-of-art is proposed [9],
consisting of balance, emphasis, harmony, variety, grada-
tion, and movement. As a milestone of mid-level represen-
tation, principles-of-art features obtained the state-of-the-art
performance at that time. Without features of hundreds of
dimensions, three visual characteristics, including round-
ness, angularity, and visual complexity, are proposed
in [96], each of which is only a one-dimensional scalar. It
has been proved that these mid-level representations are
effective when used to recognize image emotions.

4.1.3 High-Level Features

High-level features refer to the semantic information of
images, which are easy to understand and can directly
evoke emotions in viewers. In [8], Machajdik and Hanbury
extracted content that draws the attention of the viewers
and has great effects on the emotions, including human
faces and skin. Facial expression, an important high-level
feature, always plays a decisive role in the process of evok-
ing emotions. It is usually classified following Ekman’s ‘Big
Six’ into six basic emotions, which include anger, disgust,
fear, happiness, sadness, and surprise. In [99], based on the
compositional features of image patches, Yang et al.
detected and analyzed the categories of facial expression.

As a milestone, a large visual sentiment ontology named
SentiBank is proposed by Borth et al. [10]. It contains 1,200
concepts, and each concept represents an ANP, like beautiful
flower, which provides powerful semantic representation.
First, based on 24 emotions defined in Plutchik’s theory, the
authors retrieved related adjectives and paired them with
frequently used nouns. The final remaining 1,200 ANPs
cover 178 adjectives and 313 nouns after filtering the redun-
dant ANPs. ANPs provide a novel solution to bridge the
“affective gap”, because they are easy to be mapped into
emotions. Later, as the extension of the SentiBank, a large-
scale multilingual visual sentiment ontology (MVSO) is pro-
posed in [78]. Particularly, there are 4,342 English ANPs in
MVSO. In [100], high-level concepts (HLCs), including
objects and places, are introduced to bridge the affective
gap between image content and evoked emotion. The HLCs
are explicitly derived from pre-trained CNNs, and subse-
quently, a linear admixture model is employed to capture
the relations between emotions and HLCs.

4.2 Deep Features

In recent years, with the rapid development of CNNs, learn-
ing-based features have shown superior performance in the

field of AICA. In the beginning, each region in an image is
treated equally in the learning process, and global features
are extracted for different tasks. Later, based on the theories
of psychology that emotional content is always involved in
some important regions, more and more studies have
focused on how to extract informative local features.

4.2.1 Global Features

Based on a deep CNNmodel, the classifiers of the 1,200 ANP
concepts are trained using Caffe. The newly trained deep
model named DeepSentiBank [103] performs better than
non-deep SentiBank on sentiment prediction. Benefiting
from transfer learning, Xu et al. [30] transferred the parame-
ters of a CNN trained on the large-scale dataset (ImageNet)
to the task of predicting sentiments. They extracted a 4096-
dimensional representation from the fully connected (FC)
layer FC7 and a 1000-dimensional representation from FC8,
respectively, as the image-level features. The experimental
results on Twitter II dataset demonstrate that the features
from FC7 exhibit an advantage in describing the emotional
content, because the activations from the FC7 layer can char-
acterizemore aspects of the image than those of FC8 layer.

The progressive CNN (PCNN) [77] is another milestone,
which is pre-trained using half-a-million weakly labeled
images from SentiBank. In the learning process, the training
instances that have large difference between the two polari-
ties are kept for the next round of training. With the iterative
training, the noisy data can be removed progressively, such
that the trained model is more robust when transferring to
those small-scale strongly labeled datasets. In [11], Chen
et al. explored two methods of obtaining image features.
One method uses off-the-shelf CNN (pre-trained on Image-
Net) features to train a one-versus-all linear SVM classifier.
The other method is to initialize the parameters of the pre-
trained AlexNet and replace the 1,000-way classification
layer with 8-way emotion category outputs. Subsequently,
the network can be trained end-to-end from raw images to
the specific emotion categories.

High-level semantic features may be not enough as emo-
tional representation in some images, especially in abstract
paintings. To capture different types of information in the
images, some studies integrate the multi-level deep features
generated in CNNs. Rao et al. [104] proposed an end-to-end
architecture that consists of three parallel neural networks,
including an AlexNet, an aesthetics CNN (A-CNN), and a
texture CNN (T-CNN). Before being fed into the network,
the images are segmented into different levels of patches.
Subsequently, the three sub-networks are exploited to
extract deep representations at three-levels, respectively,
i.e., image semantics, image aesthetics, and low-level visual
features. Zhu et al. [105] extracted the multi-level features
from different layers in CNNs. The output from each layer
is fed into a bidirectional gated recurrent unit (Bi-GRU)
model to exploit the dependency between them. Finally, the
features output from the two ends are concatenated as the
emotional representations. It is further considered that a
Gram matrix can capture powerful texture features [106];
hence, Yang et al. [107] proposed a sentiment representation
consisting of elements in Gram matrices from different
layers.
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4.2.2 Local Features

To emphasize the informative regions that contain attractive
emotional content, local features are drawing more and
more attention in recent studies. Considering fine-grained
details, the features of local patches are extracted at multiple
scales in [11]. Next, they are aggregated with the Fisher Vec-
tor for a more compact representation. In [108], apart from
investigating general emotion content using multiple
instance learning, Liu et al. also detected facial expression
and emotional objects to constitute the emotion factors
when computing visual saliency.

How to find the crucial emotion-related regions based on
an image-level label is a question worth exploring. Based on
the descriptive visual attributes, You et al. [109] adopted an
attentionmodel to discover the local regions that evoke senti-
ment in viewers, and then extracted the features of them to
improve the performance on visual sentiment analysis. Yang
et al. [110] utilized an off-the-shelf object detection tool to
generate bounding box candidates. After removing the
redundant proposals, the selected regions have a high proba-
bility of containing an object and accordingly obtain a high
sentiment score. Further, the features of selected regions and
the holistic images are jointly used for classification. How-
ever, the process of selecting proper image regions is time-
consuming in this work. To simplify and improve the step of
selecting informative regions, a unified CNN that contains a
classification branch and a detection branch is proposed
in [12]. In the detection branch, the soft sentimentmap is gen-
erated by combining all the class-wise feature responses. The
comprehensive localized information can be derived by cou-
pling the holistic feature and the sentiment map. Later
in [111], both spatial and channel-wise attended features are
incorporated into the final representation for visual emotion
regression in VAD space. To effectively utilize various infor-
mation from multiple layers, Rao et al. [112] proposed a
multi-level region-based CNN framework to find the emo-
tional response of the local regions. First, the feature pyramid
network (FPN) is employed to extractmulti-level deep repre-
sentations. Following this, the regions of interest (ROIs) are
detected based on the region proposal method, and their fea-
tures in multiple levels are concatenated for image emotion
classification. The work has achieved the best classification
performance on several benchmark datasets up to now. To
obtain an informative feature embedding for affective image
retrieval, Yao et al. [113] conducted polarity- and emotion-
specific attention on the lower layers and higher layers,
respectively. The attended features from different layers are
integrated by cross-level bilinear pooling to generate the
final representation.

4.2.3 Comparison Between Local and Global Features

To fairly evaluate the effectiveness of local features and
global features, we conduct the comparison experiments in
Table 5 based on WSCNet [12] and PDANet [111], which
are the state-of-the-art methods that consider local regions
by combining both local features and global features into
the final representation. We conduct the comparison experi-
ments for local, global, and combined local-global features
for the two representative methods. In the last row of the
table, we provide the results of average rank, which

demonstrate that the global features outperform the local
features in general. Besides, for most datasets, the results
using both local and global features are better than that
using only one type of features. It is mainly because both
local and global features can determine the emotions to
some extent, and some local regions may generate emo-
tional prioritization effect rather than sole effect. Therefore,
local features should be effectively integrated with global
features for the more discriminative representations [115].

4.3 Quantitative Feature Comparison

In Table 6, we evaluate the performance of different features
based on different classifiers. The results of six widely-used
datasets are reported. Note that FI is regarded as a dataset
that simultaneously has two sentiment categories and eight
emotion categories. The hand-crafted features include
PAEF [9], Sun attribute [7], and SentiBank [10], while off-
the-shelf deep features are extracted from MVSO [78] and
pre-trained VGG-16 [114]. Each type of feature is used to
train three classifiers, including kNN, Naive Bayes (NB),
and support vector machine (SVM). In Sun attribute, we
extract the four types of features, including Gist, HOG 2�2,
self-similarity, and geometric context color histogram fea-
tures. In pre-trained VGG-16, we extract 4096-dimensional
features from the last layer. Note that the features of Sun
attribute and pre-trained VGG-16 are both reduced to 256-
dimension. We report the average results of different classi-
fiers for the same feature to fairly investigate the representa-
tion ability of each feature. From the results of the same
classifiers and the average results of different classifiers, it is
observed that deep features obtain the best performance,
which is also demonstrated in traditional computer vision
tasks, such as image classification and object detection.
Besides, high-level features (e.g., SentiBank) perform better
than middle-level features (e.g., PAEF) in most cases. It is
mainly because high-level features are more related to the
emotional semantics. For example, SentiBank is constructed
based on ANPs, where adjective can be better mapped into
sentiment.

5 LEARNING METHODS FOR DIFFERENT TASKS

In this section, we review the learning methods of recent
two decades on AICA, in which significant development
has been obtained on different AICA tasks, including

TABLE 5
Experimental Comparison Between Local and Global Features

Measured by Average Classification Accuracy and Rank

‘L’ denotes the local features, and ‘G’ denotes the global features. FI2 denotes
the binary sentiment classification results on the FI dataset, and FI8 denotes
the classification results of eight emotions on FI (the same below).
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dominant emotion recognition, personalized emotion pre-
diction, emotion distribution learning, and learning from
noisy data or few labels.

5.1 Dominant Emotion Recognition

5.1.1 Traditional Methods

In the early years, researchers mainly used SVM to classify
images based on various hand-crafted emotional features.
Machajdik and Hanbury [8] combined the features on dif-
ferent levels to generate the final emotion representation.
The experiments are conducted using SVMs on three small
datasets using a 5-fold cross validation, and each class is
separated against the others in rotation. The results are
reported by true positive rate per class. The 1,200 ANPs con-
cept detectors are trained by SVMs, resulting in Senti-
Bank [10], which are the crucial high-level cues for
sentiment prediction due to strong co-occurrence relation
with sentiments. As the extensions of SentiBank [10], Deep-
SentiBank [103] and MVSO [78] train the detectors for 2,089
and 4,342 English ANPs, respectively, using existing deep
architecture like CaffeNet, and then, the sentiment polarity
can be inferred. Using text parsing technology and lexicon-
based sentiment analysis tools, the adjectives can be
mapped into “positive” or “negative”; likewise, the polarity
of an image is derived. Even after the emergence of CNNs,
SVMs also serve as an essential classifier. For instance,
Ahsan et al. [83] detected event concepts through a trained
CNN model and mapped the visual attributes into specific
sentiments based on an SVM classifier. Besides, hand-
crafted art features and CNN features have been combined
to generate final representations [116], which are then input
into SVMs for classification.

Inferring the evoked emotion from art paintings has been
an interesting research problem in recent years. Due to the
abstract style, recognizing the emotions of art paintings
becomes a challenging task. Later, considering that an
image may be represented in various feature spaces, multi-
ple kernel learning [117] is employed to capture the differ-
ent emotional patterns of abstract art. In the process, the
weights of different features can be adjusted automatically,
so that the learned feature combination is the most suitable
one. Intuitively, the emotion of paintings is relevant to vari-
ous characteristics like the painting technique. Therefore,
non-linear matrix completion (NLMC) [76] is introduced as
a transductive classifier to model the relations between dif-
ferent latent variables. This work well imitates the process

of inferring emotion from art paintings. To tackle the scar-
city of well-labeled paintings, Lu et al. [118] proposed an
adaptive learning strategy to use the labeled photographs
and unlabeled paintings to identify the emotions of paint-
ings. The differences between the two types of images are
considered in the learning process.

For the same classifier, we compute the average perfor-
mance of different features as shown in Table 7. Generally,
SVM obtains the best performance in the three classifiers,
while kNN performs worse than the others except the
results on FI8.

5.1.2 Learning-Based Methods

Benefiting from the strong ability of CNNs to extract fea-
tures, an increasing number of studies [12], [120], [121],
[122] design various learning-based methods to recognize
image emotions. In the early studies, a CNN is often directly
used as the off-the-shelf tool without any modification. For
example, Xu et al. [30] trained two classifiers following two
fully connected (FC) layers (FC7 and FC8) of an existing
basic network (AlexNet), respectively. The experimental
results show that the classifier after the FC7 (0.649) layer
performs better than that after the FC8 (0.615). It demon-
strates that the 7th layer of CNN characterizes more senti-
ment information of image than object detection scores in
the 8th layer. To further gain insight about the influence of
CNN patterns on visual sentiment analysis, Campos et al.
[121], [123] gave a layer-by-layer analysis of a fine-tuned
CaffeNet based on both softmax and SVM classifiers.

Personalized Network. With the development of CNNs,
researchers have built novel networks for better emotion
recognition performance, guided by the theories of art and

TABLE 6
Experimental Results of Different Features on Widely-Used Datasets

Dataset PAEF [9] Sun attribute [7] SentiBank [10] MVSO [78] P-VGG [114]

kNN NB SVM Avg kNN NB SVM Avg kNN NB SVM Avg kNN NB SVM Avg kNN NB SVM Avg

Emotion6 0.246 0.288 0.359 0.298 0.268 0.323 0.306 0.299 0.283 0.290 0.342 0.305 0.431 0.460 0.508 0.466 0.429 0.453 0.510 0.464

FI2 0.687 0.733 0.730 0.717 0.698 0.697 0.739 0.711 0.603 0.815 0.815 0.744 0.797 0.706 0.831 0.778 0.820 0.737 0.851 0.803

FI8 0.286 0.299 0.343 0.309 0.300 0.271 0.372 0.314 0.445 0.288 0.506 0.413 0.529 0.389 0.600 0.506 0.556 0.497 0.630 0.561

Flickr 0.627 0.640 0.674 0.647 0.634 0.639 0.683 0.652 0.581 0.608 0.694 0.628 0.697 0.699 0.771 0.722 0.707 0.699 0.777 0.728

Instagram 0.556 0.589 0.638 0.594 0.561 0.586 0.631 0.593 0.584 0.576 0.662 0.607 0.667 0.717 0.750 0.711 0.701 0.712 0.772 0.728

Twitter I 0.593 0.633 0.675 0.634 0.565 0.615 0.643 0.608 0.526 0.564 0.602 0.564 0.696 0.606 0.775 0.692 0.674 0.729 0.741 0.715

Twitter II 0.659 0.777 0.777 0.738 0.672 0.606 0.777 0.685 0.632 0.661 0.777 0.690 0.651 0.777 0.777 0.735 0.631 0.643 0.792 0.689

For each feature, the average results of different classifiers are also reported.

TABLE 7
Average Results of Different Features (PAEF [119], Sun [7],

SentiBank [10], MVSO [78], Pre-Trained VGG-16 [114]) for the
Same Classifier

Dataset kNN_Avg NB_Avg SVM_Avg

Emotion6 0.331 0.363 0.405
FI2 0.721 0.738 0.793
FI8 0.423 0.349 0.490
Flickr 0.649 0.657 0.720
Instagram 0.614 0.636 0.691
Twitter I 0.611 0.629 0.687
Twitter II 0.649 0.693 0.780
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psychology. In [124], Wang et al. proposed a deep coupled
adjective and noun neural network to recognize positive
and negative sentiment from images. The architecture con-
sisting of two parallel sub-networks (A-net and N-net) can
jointly predict the adjectives and nouns of ANPs. When
ANP labels are unavailable, a mutual supervision is pro-
posed to predict the expected output of each sub-network
using a transition matrix that captures the relation between
noun and adjective.

Multi-Level Features. To fully leverage the multi-scale fea-
tures of image as in [104], Zhu et al. [105] integrated the
CNN and RNN architectures. Specifically, a CNN is used to
extract features from different levels, and then, a bidirec-
tional gated recurrent unit (Bi-GRU) captures the depen-
dency among them. Finally, the two outputs from Bi-GRU
are concatenated for emotion classification. In the learning
process, softmax loss and contrastive loss are both used for
training the model. With the contrastive loss, the features
extracted from the images of the same category are enforced
to be close to each other, while the features extracted from
the images of different categories are enforced to be far
away with each other. This study is the first to model the
relations between features on different levels dynamically.

Emotional Polarities. In Mikels’ eight basic emotions, there
exist two polarities: positive and negative. The emotions in
the same polarity are closer to each other—hence, they are
highly related. This characteristic of emotion has been
focused upon in several studies. Based on the triplet
loss [125], Yang et al. [107] took the characteristic of polarity
into account and designed a sentiment metric loss, in which
the quadruplet {anchor, positive, related, negative} is con-
structed for learning, where related denotes the sample that
belongs to the same polarity with the anchor but different
categories. By jointly optimizing softmax loss and sentiment
metric loss, the architecture can be used for both classifica-
tion and retrieval tasks. He and Zhang [126] designed a uni-
fied architecture consisting of two parts: a sub-network for
sentiment polarity classification and a sub-network for spe-
cific emotion classification. With the assisted learning strat-
egy, the results of the polarity can be used as important
prior knowledge for more fine-grained emotion analysis.
Yao et al. [113] designed emotion-pair loss by considering
hierarchical structure in emotions. Based on the metric
learning strategy, the features of the samples from the same
polarity will be closer to each other in embedding space. It
is beneficial to rank the images according to the emotional
similarity with the given image.

Local Information. In complex images, some informative
regions may become crucial elements to determine the
evoked dominant emotion [85], [127]. Therefore, the studies
by detecting regions for better recognition performance
emerge rapidly. Sun et al. [110], [128] exploited an off-the-
shelf objectness tool to generate proposals, and then com-
puted the object and sentiment scores to select top regions
from the masses of candidates. The selected regions are
aggregated with the whole image for more discriminative
representation used in emotion classification. Based
on [110], Wu et al. [129] employed salient object detection
model to capture informative regions, and then fed both
sub-images and entire images into the network for extract-
ing local and global features. With the same backbone

(VGG-16), [129] outperforms [110] on all the commonly
used datasets. It is reasonable to infer that [129] captures
more discriminative information by inputting the cropped
original images into network. Obviously, the above meth-
ods are time- and computing-consuming when selecting
candidates. Later, WSCNet [12] is developed to automati-
cally generate an attention map in a single shot based on the
response on feature maps, saving considerable amounts of
time and computational resources. Note that each attention
map is obtained by computing the weighted sum of the acti-
vation for each class. In [130], a novel fourth channel, named
focal channel, is added in neural networks by taking the
focal object mask of the image or the saliency map as input.
By encoding the local information for sentiment representa-
tion, it is shown that negative sentiment is mainly evoked
by the focal region and hardly influenced by context,
whereas positive sentiment is decided by both focal region
and context. A Sentiment Network with visual Attention
(SentiNet-A) is proposed in [131], where the attention distri-
butions of spatial regions are generated. The saliency map
is then derived from a multi-scale fully convolutional net-
work (FCN) to refine the attention distribution. Recently,
how to capture the emotional relation between different
regions is a hot topic. Zhang et al. [132] modeled the correla-
tion between object semantics in different image regions to
infer the image sentiment based on Bayesian networks. A
multi-attentive pyramidal model is proposed in [133] to
extract local features at various scales, and then, a self-atten-
tion mechanism is employed to mine the relations between
features of different regions.

Knowledge of Other Fields. Studying emotion recognition
can also utilize knowledge from other fields. Considering
the correlation between aesthetics and emotion of images,
Yu et al. [134] designed a novel unified aesthetics-emotion
hybrid network (AEN) to simultaneously conduct image
aesthetic assessment and emotion recognition. Inspired by
the emotion of the generation process in brain, Zhang et al.
[135] developed a multi-subnet neural network to simulate
the generation of specific emotional signals and the process
of signal suppression in brain neurons.

Quantitative Comparison of Representative Deep Methods. As
shown in Table 8, we conduct experiments to fairly compare
four representative learning-based methods, including
DCNN [30], RCA [107], WSCNet [12], and PDANet [111].
We replace the original backbone with four different back-
bones to evaluate the effectiveness and robustness, includ-
ing AlexNet [136], VGG-16 [114], ResNet-50 [18], and
Inception-v3 [137]. It is observed that the robustness of dif-
ferent methods is different. Compared to WSCNet and
PDANet, RCA is more robust when using different architec-
tures as backbones, because the results of RCA on each
dataset fluctuate less than other methods, especially on
Flickr and Emotion6. In RCA, the final image representation
contains features from multiple layers, leading to richer
information, of which distinctive ability does not decrease
dramatically when using shallower networks. By contrast,
the methods that are only based on features of the final layer
are more sensitive to the depth of the used backbones. Gen-
erally, the results of recent studies, such as RCA, WSCNet,
and PDANet, are better than that of DCNN, which does not
contain specialized components designed for emotion
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classification. Under the common experimental settings,
including the same input size, initialization, backbone, etc.,
the overall results of RCA, WSCNet, and PDANet do not
have distinct disparity. For different datasets, the methods
that obtain the best performance are different. For example,
for one small-scale dataset Twitter II (only 603 images), the
methods (WSCNet and PDANet) considering local informa-
tive features perform better than others.

5.2 Personalized Emotion Prediction

Yang et al. [31] first proposed to predict emotion of social
images for individuals based on user interest and social
influence. The user interest is modeled by considering both
text and images, the emotions of which are predicted by
constructing a personalized dictionary and clustering basic
color features. The social influence is measured by the emo-
tion similarity of different users towards the same micro-
blog. The weights of user interest and social influence are
obtained by mining users’ historical behaviors. Later, Rui
et al. extended the weighting strategy with a probabilistic
graphical model [138]. Latent from the user’s historical
behaviors, a set of parameters in the graph model are used
to estimate the importance of content and influence. How-
ever, there are some limitations of these methods. First, the
extracted visual features are very simple, which cannot well
reflect the visual content. Second, several important factors
are not considered, such as the temporal evolution. Third,
the higher-order correlations among users and images are
not well modeled.

In [15], [139], Zhao et al. made several improvements to
address these issues when predicting the personalized emo-
tions (see Fig. 4b) of a specified user after viewing an image,
associated with online social networks. Different types of
factors that may influence the emotion perception are con-
sidered: the images’ visual content, the social context
related to the corresponding users, the emotions’ temporal
evolution, and the images’ location information. Rolling
multi-task hypergraph learning is presented to jointly com-
bine these factors. Each hypergraph vertex is a compound
triple ðu; x; SÞ, where u represents the user, x and S are the
current image and the recent past images, termed as ‘target
image’ and ‘history image set’, respectively. Based on the 3
vertex components, different types of hyperedges are con-
structed, including target image centric, history image set
centric, and user centric hyperedges. Visual features (Gist,
Elements, Attributes, Principles, ANP, and Expressions) in

both the target image and the history image set are extracted
to represent visual content. User relationship is exploited
from the user component to take social context into account.
Past emotion is inferred from the history image set to reveal
temporal evolution. Location is embedded in both the target
image and the history image set. Semi-supervised learning
is then conducted on the multi-task hypergraphs to classify
personalized emotions for multiple users simultaneously.

5.3 Emotion Distribution Learning

Label distribution learning (LDL) [140] is used to model the
relative importance of each category for an image. The sum
of the probability on each label in discrete space is 1. It is
usually used to solve the ambiguity of emotion in discrete
label space.

Peng et al. [14] constructed the Emotion6 dataset that is
annotated with probability distribution. SVR, CNN, and
CNN regression (CNNR) are employed as the emotion
regression model. Particularly, different SVR and CNNR
models are trained for each category, while the CNN is
trained for all categories by changing the number of output
neurons to the number of emotion categories. Zhao et al. [32],
[141] modeled the emotion distribution prediction as a
shared sparse learning (SSL) problem. The input is the com-
bination of different types of features, and the objective is
iteratively optimized by reweighted least squares. Later
in [61], the weighted multi-modal shared sparse learning
(WMMSSL) is proposed, inwhich theweight of different fea-
tures can be learned automatically. Based on the conditional
probability neutral network (CPNN), in [140], BCPNN [16] is
proposed by representing the image label with binary encod-
ing rather than the general signless integers. Besides,
ACPNN is developed based on BCPNN by adding noises to
the ground truth label. With this strategy, the emotion distri-
bution is augmented, which benefits training more robust
models. Zhao et al. [142] proposed a Weighted Multi-Modal
Conditional Probability Neural Network (WMMCPNN) to
explore the optimal combination coefficients of different
types of features. In [143], Yang et al. designed a unified
framework to optimize the Kullback-Leibler (KL) loss and
softmax loss, simultaneously. Besides, considering the lack
of manually annotated emotion distribution in some data-
sets, a scheme that converts the single emotion into a proba-
bility distribution is proposed in this study.

Considering the co-occurrence and mutual exclusion of
some emotions, it is important to model the relation of

TABLE 8
Experimental Results of Learning-Based Methods on Widely-Used Datasets

Dataset DCNN [30] RCA [107] WSCNet [12] PDANet [111]

Alex VGG Res Inc Avg Alex VGG Res Inc Avg Alex VGG Res Inc Avg Alex VGG Res Inc Avg

Emotion6 0.489 0.483 0.532 0.546 0.513 0.512 0.516 0.546 0.559 0.533 0.463 0.514 0.551 0.495 0.506 0.488 0.517 0.569 0.487 0.515

FI2 0.828 0.868 0.882 0.885 0.866 0.830 0.870 0.872 0.887 0.865 0.828 0.868 0.888 0.875 0.865 0.828 0.867 0.888 0.881 0.866

FI8 0.576 0.614 0.660 0.668 0.630 0.559 0.641 0.668 0.678 0.637 0.558 0.615 0.679 0.668 0.630 0.589 0.664 0.661 0.663 0.644

Flickr 0.737 0.770 0.760 0.784 0.763 0.786 0.813 0.800 0.801 0.800 0.776 0.783 0.811 0.786 0.789 0.779 0.794 0.780 0.793 0.787

Instagram 0.715 0.770 0.780 0.794 0.765 0.759 0.803 0.784 0.788 0.784 0.752 0.785 0.797 0.777 0.778 0.746 0.798 0.784 0.785 0.778

Twitter I 0.791 0.811 0.829 0.810 0.810 0.802 0.834 0.825 0.821 0.821 0.772 0.805 0.826 0.814 0.804 0.782 0.698 0.833 0.846 0.790

Twitter II 0.714 0.724 0.745 0.784 0.742 0.656 0.648 0.737 0.774 0.704 0.789 0.807 0.812 0.785 0.798 0.774 0.777 0.777 0.799 0.782

The backbone of these methods is replaced with different architectures, including AlexNet (Alex), VGG-16 (VGG), ResNet-50 (Res), and Inception-v3 (Inc). The
average results of different backbones are reported.
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different emotional labels when predicting the probability
labels. He and Jin [144] used Graph Convolutional Net-
works (GCN) to model the label relationship for label distri-
bution prediction. In detail, the GloVe-300 word
embeddings of emotions are input into GCN as nodes, and
the relation of different labels is computed using the proba-
bility of co-occurrence of two emotions. Liu et al. [145] inte-
grated low-rank and inverse-covariance regularization
terms into one framework for emotion distribution learning.
The low-rank regularization term is used to learn low-rank
structured embedding features, while the inverse-covari-
ance regularization term can ensure the structured sparsity
of regression coefficients. To fully employ the polarity and
character of the intensity in emotions, structured and sparse
annotations are leveraged to learn an emotion label distribu-
tion in [146].

In the continuous emotion space, Zhao et al. [17] modeled
the continuous distribution with a Gaussian mixture model,
in which the parameters can be estimated by the expecta-
tion-maximization algorithm. Shared Sparse Regression
(SSR) is introduced as the learning model by assuming that
the test feature and test parameters can be linearly repre-
sented by the training features and training parameters but
with shared coefficients. To explore the task relatedness,
multi-task SSR is further proposed to simultaneously pre-
dict the parameters of different test images by using proper
shared information across tasks.

5.4 Learning From Noisy Data or Few Labels

Few-Shot or Zero-Shot Learning. As stated in Section 1.1, few/
zero shot learning and unsupervised/weakly supervised
learning are two possible solutions to address the label
absence challenge. Few/zero shot learning refers to a spe-
cific machine learning, where a model is learned based on
very few or even no labeled examples [38]. Although
humans can learn through only a small number of samples,
it is difficult for machine to do so. Conventional methods
usually construct a shared space for both seen and unseen
classes. For seen classes, the space is learned based on the
correspondence between the seen images and their labels.
Relying on the side information (e.g., attributes), the unseen
classes are first related to the seen classes and then mapped
to the common space based on the cross-modality similarity
between visual features and class semantic representations.
The existence of the affective gap makes it difficult to com-
pute this similarity.

Wang et al. [147] proposed an emotion navigation frame-
work using auxiliary noisy data and employed the few-shot
precise samples as the prototype center to guide noisy data
clustering. Zhan et al. [38] proposed an affective structural
embedding framework, which constructs an intermediate
embedding space using ANP features for zero-shot emotion
recognition. In addition, an affective adversarial constraint
is introduced to select the embedding space that simulta-
neously preserves the affective structural information and
retains the discriminative capacity.

Unsupervised/Weakly-Supervised Learning. Unsupervised
learning aims to find previously unknown patterns in a
dataset without pre-existing labels. Two main methods are
cluster analysis and principal component analysis. How to

automatically determine the number of clusters is a key
challenge in clustering. Differently, Wang et al. [148]
exploited the relations among visual content and relevant
textual information for unsupervised sentiment analysis of
social images. This method relies on the accompanying text
of social images. On the one hand, the text may be incom-
plete and noisy. On the other hand, there may be no avail-
able text. In such cases, how to conduct unsupervised
analysis is worth studying.

For social images, a more practical scenario is that they
are weakly and noisily labeled [19], [102], [149], [150]. Con-
sidering that the images of the VSO dataset are weakly
labeled with noises, Wang et al. [102] estimated the noise
matrix to reweight the softmax loss that can compensate the
degeneration of classification performance resulting from
the noisy labels. Retrained by reweighting the loss, the
learned model is more discriminative for emotional images.
Wu et al. proposed to refine the weakly labeled dataset
based on the sentiments of ANPs and provided tags [149].
The images are removed if the sentiments of ANPs and tags
are contradicting each other and if the numbers of positive
tags and negative tags are equal. The remaining images are
relabeled with the dominant sentiment of the tags. Using
the refined dataset, a better performance can be obtained.
Chen et al. employed a probabilistic graphical model to filter
out the label noise [150]. Wei et al. [19] proposed to train a
joint text and visual embedding to reduce noise in the webly
annotated tags by text-based distillation. Designing an effec-
tive strategy that can better refine the dataset or filter the
label noise is expected to improve the performance.

Domain Adaptation/Generalization. Domain adaptation
studies how to transfer the models trained on a labeled
source domain to another sparsely labeled or unlabeled tar-
get domain. One direct solution is to translate the source
images to an intermediate domain that is indistinguishable
from the target images using GANs [151], [152], [153].
Meanwhile, the source labels should be preserved. Some
existing unsupervised domain adaptation methods on
AICA are based on this intuition. Zhao et al. [35] studied the
domain adaptation problem in emotion distribution learn-
ing. They develop an adversarial model, termed Emotion-
GAN, by alternately optimizing the GAN loss, semantic
consistency loss, and regression loss. The semantic consis-
tency loss guarantees that the translated intermediate
images preserve the source labels. Since traditional GANs
are unstable and prone to failure [152], the cycle-consistent
GAN (CycleGAN) was designed. Based on CycleGAN,
Zhao et al. enforced semantic consistency when adapting
the dominant emotions without requiring aligned image
pairs [36], [37]. He and Ding proposed a discrepancy-based
domain adaptation method [154]. Both marginal and joint
domain distribution discrepancies at fully-connected layers
are reduced by minimizing the joint maximum mean dis-
crepancy. Without generating an intermediate domain, this
method aims to extract more transferable features.

All the above methods focus on a single-source scenario.
However, in practice, the labeled data may be collected
from multiple sources with different distributions. Simply
combining the multiple sources into one source and per-
forming single-source domain adaptation may lead to sub-
optimal solutions. In [155], Lin et al. studied multi-source
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domain adaptation for binary sentiment classification of
images. Specifically, a multi-source sentiment generative
adversarial network (MSGAN) is designed to find a unified
sentiment latent space where the source images and target
images share a similar distribution. MSGAN includes three
pipelines: image reconstruction, image translation, and
cycle reconstruction. The results demonstrate that exploring
the complementarity of multiple sources can improve the
adaptation performance to a large margin as compared to
best single-source adaptation methods.

Differently, Panda et al. [22] studied the domain generali-
zation problem of AICA to overcome dataset bias. A
weakly-labeled large-scale emotion dataset is constructed
by collecting images from a stock website to cover a wide
variety of emotion concepts. A simple yet effective curricu-
lum guided training strategy is proposed to learn discrimi-
native emotion features, which demonstrate better
generalization ability than the existing datasets.

6 AICA BASED APPLICATIONS

With the booming development of AICA, the related appli-
cation has been or will be on the agenda in different direc-
tions, including opinion mining, business intelligence,
psychological health, and entertainment assistant, to name
but a few in more detail.

6.1 Opinion Mining

Nowadays, an increasing number of people use images to
express their viewpoints or attitudes towards some events.
Based on the analysis of these shared images, we can infer
the emotions of the different users, including uploaders and
commentators. Furthermore, we can conjecture their atti-
tudes towards the specific events or products. In [15], the
different types of factors, including visual content, social
context, temporal evolution and location influence, are
modeled using a hypergraph model to iteratively optimize
the personal social image emotion prediction. Furthermore,
various virtual groups are formed according to the interests
or backgrounds of users. Analyzing group-based emotions
will contribute to predicting the tendency of the society.
Based on the above technologies, we can imagine that the
understanding of social image emotion can be used in pub-
lic opinion analysis and related applications.

In special domains like product comments, the experi-
ence of users has been investigated and evaluated based on
emotions from uploaded images. In [156], Truong and
Lauw conducted visual sentiment analysis for better under-
standing of review images about different products, serv-
ices, and venues. In the process, both user and items factors
are taken into account. Ye et al. [157] jointly employed a
visual and textual classification to analyze the sentiment of
the product reviews. Besides, a dataset named Product
Reviewes-150K (PR-150K) is constructed. In [158], Hassan
et al. analyzed the sentiments evoked from disaster-related
images by taking into account people’s opinions, attitudes,
feelings, and emotions. The study sets a baseline for the
future research in disaster-related images sentiment analy-
sis. Therefore, it is significant to mine the positive or nega-
tive aspects for opinion of the users by analyzing the
emotions of related images.

6.2 Psychological Health

With the popularity of the social media, people share their
mood on the Internet rather than with their real friends. For
a user that shares negative information continuously, it is
necessary to further track her/his mental status to prevent
the occurance of psychological illness and even suicide.
Guntuku et al. [159] revealed how a twitter profile and post
images reflect depression and anxiety. In [160], an auto-
matic stress detection model is proposed for social web
users by analyzing the emotional content of multi-modal
microblog data. Based on the model, we can further design
subsequent decompressing services for users, including
playing some smoothing music, playing some funny videos,
and providing some forms of exercises, etc.

In the field of psychology, affective images are employed
to conduct some studies. For instance, IAPS [28] is a data-
base of images constructed to provide a standardized set to
evoke a target emotion in people for studying psychological
status. Each image has listed the average ratings of the eli-
cited emotions, and these ratings can be used for various
research directions in psychological theories. In [161], a new
image system named Tsinghua psychological image system
(ThuPIS) is built based on the Minnesota multiphasic per-
sonality inventory (MMPI) [162], which is a famous person-
ality diagnosis tool for clinical mental health. The system
can be applied to support the new psychological test for
monitoring the mental health of humans.

6.3 Business Intelligence

Images play an essential role in conveying the business
information, so selecting the images with proper emotions
can benefit the development of a business. For example,
most advertisements are presented using visual content to
evoke strong emotional stimulus in viewers. Consumer
research [163] has proven that emotions can affect the pro-
cess of decision making. A well-designed advertisement
can attract people’s attention and evoke positive emotions
in viewers, so that a desire of purchasing will be produced
when viewing an accordingly tailored advertisement. Hol-
brook and O’Shaughnessy [164] investigated the role of
emotion in advertising. Specifically, they distinguish emo-
tion from other types of consumer responses, and study the
emotion generating process from the emotional content in
the advertisements. Besides, suggestions are put forward
for the design of advertisement considering emotional ele-
ments in the future. Poels and Dewitte [165] reviewed and
updated the measuring methods for emotions in advertis-
ing, and further discuss their applicability. Finally, the influ-
ence of emotions on the effectiveness of advertising is
investigated.

In the filed of tourism, emotion is an important element
that cannot be ignored for evaluating the overall experience of
a trip [166]. By analyzing the uploaded travel photos in the
social networks, the relations among motivation, image
dimension, and emotional qualities of places are explored
in [167]. The paper reveals that the natural resources, includ-
ing “flora and fauna”, “countryside”, “beaches”, etc., are
always associated with the feelings of “arousing” and
“pleasant” for the specific destination. Besides, the travel pho-
tos taken in a long shot, at eye-level, with stark density level
can elicit happiness feelings. These findings can guide to
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exhibit themore attractive travel photos on some specific plat-
forms, so as to initiate successful marketing efforts and pro-
mote the booming of tourism. In [168], a survey is conducted
on the emotional experience of tourists by distributing self-
administered questionnaires. The emotion feedback (arousal
and pleasure) for each destination is plotted on a correspond-
ing two-dimensional grid. Hosany and Prayag [169] empiri-
cally investigated the patterns of emotional response from
tourists and discussed the relationship between these emo-
tional patterns and the consumption satisfaction. Five differ-
ent emotional response patterns (delighted, unemotional,
negative, mixed, and passionate) are derived by cluster analysis
based on a four-dimensional emotional space defined by love,
surprise, joy, and unpleasantness. It is reported that these five
patterns are different in the satisfaction level and the intention
of recommendation. In the future, based on a more fine-
grained emotion analysis, we can construct personalized des-
tination recommendation systems for users who intend to
have different travel experiences automatically.

6.4 Entertainment Assistant

Nowadays, the standard of entertainment has treated the
emotion as a crucial element that can decide the entertain-
ment experience [170]. Simultaneously, the emotion can
also be used to evaluate the experience of entertainment.
For instance, emotions can be regarded as the medium that
links different modalities of data, such as image and music.
In [171], an emotion-driven cross-media retrieval system is
designed based on differential and evolutionary-support
vector machine (DE-SVM). The system can achieve the
retrieval between Chinese folk music and Chinese folk
image based on their involved emotions. Chen et al. [172]
and Zhao et al. [173] designed a system that computes the
emotional similarity between music and images. With this
system, users can generate the mood-aware music slide
shows from their personal album photos.

Emotions in comics play a crucial role in attracting people.
The reason why Indonesian readers widely accept Japanese
comics has been investigated in [174]. The report indicates
that the comics are not only an entertainment for them, but
also a significant life experience, in which emotion is an
important element. Therefore, we should take into account
the evoked emotions when measuring comics. In [82], a
large-scale comics dataset is constructed, inwhich the images
are labeled with the emotions defined in Mikel’s wheel. With
more attention paid to AICA in the entertainment domain,
we can establish a conversation with chatbots based on vari-
ous types of images rather than only based on text.

7 FUTURE DIRECTIONS

Although remarkable progress has been made on affective
image content analysis (AICA), there are still several open
issues and directions that are worth investigating by jointly
considering the efforts from different disciplines, such as
psychology, cognitive science, multimedia, and machine
learning.

7.1 Image Content and Context Understanding

As emotions may be directly evoked by the image content in
viewers, accurately analyzing what is contained in an image

can significantly improve the performance of AICA. As
stated in Section 4, there are different kinds of emotion fea-
tures. Although the deep ones generally outperform the
hand-crafted ones, it is unclear whether combining hand-
crafted ones with deep ones can boost the performance. If
yes, how to effectively fuse them? Further, the correlation
between deep features and specific emotions is unclear,
while the hand-crafted features—especially mid-level and
high-level ones—are more understandable. Using hand-
crafted features to guide the generation of interpretable
deep ones is an interesting topic. Sometimes, we even need
subtle analysis of image contents. For example, we may feel
“happy” about beautiful flowers; but, if the flowers are
placed in a funeral, we possibly feel “sad”. If an image is
about the laugh of a lovely child, it is more likely that we
feel “amused”; but if it is about the laugh of a known evil
ruler or criminal, we may feel “angry”. Constructing a
large-scale repository and collecting sufficient correspond-
ing images can help to solve this problem. As shown in
Fig. 3, the context of an image is also very important. Multi-
modal emotion recognition would make more sense, such
as textual-visual data [150], [175] and audio-visual
data [176]. One key challenge is how to fuse the data of dif-
ferent modalities.

7.2 Viewer Contextual and Prior Knowledge
Modeling

The contextual information of a viewer watching images
can significantly influence the emotion perception. The
same viewer can experience different emotions for the same
image depending on the context, such as climate, time, and
social context [15]. Incorporating these important contextual
factors can be expected to boost the performance. Using
probabilistic graph or hypergraph models to represent the
complex correlations of different factors is demonstrated to
be feasible [15], [79], [177]. We may further try to model
these factors by more recent graph convolutional net-
works [178] and hypergraph neural networks [179].

The prior knowledge of viewers, such as gender and per-
sonality, may also influence the emotion perception. For
example, an optimistic viewer and a pessimistic viewer
may have totally different emotions about the same image.
Wu et al. investigate the influence of user demographics,
including gender, marital status, and occupation, as related
to the emotion perception of social images [180], [181].
Besides the visual content, temporal correlation, and social
correlation, user demographics are also incorporated as fac-
tor functions in a factor graph model. The results show that
user demographics can indeed improve the overall emotion
classification performance. However, the collected prior
knowledge on social networks may be inaccurate. How to
automatically filter the noisy ones has not been investigated.

7.3 Learning From Noisy Data or Few Labels

Few-Shot or Zero-Shot Learning. There are some limitations of
current few-shot/zero-shot learning methods for
AICA [38], [147]. First, not all seen images are helpful in
generating the embedding space. How to automatically
select the representative images to generate better embed-
ding space is unclear. Second, the embedding process may
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result in information loss, and the cross-modality similarity
cannot make full use of the data distribution. We may con-
sider synthesizing reliable samples for the unseen classes
based on the estimated distribution. With the success of
Generative Adversarial Networks (GANs) [151], such an
idea would bear genuine potential.

Domain Adaptation/Generalization. In practice, we might
have a few labeled target images. In such cases, the domain
adaptation task becomes a semi-supervised scenario. One
interesting problem is how many labeled target images are
required at least to achieve or even outperform the results
fully trained on the target domain. Besides the semi-super-
vised domain adaptation, some other challenging problems
include heterogeneous domain adaptation where the label
space is different between the source and target domains,
open set domain adaptation where both source and target
domains contain images that do not belong to the classes of
interest, and category shift domain adaptation where the
categories from different sources might be different.

While the target images (although without labels) are
available in domain adaptation, i.e., the target images are
accessible during the training process, domain generaliza-
tion learns a model without accessing any target image [182].
To enrich the generalization ability, one possible solution is
to randomize the labeled source images to a sufficient num-
ber of domains in the training stage using domain randomi-
zation [183], and then, the target domain belongs to the
randomized domains to a large extent and thus, the models
trained on the randomized domain can well adapt to the
target domain.

7.4 Group Emotion Clustering

Simply recognizing the dominant emotion for an image is
too generic, while predicting personalized emotion for each
user is too specific. Since some groups or cliques of users,
who share similar tastes or interests and have similar back-
ground, are more likely to respond similarly to the same
image, it would make more sense to predict emotions for
these groups or cliques. Analyzing the user profiles pro-
vided by each individual to classify users into different
types of groups based on gender, backgrounds, tastes, inter-
ests, and so on may provide a feasible solution.

Current research on group emotion mainly focuses on
recognizing the emotions of the groups of people contained
in an image attending a wide variety of social events [184],
[185]. Affective image analysis for groups of people, i.e., rec-
ognizing the induced emotions of the groups, has not been
explored yet. Group emotion recognition plays an impor-
tant role in recommendation. For example, for the people in
the same group, if one is interested in a specific product, the
others are more likely to accept it.

7.5 Viewer-Image Interaction

Besides the direct analysis of image content, we may also
record and analyze the viewers’ audiovisual or physiologi-
cal responses when watching the image (such as facial
expressions, or electroencephalogram signals), which is
often called implicit emotional tagging. Current methods
mainly focus on videos [186], [187], [188], [189] for its rela-
tive emotional consistency temporally. Exploring viewers’

responses for implicit emotion analysis of images is still a
largely open topic of research. Jointly modeling both image
content and viewers’ responses may better bridge the affec-
tive gap and result in superior performance. In practice,
some data may be missing or corrupted. For example, some
physiological signals are not successfully captured. In such
cases, how to deal with missing data should be considered.

As explained in Section 1, the physiological responses are
either difficult to capture or easily suppressed. In real-world
applications, even if there are no physiological responses,
jointly exploring the privileged modality during training
might also lead to better performance than using the image
modality only.

7.6 Novel and Real-World AICA-Based Applications

With the availability of large-scale datasets and improve-
ments in machine learning, especially in deep learning, the
AICA performance will be significantly boosted. Therefore,
we foresee the coming of an emotional intelligence era with
more AICA-based real-world applications. For example, in
online fashion recommendation, intelligent costumer serv-
ices, such as customer-image interaction, can provide better
experience to customers. In advertisement, generating or
curating images that can evoke expected emotions strongly
can attract more attention. One preliminary image adjust-
ment system is implemented in [190]. Given an input image
and an affective word, the system can adjust image color to
meet the desired emotion. Only the color information is
changed, which may be insufficient in applications. Peng
et al. instead proposed to modify the evoked emotion distri-
bution of the given source image towards that of the target
image by changing color and texture related features [14].
We believe that GAN-based adversarial models are possibly
more suitable to generate affective images. In art theory, we
can understand how artists express emotions through their
artworks. The principles can guide the affective image gen-
eration. The generated synthetic images can in turn improve
the AICA results through domain adaptation. In education,
the images with enriched emotions can help children to bet-
ter learn and understand. Certainly, many more exciting
applications will be coming up soon.

7.7 Efficient AICA Learning

There are three factors that attribute to the success of deep
learning: increased computing capacity, deep complex
models, and sufficient labeled data. However, these factors
may be unavailable for edge devices such as mobile phones
which are widely used in our daily life but have limited
power, memory, and computing capacity. Therefore,
designing specialized and efficient “green” deep learning
models is required. Efficient model design has been actively
studied in computer vision. Some efficient representation
methods include auto channel pruning, student-teacher net-
work approaches, neural network and hardware accelerator
co-design, auto mixed-precision quantization, optimal neu-
ral architecture search, etc.

To the best of our knowledge, the efficiency problem has
not been well studied in AICA. Extending existing methods
in computer vision to the AICA task by incorporating its
speciality (e.g., emotion hierarchy) is a simple but effective
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solution. It would make more sense if the on-device training
models can learn online with incremental data.

7.8 Benchmark Dataset Construction

The datasets adopted in existing AICA studies are mainly
well-labeled small-scale ones (e.g., IAPSa [29]) or large-scale
ones with labels obtained by a keyword searching strategy
(e.g., IESN [15]). While there are not enough training sam-
ples in the former ones, the label quality of the automatic
annotations cannot be guaranteed in the latter case. Creat-
ing a large-scale and high-quality dataset, like the ImageNet
in computer vision, can significantly advance the develop-
ment of AICA. One possible solution is to exploit online sys-
tems and crowd-sourcing platforms to invite/attract large
numbers of viewers with a representative spread of back-
grounds to annotate their personalized emotion perceptions
of images together with the contextual information on their
emotional responses. Personalized emotion annotation
would better accord with the subjectiveness of emotions.
Further, from the personalized emotions, we can obtain
both the dominant emotion and emotion distribution. Col-
lecting the social media users’ interaction with images, e.g.,
likes, comments, together with their spontaneous responses,
e.g., facial expression, where possible, can provide more
information to enrich affective datasets. To facilitate the
applicability of AICA in practice with different emotion
requirements, employing a hierarchical model (e.g., Par-
rott [64]) with emotion intensity is a good choice.

8 CONCLUSION

This article attempted to provide a comprehensive survey of
recent developments on affective image content analysis
(AICA) over the last two decades. Obviously, it cannot
cover all the literature on AICA, and we focused on a repre-
sentative subset of the latest methods. We summarized and
compared the widely employed emotion representation
models, available datasets, and the representative works on
emotion feature extraction, learning methods, and AICA-
based applications. Finally, we discussed some open issues
and potential research directions in AICA. Although deep
learning-based AICA methods have achieved remarkable
progress recently, an effective, efficient, and robust AICA
algorithm that can achieve satisfying performance under
unconstrained conditions is yet to be designed. With the
rapid development of deep understanding of emotion evo-
cation in brain science, accurate emotion measurement in
psychology, and novel deep learning network architectures
in machine learning, we believe that AICA will continue to
be an active and promising research topic for a long time.
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