
Neurocomputing 477 (2022) 14–24
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Towards real-time object detection in GigaPixel-level video
https://doi.org/10.1016/j.neucom.2021.12.049
0925-2312/� 2021 Elsevier B.V. All rights reserved.
Kai Chen, Zerun Wang, Xueyang Wang, Dahan Gong, Longlong Yu, Yuchen Guo,
Guiguang Ding
Tsinghua University, Haidian, Beijing 100084, China
a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 August 2021
Revised 2 November 2021
Accepted 12 December 2021
Available online 17 December 2021

Keywords:
Object detection
GigaPixel
Deep learning
Real-time
Object detection aims to locate and recognize objects in images or videos, which contributes to many
downstream intelligent applications. Recently, emerging gigapixel videography has attracted consider-
able attention from computer vision, microscopy, telescopy and many other communities. Its large field
of view and high spatial resolution provide sufficient global and local information simultaneously.
Although state-of-the-art detection methods have achieved success in common images, they can not
be transferred to gigapixel images with both effectiveness and efficiency. To solve this problem, we make
the first attempt towards accurate and real-time object detection in giga-pixel video. In this paper we
propose a novel framework, termed as GigaDet, which adopts an efficient global-to-local strategy, follow-
ing the principle of human vision system. Based on the spatial sparsity of objects, a patch generation net-
work (PGN) is introduced to globally locate possible regions containing objects and determine the proper
resize ratio of each patch. Then the collected multi-scale patches are fed into a decorated detector
(DecDet) in parallel to perform accurate and fast detection in a local way. We carry out extensive exper-
iments on PANDA dataset and GigaDet yields 76:2% AP and 5 FPS on a single 2080ti GPU, which is com-
parably accurate but 50x faster than Faster RCNN. We believe this research can inspire new applications
based on gigapixel video for a large range of fields.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Object detection is a basic, common, but challenging task which
aims at locating and recognizing objects in images or videos. For
most artificial intelligent applications, such as surveillance video
analysis and person re-identification retrieval, their performance
significantly depends on the output of the preset object detection
methods. In some special scenarios such as crowd flow analysis
and anomaly detection on surveillance video, detection efficiency
is a key issue and (near) real-time execution is required. In recent
years, object detectors based on deep learning have been improved
significantly to achieve precise and efficient detection performance
on common images. For example, on popular benchmarks like Pas-
cal VOC [1] and MS COCO [2], satisfactory performances have been
reported in two-stage detectors [3]45. Towards the faster speed,
several single-stage detectors have achieved over 25 FPS on GPU
with mega-pixel input images [6]789. Besides, some anchor-free
methods like [10]1112 have also been proposed to overcome the
drawbacks introduced by preset anchors.

Although the state-of-the-art object detectors have achieved
great success, there are still shortcomings remaining in newly
emerging scenarios such as GigaPixel-level videos. The emergence
of GigaPixel-level videos benefits from the development of photog-
raphy. They are usually captured by the giga camera in outdoor
scene and the field of view often covers a fairly wide range from
near to far. GigaPixel-level surveillance videos recently become
the important materials to analyze group behavior in public space
[13]. Most of existing object detectors are designed to process
images with normal resolution from 640px to 2000px containing
only dozens of objects[14], and they can not be directly applied
to large images used in gigapixel videography or telescopy.

There are some preliminary attempts towards object detection
in GigaPixel-level image and video. Since it is impossible to load
the whole image as input for the deep model due to the limit of
GPU memory, they used a strategy of sliding windows to scan
the whole image block by block, and then combined the results
of each grid to get final detection results. They achieved barely sat-
isfactory performance compared to conventional detectors. By
using Faster-RCNN [3] as a basic detector, only 75:5% AP.50 for
large visible body and 0:10 FPS on a GigaPixel-level dataset PANDA
[15] are achieved, which is far lower than the performance on
benchmarks like Pascal VOC [1]. Even if using a single-stage detec-
tor like YOLO[16], the inference procedure takes several seconds as
well, since scanning all grids needs a large expenditure of time. It is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.12.049&domain=pdf
https://doi.org/10.1016/j.neucom.2021.12.049
https://doi.org/10.1016/j.neucom.2021.12.049
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
also a challenge to select the proper size of the grids, which may
result in the cases that tiny objects exist in large grids or out-of-
range objects occupy the whole small grids.

In this paper, we focus on the task of object detection for
GigaPixel-level images. To overcome the problems of existing
object detectors mentioned above, we propose a progressive strat-
egy named GigaDet to perform efficient and accurate detection on
the GigaPixel-level images. GigaDet consists of two key compo-
nents: PGN (Patch Generation Network) and DecDet (Decorated
Detector). PGN executes a fast analysis for the thumbnail of the
image to obtain proper patches which have the highest probability
to contain valid objects. The DecDet is equipped to execute precise
detection within patches in parallel. The local detection outputs
will be remapped into original image according to the offset infor-
mation for each patch, and then the final outputs are combined and
produced. Based on the progressive framework, we can obtain
76:2% AP and 5 FPS on a single 2080ti GPU, which is comparably
accurate but 50x faster than the baseline method. Besides, benefit-
ing from the logic of patch generation, the performance for small
objects like heads of the persons is improved significantly both
for efficiency and accuracy. The intuitive illustration for perfor-
mance vs. efficiency can be seen in Fig. 1.

Acceleration for object detection has been extensively studied
recently [18]1920. Our intuitive idea is inspired by the human
visual behavior of scanning [21], which would be a rough look at
first and then the meticulous inspection if necessary. The PGN
module is designed to perform the scan action, which reduces large
amount of regions with little possibility to contain objects.

To summarize, the contributions of this paper include:

- We propose a novel framework called GigaDet for real-time
object detection in GigaPixel-level videos. To our best knowl-
edge, this is the first work ever focusing on this challenging
task.
- We design a preparatory module named Patch Generation
Network (PGN) for large-scale GigaPixel-level input, to filter
out irrelevant regions which are not tightly linked with the
main task. The utilization of PGN module is critical for improv-
ing the detection efficiency.
- The proposed method is evaluated on PANDA dataset and
achieves nearly real-time inference speed while maintaining
state-of-the-art accuracy.
Fig. 1. Performance vs. Speed: Comparison of the proposed GigaDet framework and
the baseline model. The results of Faster-RCNN [3], Cascade R-CNN [17] and
RetinaNet [5] from [15] are denoted by del marker. The results for GigaDet (Ours)
are denoted by the broken lines at different experimental settings. Our GigaDet
boosts the performance both in efficiency and accuracy especially on small targets
like sma.ll visible body.

15
2. Related work

2.1. Object detection

Object detection task is a common task in computer vision [22]
23. From the pioneer Viola-Jone detector [24], an intuitive idea to
resolve object detection task is to scan the entire picture using slid-
ing windows of different sizes. Early detectors filter out the win-
dows that do not look like an object [25]26, converting the
detection procedure into a binary-classification task. However,
large amount of sliding windows severely slow down the inference
speed, which prevents these technologies from practical applica-
tion. With the development of deep learning technology, some
methods have achieved a great promotion based on large anno-
tated datasets like ImageNet [27] and MS COCO [2]. Modern object
detectors are usually categorized into two-stage or one-stage by
whether they own a RoI proposal step [28]. Two-stage detectors
represented by Faster-RCNN [3] include operations about region
proposal and target category regression, which help the detector
to be more flexible and obtain higher accuracy. Single-stage detec-
tors like SSD [8] and YOLO [6] family directly detect objects by pre-
setting anchors, achieving higher speed compared to two-stage
detectors. Recently, anchor-free methods [29,11,12,10] have
attracted more attentions and they are proposed to avoid prior
knowledge of hand-designed anchors, which is more compatible
and faster. Anchor-free detectors like RepPoints [30,31] are pro-
posed to optimize the representation for objects, which is tradi-
tionally presented by bounding boxes and corresponding labels.

In object detection task, one of the key challenges is the scale
variation of objects within the image [32]. Image Pyramids [33]
and Feature Pyramids [34] are proposed by researchers to resolve
the problem of scale variation. In the case of coexistence of large
and small object targets, how to perform effective detection for
tiny objects has always troubled researchers. Kisantal et al. [35]
proposed a method to randomly copy-paste small objects in
images, which optimizes the proportion of small targets in the
training sample and improves the precision. ClusterNet [36] uti-
lizes spatial and temporal information to predict the location of
multiple objects simultaneously, but it only regards position as
one point regardless of bounding boxes. Yang et al. [37] analyze
aerial images(e.g., 2000x1500 pixels) and find that the objects
are generally small and usually unevenly distributed throughout
the image. They propose a cluster model to recognize the group
of objects, and then perform the further detection.
2.2. Object detection in large-scale scene

Images which contain wide FoV and high spatial resolution
simultaneously to describe the crowd behavior and interaction
are usually captured by a gigacamera [38,17,15]. They usually have
over 25000� 15000 resolutions so they are called GigaPixel-level
images. The wider range of scale variation of objects in
GigaPixel-level images increases the difficulty to detect both large
and tiny objects. While current popular detectors [3]165 have
achieved great success in nature pictures (e.g., 600x400) [37], their
performance may deteriorate sharply when detecting objects
under large-scale scene. The authors of PANDA dataset [15] have
proved that directly applying popular detectors like Faster-RCNN
[3] on GigaPixel-level images can not obtain desired results. They
took strategy to split one image into several grids and then applied
detectors on each grid. The combined detection results reach an
acceptable level while the detection took a long time. The frame-
work we proposed in this paper aims at accelerating the detection
speed on GigaPixel-level images, which can be regarded as an
improvement for the above methods.



K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
As far as we know, there are some researches which promote
detectors on images of large-scale scenes [39]. Zhou et al. [40] pro-
pose a scale adaptive data enhancement method for handling sev-
ere scale challenges in UAV object detection. Gao et al. [41]
propose a regression network based on attention mechanism to
estimate the number of people in the large-range pixel-wise crowd
scenes. Li et al. [42] resolve domain adaptation problem for object
detection in medical images. AutoFocus[43] proposes an efficient
multi-scale inference strategy FocusPixels, by predicting category
agnostic segmentation maps for small objects at coarser scales.
AutoFocus zooms and crops only interesting regions when apply-
ing the detector at a specific scale. Sniper[44] uses context info
to generate chips which contain ground-truth instances. Gao
et al.[45] build a Q-net by reinforcement learning to compute accu-
racy gain map, and then zoom in the specific regions. Our proposed
GigaDet has difference on strategy and specific processes with the
methods mentioned above. Sniper[44] tries to find chips which are
likely to cover a ground-truth object, but our PGN module aims at
finding the blocks that contain as many valid objects as possible.
Their goal is to detect objects more accurately by finding the
appropriate scale, while our purpose is to collect valuable regions
for subsequent detection steps to reduce the time cost. Methods
in [45] obtain regions of interest by an accuracy gain map which
is calculated by a Q-Net, while our patches generation procedure
is based on region proposal, which is a different logic to generate
the result, utilizing the annotations of objects as synthesized labels
rather than individual one.
3. Proposed GigaDet

3.1. GigaDet framework

The overall framework of GigaDet is shown in Fig. 2. GigaDet is
made up of a PGN (Patch Generation Network) module and a Dec-
Det (Decorated Detector) module. PGN is used to extract the
patches of interest from the thumbnail built by the high-
resolution input. For the input image, meaningful regions are cov-
ered by the extracted patches and the rest of regions with few
objects distributed are dropped, which significantly reduces the
pixels to be processed in the subsequent tasks. DecDet is then used
to detect objects in the extracted patches. The patches are orga-
Fig. 2. Framework of GigaDet: The original GigaPixel-level image is loaded into memory
into the PGN module to obtain patches of interest, and then the patches along with origi
Concurrent tasks of detection are executed and multiple outputs are remapped to the
applied and the detection results for the whole GigaPixel-level image are produced. The G
resized GigaPixel-level image, which would not slow down the inference, and the DecDet
are much fewer than the original image. This progressive mechanism contributes to
acceptable accuracy.

16
nized into appropriate sizes and the tasks of detection are executed
in parallel. The outputs are remapped to the original coordinates
and necessary post-process operations are used to produce the
comprehensive detection results. In such a coarse-to-fine proce-
dure, a large number of objects in the GigaPixel-level image can
be located and recognized correctly and promptly.

3.2. Patch generation

PGN (Patch Generation Network) is the key component of the
proposed GigaDet, which aims at extracting patches that contain
valid objects as many as possible. In order to achieve this goal,
PGN presets patch candidates spread all over the input image
and estimates the quality for each patch candidate. A conditional
strategy is applied to select the most valuable patches and gener-
ate the outputs, which serve as the input for the subsequent Dec-
Det module.

We define the term Patch as a scale-conscious sub-regions in an
image. Suppose we have an image GI with width W and height H,
we can formally define a Patch as:

Patchi ¼ CropðGI; li; ti; ri; biÞ ð1Þ
Here CropðÞ is the cropping operation to an image. The parame-

ters li; ti; ri; bi represent the coordinates of two vertices in Patchi,
which implies the width of the patch is wi ¼ ri � li and height of
the patch is hi ¼ bi � ti. The values above should satisfy the condi-
tions for basic geometric constraint:

0 6 li < ri < W and 0 6 ti < bi < H ð2Þ
Based on this definition, any sub-region Patchi within the image

GI can be fetched by operation CropðGI; li; ti; ri; biÞ. Meanwhile,
according to the object annotation information of the image GI,
there may be several objects located entirely within the Patchi.
We define the Oi as the set of the objects that are located entirely
within the Patchi:

Oi ¼ f
[

objc j objc 2 Patchig ð3Þ
The meaning of 2 is that the object objc is surrounded com-

pletely by the patch Patchi, which means, no part of the object is
out of the range. Equivalently this case can be called that the
and then fed into two branches. It will be firstly processed into a thumbnail and fed
nal raw data make up the cropped images that will be fed into the DecDet module.
global coordinates. Post-processing steps such as Non-Maximum Suppression are
igaDet accelerates the inference since the PGN model only processes thumbnail of a
module receives a batch of images without dependency on each other, whose pixels
the acceleration of inference on GigaPixel-level images meanwhile maintaining



K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
Patchi contains the objc . Notation
S

means the union operation. To
be more specific, we define O0

i as the subset of Oi whose objects are
all valid. A object is valid when its size satisfies a certain range

O0
i ¼ f

[
objc j objc 2 Patchi and objc � Rangeig ð4Þ

The Rangei is decided by the size of Patchi, and the symbol �
means that the size of objc satisfies the condition of Rangei. We
define CountOi as the length of the set Oi, which also represents
the amount of objects the Patchi contains:

CountOi ¼ kOik ð5Þ
PGN presets multiple patch candidates of different scales in the

image, and it is trained to estimate the property CountOi for each
patch candidate Patchi. The estimations are based on the feature
learning procedure, where the input comes from the features of
input image, and the corresponding label is calculated through
the aggregation of annotated object information. Multi-scale patch
candidates are used to make sure that objects of different sizes can
be contained by at least one patch. An object may be located in one
or more patches. The restriction for valid objects ensures the
objects are neither too small nor too large compared to the patches
they belong to. In the patches selection procedure, the CountOi

property can be used as the assessment criteria for each patch can-
didate. An illustration of patch candidates in a GigaPixel-level
image can be viewed in Fig. 3.

For a GigaPixel-level image, a hypothesis can be accepted that
different regions have distinguished semantic information, and a
minority of regions can possibly contain a large proportion of the
objects in the image. The proposed PGN is designed to generate
patches to cover these important regions. In consideration of the
computation efficiency for subsequent tasks, the number of
patches generated by PGN should be limited. We use

SP ¼ fSK
k¼1Patchkg to represent a set of patches, which is a subset

of all preset patch candidates, and the value K is much fewer than
the number of them.
Fig. 3. Illustration of patch candidates in an image. A patch candidate is the output of cro
are visualized in the image. ”4x” means the side length ratio is 4 times as the unit one,
notation. Objects may have different sizes in the distant/close view, so it is critical to sele
different sizes of patch candidates uniformly distributed all over the image, which serve a
candidate in close shot area contains several persons with proper size, meanwhile the ”1
does not always contain more valid persons than a smaller patch candidate, since it dep
patch in distant shot area may be too small.

17
Based on the estimations for patch candidates, PGN use a condi-
tional strategy to select the most valuable patches. All patch candi-
dates are firstly sorted by their CountO value. Since the patch
candidates have overlapped regions with each other, a conditional
removal operation is applied to avoid redundancy in patch selec-
tion. Finally, PGN retrieves the top K patches and organizes them
into the output.
3.3. DecDet

DecDet (Decorated Detector) is used to detect specific objects
within each patches. One of the important properties needed in
DecDet module is the concurrent execution. The patches generated
by PGN component have no dependencies on each other, and their
detection results can be obtained in parallel, which saves a lot of
time compared to the serial computation. The task processing flow
for DecDet is similar to commonly used routines for big data anal-
ysis, where the tasks are dispatched simultaneously and then the
outputs of tasks are collected to form the final results.

Along with the location information of patches themselves, the
bounding boxes of objects can be remapped to global positions in
the coordinates of the original GigaPixel-level image. After the glo-
bal post-processing operations like NMS (Non Maximum Suppres-
sion) [46], the outputs from patches are arranged into final results
of the overall detection.

Theoretically, DecDet could be made up from one of any exist-
ing detectors. Because this part is not about the basic architecture
of GigaDet, we adopt YOLO [7] based model for its features of agi-
lity and simplicity.
3.4. Implementation details

We build the PGN module using the PyTorch toolkit[47]. It is
constructed based on a common VGGNet[48] backbone, and the
input image is pre-processed into a thumbnail to be fed into the
CNN network. Patch candidates are preset on the final layer of
pping operation at specific parameters for a large image. 3 different sizes of patches
which means the patch candidate is 4 times larger than patch candidate with ”1x”
ct a patch candidate with proper size to contain plenty of valid objects. PGN presets
s the candidates of the final generated patches. As shown in the figure, an ”4x” patch
x” patch in distant shot area also contains many persons. A larger patch candidate
ends on the size of persons in that region. The size of persons which appear in ”4x”



K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
VGGNet, and each patch candidate has an attribute CountO, which
is initialized to zero. Patch candidates of different scales are preset
for dealing with various objects. Patch candidates that go beyond
the boundary of the image are just ignored in subsequent process-
ing. For each patch candidate, a simple 1x1 convolution layer fol-
lowed by a linear layer is used to regress its output value.

The main training procedure is to optimize parameters in PGN
to estimate the CountOi for each Patchi, making CountOi as close
as possible to the ground-truth value. The corresponding label is
calculated by the annotated object information. The input image
is resized in proportion to build the thumbnail. Then it is fed into
the model and features are extracted. We use smooth l1 loss to
regress the property CountO of each patch candidate. Due to the
large capacity of a GigaPixel-level image, the batch size is set to 1
and the initial learning rate is set to 1e� 3. We use lr decay as
0:1 and weight decay as 0:0005 during the training. Weights of
the backbone are initialized with ImageNet pre-trained model.
we train the PGN model for 9 epochs, which need about 21 h in a
single Titan 2080 Ti GPU.

At the inference step, the CountOi value for each patch candidate
is calculated after the model forward execution, and the patch can-
didates with position out of boundary are removed firstly. A
threshold nC � 1 is used to filter out patch candidates whose
CountOi is below the threshold. This operation is meaningful to
save a lot of computation complexity for later sort operation.
Remained patch candidates are sorted by their CountOi value. Since
the patch candidates have dense distribution on the spatial plane,
we apply the NMS (Non-Maximum Suppression) [46] operation to
remove redundant items. The value K is set to slice top patches
according to realistic requirements, in our case we set it to 45.
Fig. 4. Illustration of the procedure of patches selection strategy. Given an GigaPixel-lev
from backbone to estimate the property CountOi , the number of valid objects, for each p
CountOi and filtered through a specific threshold nC . To avoid getting patches that are too
the redundant elements are removed. The squares colored in image represent the selecte
selection. Hyper-parameter K is used to intercept the top K elements and generate the o

18
iou threshold for NMS is set to 0:2, which can be adjusted to control
the density of generated patches. The final generated patches are
obtained by remapping the position information into the original
image. The whole procedure for patch generation is visualized in
Fig. 4.

In the GigaDet framework, DecDet (Decorated detector) is used
to receive the patches generated from PGN module as the input.
We adopt detector model based on YOLO[7] architecture. We
choose this model to take full advantage of its agility. In fact the
decorated detector can be replaced with any practical detection
models, as long as they support batch detection and meet the
speed requirement. To train the DecDet model, we prepare the
training data from the generated patches. Since the relative size
of objects in GigaPixel-level images are quite small, it would not
bring benefits from training models using the raw annotations.
Patches are extracted using pre-trained PGN model and the objects
which are located entirely within the patches are regarded as valid
annotations. Offsets are calculated according to the position of the
patch respectively. Local annotations are produced based on raw
GigaPixel-level images and corresponding annotations informa-
tion. Then pairs of images and annotation files are saved to be orga-
nized as the training data. To balance amount of objects in different
sizes and promote the ability of detecting small objects, we gener-
ate extra images surrounding tiny objects which are small than
288 � 288 pixels.

During the inference, patches are resized into the same size and
normalized in pre-process stage. Patches are all square uniformly,
so the extra operations in this stage like building shape for batch
and adding letterbox for images can be omitted. After forwarding
and fetching the inference outputs, the local NMS post-process
el image, PGN module firstly builds the thumbnail, and uses the features extracted
atch candidate. All patches candidates of different scales are sorted by the property
close to each other, some post-processing operations such as NMS are applied and

d patches candidates, and the patch candidate marked in red is thrown during patch
utput patches.



K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
operation is applied to generate local detection results for each
patch. The size of input image can be set dynamically according
to the size of patches, here we simply set input size to 320 for all
patches. Threshold of confidence is set to 0:001, and the
iou threshold for NMS is set to 0:6.

When PGN module and DecDet model are ready for use, we
organize the overall process to an end-to-end inference procedure
as follows. A GigaPixel-level image is loaded into memory, and it is
pre-processed to build a thumbnail to be fed into the PGN module.
List of patches are generated according to the inference logic
described above, and then input images for DecDet are cropped
from the raw GigaPixel-level image by the generated patches. Con-
current tasks of detection are executed, and some post-processing
operations are applied. Direct detection for the original image can
be an optional choice, which may benefit the accuracy in some sit-
uations. All the detection results from patches are applied by a glo-
bal NMS operation, to remove redundant elements with high
overlap ratio. A visualization result for final detection can be
viewed in Fig. 5.
4. Experiments

4.1. Dataset and settings

4.1.1. Dataset
PANDA[15] is a GigaPixel-level human-centric dataset, which

contains gigabit levels of pixels per image with extremely high res-
olution details for large-scale visual analysis. It provides 18 scenar-
ios and over 15,974.6 k bounding box annotations, offering a
completely new challenge for human detection task. For each per-
son, PANDA provides bounding box annotations for its visible body,
full body and head. Raw dataset includes IMAGE and VIDEO parts,
Fig. 5. Example of the detection results on a GigaPixel-level image. The sparse distribu
Using a progressive framework, GigaDet successfully fetches the most valuable patches a
Tiny objects in distant view are also detected correctly even if they are barely visible to t
also detected without introducing too many false positive samples. Zoom in the figure f

19
and we use the IMAGE part to evaluate our method. The IMAGE
part is split into 13 scenarios as train set and 5 scenarios for test.
In our experiments, we use the subset of IMAGE part about persons
in PANDA dataset to verify our proposed methods.

4.1.2. Evaluation metric
In spite of the challenging difficulty of processing a GigaPixel-

level image, it can be viewed as a common detection task what-
ever. The popular evaluation metric AP@0:5 will be used as the pri-
mary performance measurement. Refer to the PANDA baseline[15],
we also report AR value for comparison. We take inference speed
into account as an important assessment criteria for our proposed
method, which aims at improving the efficiency of processing
detection task towards real-time performance.

4.1.3. Experimental setup
As the basis, we trained the PGN model using PyTorch toolkit

[47]. We use the pre-trained PGN model to crop patches from orig-
inal PANDA images, and generate common format detection labels
with mapping of global annotation to local locations in the patches.
The generated data are used to train the decorated detector, which
we follow the YOLO[7] architecture. With PGN and DecDet mod-
ules, we organize the overall procedure to detect objects from
GigaPixel-level images. The inference process has been integrated
to an end-to-end style, which can be used like a black-box detector.
The whole training procedure has not been combined together,
which remains to be integrated and optimized in the future.

4.2. Inference speedup

We choose annotations of persons in PANDA dataset as our
detection target. We evaluate our GigaDet by the annotated labels
tion and large variation in scales of objects are serious challenges for the detector.
nd then uses the decorated detector to focus on fine inspection within the patches.
he naked eye without zooming in. At the same time, large objects in close view are
or a better observation.



Table 2
Study on the K value in patch generation procedure. The larger the K value is, the
more patches are generated and fed into subsequent decorated detection process,
which means the increment of expenditure of time. Specific setting of the value K can
be decided by the practical scenario.

K speed AP:50 for Visible Body

S M L Total

8 0.69� 0.0283 0.343 0.364 0.346
16 0.83� 0.0578 0.448 0.559 0.498
32 0.91� 0.139 0.556 0.715 0.633
45 1� 0.210 0.599 0.762 0.684
64 1.38� 0.275 0.607 0.784 0.707
128 2.47� 0.281 0.607 0.785 0.708

K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
including visible body, full body and head. We use the method and
results in [15] as our baseline. With our proposed framework, we
can improve the inference speed up to � 5 FPS, at least 50x faster
than baseline method, meanwhile maintaining almost the same
precision performance. The AP:50 and AR results can be viewed
in Table 1.

Many hyper-parameter settings in the evaluation procedure can
affect the trade-off between precision and efficiency. We set the
hyper-parameter values as follows. The scales of patch candidates
are set to [1,2,4,8]. The K value for patch generation is set to 45. The
IoU threshold for patch generation is set to 0:2. The input size for
DecDet is set to 320. The confidence threshold for DecDet is set
to 0:001. The IoU threshold for NMS is set to 0:6.

In maintaining almost the same AP.50 performance, GigaDet
can achieve nearly 5 FPS inference speed for the detection task
on GigaPixel-level images, which accelerates almost 50x than orig-
inal baseline method. Through the coarse-to-fine progressive
detection, many invalid operations on empty regions are elimi-
nated and the time cost is reduced. The framework towards real-
time object detection has been developed, and we believe it can
be optimized to achieve real time analysis for GigaPixel-level
videos in the future.
4.3. Necessity of patch generation

The key module for accelerating detecting objects on GigaPixel-
level images is to select important patches. We explore the neces-
sity of patch generation and verify that the PGNmodule can help to
select effective information.

The intention of patch generation is to extract high-valued
information of GigaPixel-level images. During patch generation,
all patch candidates whose CountO is below the threshold nC ¼ 1
are filtered out, and the remaining ones are sorted by its CountO
property. In principle, the larger the threshold nC is, the fewer sat-
isfied patches are left in next step. Due to the fact that patches with
lower CountO will be ranked to the end in the sorting step, we set
the threshold as 1 so that patches that contains at least one object
will be taken into account in the sorting operation, which reserves
the information to the maximum extent and the time cost of sort-
ing is negligible.

According to different actual application scenarios, we can use
the hyper-parameter K to slice part of the sorted patches list. More
patches help achieving the higher APmetric but cost more comput-
ing time. The experimental results in Table 2 show the effects on
the value K in patch generation.
Table 1
Performance of GigaDet on PANDA dataset, compared with original baseline in [15]. FR, CR,
not introduced in [15], so we reproduced the methods according to the author’s guidance
Middle, and Large indicate object size being < 96� 96, 96� 96� 288� 288, and > 288�
best speed while maintaining the comparable performance with the baseline.

Sub Visible Body

AP.50 AR AP.50

FR [3] S 0.201 0.137 0.190
M 0.560 0.381 0.552
L 0.755 0.523 0.744

CR [17] S 0.204 0.140 0.227
M 0.561 0.388 0.579
L 0.747 0.532 0.765

RN [5] S 0.171 0.121 0.221
M 0.547 0.370 0.561
L 0.725 0.482 0.740

Ours S 0.210 0.093 0.236
M 0.599 0.339 0.605
L 0.762 0.467 0.728

20
We use the fixed scales of patches candidates as ½1;2;4;8� and
the input size as 320 without option of detecting directly. As the
results show, with more top K selected patches, the AP:50 value
meliorates together with the increase of inference speed. We find
that when K increases from 64 to 128, increasing K produces very
little effect, which means it is close to saturation by adding
patches.

For each K setting, we also conduct another experiment to ver-
ify the necessity of patch generation. We directly split the image
into K grids, and we can observe that, the performance is seriously
deteriorated when using the grids directly split from the image,
which verifies the necessity of the proposed PGN module. Results
are listed in Table 3 for comparison.

4.4. Ablation study on GigaDet settings

There are many hyper-parameters and experimental settings in
GigaDet framework. We conducte a lot of experiments to explore
their effects on the trade-off between accuracy and efficiency to
get better performance.

4.4.1. Scales of patch candidates
Patch generation is the critical premise of obtaining good per-

formance. In PGN module, we use preset patch candidates for
patches selection. We conduct experiments to find the optimal
scales settings. Consider that the generated patches will be used
as input into decorated detector, they will be inevitably resized
and cropped to square at that step, so there is no need to set mul-
tifarious irregular shapes for preset candidates. We fix the aspect
ratio to 1. Different sizes are necessary, because they correspond
to patches of different sizes which should contain objects of proper
and RN denote Faster R-CNN, Cascade R-CNN and RetinaNet respectively. The speed is
and obtained the conclusion. Sub means subset of different target sizes, where Small,
288, which is also not introduced in [15] but confirmed by the author. We obtain the

Full Body Head Speed

AR AP.50 AR

0.128 0.031 0.023
0.376 0.157 0.088 � 0:10 FPS
0.512 0.202 0.105

0.160 0.028 0.018
0.384 0.168 0.091 � 0:07 FPS
0.518 0.241 0.116

0.150 0.023 0.018
0.360 0.143 0.081 � 0:13 FPS
0.479 0.259 0.149

0.100 0.575 0.289
0.326 0.769 0.443 � 5 FPS
0.418 0.596 0.462



Table 3
Results of split image into K* grids directly. Instead of using PGN module to generate
patches, we did control experiment about directly splitting the image into K* grids.
For example, for K*=32, we split the image into 8x4 grids. Obviously this rough
method can not obtain satisfactory result.

K* speed AP:50 for Visible Body

S M L Total

8 0.25� 0.000 0.011 0.424 0.231
16 0.28� 0.000 0.0389 0.574 0.331
32 0.55� 0.005 0.305 0.692 0.511
45 0.76� 0.004 0.427 0.700 0.561
64 0.79� 0.003 0.360 0.554 0.461
128 1.61� 0.007 0.550 0.638 0.589

Table 5
Study on input sizes for DecDet. The size of input for DecDet model will affect the
speed and accuracy. We did ablation study to find the most appropriate setting.

Input speed AP:50 for Visible Body

S M L Total

320 1� 0.210 0.599 0.762 0.684
480 1.26� 0.278 0.638 0.764 0.707
640 1.83� 0.293 0.649 0.760 0.711
768 2.38� 0.316 0.647 0.751 0.705

Table 6
Study on optional direct detection. The first line means the GigaPixel-level images are
directly resized and fed into DecDet, whose detection outputs are awful. w/o means
the standard GigaDet workflow, and w means combining the outputs of the above
two methods.

Type speed AP:50 for Visible Body

S M L Total

only 0.14� 0.000 0.000 0.012 0.006
w/o 1� 0.210 0.599 0.762 0.684
w 1.28� 0.209 0.595 0.764 0.679

Table 7
Study on patch IoU threshold. Large patch IoU threshold means the greater tolerance
for overlapped patches.

IoU T speed AP:50 for Visible Body

S M L Total

0.0 0.78� 0.169 0.552 0.667 0.616
0.1 0.85� 0.172 0.568 0.729 0.655
0.2 1� 0.210 0.599 0.762 0.684
0.3 1.09� 0.133 0.540 0.701 0.617
0.5 1.12 0.09 0.472 0.547 0.505

K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
sizes. The multi-scale settings for patch candidates play a vital role
in capturing objects from a near or distant view.

We explore many settings which can be viewed at the Table 4.
We can find that different scales of patch candidates are responsi-
ble for the objects of different scales. For example, the setting
[1,2,4,8] means four sizes of patches candidates are preset, and
they are 1;2;4 and 8 times the unit size respectively. Unit size is
decided by the down-sampling ratio of the PGN model, and in
our case it’s 1

16 of the shorter size of input image. Patch candidates
with larger size are supposed to capture valid objects with larger
scale, and vice versa. Richer scales help to capture more objects
in the images, but also introduce difficult selection dilemma during
patch generation. Visualization for the logic of patches selection
can be viewed in Fig. 6.

4.4.2. Size of input for DecDet
After patch generation, the selected patches are resized to

dynamic sizes and executed detection in parallel. Here the sizes
of input for detector represent the uniform size which all the
patches should be resized to. We fix other settings and observe
the impact of the input size. The results can be seen in Table 5.
Table 4
Study on PGN anchors settings. The array of digits in Anchors column means the sizes
of anchor bases. For example, [1,2,4] means three sizes of anchor base are preset, and
they are 1, 2 and 4 times the unit size respectively. Anchors of larger size are
supposed to capture valid objects with larger scale and vise versa.

Anchor Setting AP:50 for Visible Body

S M L Total

[1,2,4] 0.137 0.453 0.534 0.434
[1,2,4,8] 0.210 0.599 0.762 0.684

[1,2,4,8,16] 0.197 0.566 0.765 0.645

Fig. 6. Example of anchor setting and patches selection. Different sizes of anchors are placed on the whole image. Each anchor is responsible for one value CountO that
represents the number of valid objects contained. From the visualized schematic diagram we can find that, anchors in large area of the road (which is not marked due to its
low CountO value) are not able to be selected, since there is really no person there. For the areas around streets and buildings where crowds gather, anchors get high CountO
value. We notice that in the distant view anchors with large size do not get higher score since objects of extremely small size are not valid objects.

Table 8
Statistics on expenditure of time. The operations of pre-process and non-maximum
suppression make up the majority of inference time cost.

Modules stage percentage

PGN pre-process 14.7%
PGN forward 13.8%
PGN get top k 2.0%
PGN remap 0.3%

DecDet pre-process 29.6%
DecDet forward 15.0%
DecDet nms 17.0%
DecDet remap 1.7%
DecDet final nms 5.9%
Total – 100%

21



Fig. 7. Examples of fragmentary results. In the visualized images, we can find somemisshapen boxes, which are caused by the boundaries of generated patches. To resolve the
issue of occlusion and make the detector more robust, classical detectors often regard objects as a positive case if the IoU of them and the ground truth is greater than 0:5. This
implicit logic introduces fragmentary detection results for objects located at the edge of two patches.

K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
Larger input size requires longer inference time cost, and helps
improving AP:50 performance especially in small objects, which is
accord with the common sense. When the input size reaches a cer-
tain range like 480 or 640, the AP:50 value will not increase.

4.4.3. w/o direct detection
One simple optional action can be added is the direct detection

for original GigaPixel-level image. The image can be resized into a
size which can be loaded into the GPU memory, and then fed to the
decorated detector directly. Usually the sizes of objects in original
image are quite small and it is difficult to get effective results. We
compare the results with or without option of direct detection, and
demonstrate that a progressive detection procedure is inevitable.
Results are listed in Table 6. The notation speed means the infer-
ence time cost per image.

4.4.4. patch IoU threshold
We test different IoU thresholds during the conditional selec-

tion strategy for patch generation. Results are shown in Table 7.
The notation speed means the inference time cost per image. IoU
T represents the hyper-parameter threshold for patches used in
patch generation. The lower the threshold is, the denser the distri-
bution of patches will be. It is possible for several selected patches
to cover the same objects simultaneously. On the contrary, objects
may be missed for later detection process at a strict IoU threshold.

4.5. Meticulous study on inference time

We construct various models via GigaDet with different exper-
imental settings, and their performance and efficiency can be
viewed in Fig. 1. Besides, to make it clear the bottleneck of the
acceleration, we record elaborate statistics on expenditure of time
on each step during the inference procedure. The details can be
viewed in Table 8.

From the data in Table 8 we can find that the cost for image pre-
processing is dominant, and it makes sense to process the high-
capacity pixels a GigaPixel-level image contains. Model forward
steps for PGN and DecDet are no longer the bottleneck that slows
down the inference. If we want it to be faster, maybe the steps on
normal image processing should be paid attention to in the future.
22
4.6. Disadvantages analysis

Although the GigaDet framework achieves a great improvement
about detection speed on GigaPixel-level images, there are still
many problems left. Above all, the training procedure has not been
combined in an end-to-end framework, which introduces many
susceptible factors which need to be designed carefully. The weak-
ness of detecting small targets has not been overcome thoroughly,
and that leaves a lot of room for improvement. A more serious
problem is that the bounding boxes of detection are constrained
by the boundary of patches, which yields many fragmentary
results. There are many negative examples in Fig. 5 and Fig. 7.
Besides, it is not enough to excavate and utilize the relationship
between abundant annotations, such as the labels for full body
and head of one person are logically dependent on each other.
These disadvantages can be addressed in the future, and we hope
the research will be helpful to the real-time detection for
GigaPixel-level videos.
5. Conclusion

In this paper, we address the problem of time-consuming object
detection in GigaPixel-level images. We propose a fast framework,
named GigaDet, to detect objects with large scale variation in the
images. The procedure of scanning, detection, and collection is
used to handle the dilemma normal detectors will encounter and
GigaDet can be adjusted flexibly to make a trade-off between pre-
cision and efficiency. We boost the inference speed significantly in
PANDA dataset while maintaining acceptable precision perfor-
mance. Various experiments for components in the GigaDet have
been studied. The inference costs at different steps are discussed
in detail, which may help the optimization in future work.
CRediT authorship contribution statement

Kai Chen: Conceptualization, Methodology, Software, Writing -
original draft, Visualization. Zerun Wang: Resources, Writing -
review & editing, Data curation, Formal analysis. Xueyang Wang:
Resources, Writing - review & editing. Dahan Gong: Validation.
Longlong Yu: Investigation. Yuchen Guo: Writing - review & edit-



K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
ing, Resources, Supervision, Project administration, Funding acqui-
sition. Guiguang Ding: Resources, Supervision, Project administra-
tion, Funding acquisition.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, A. Zisserman, The pascal
visual object classes (voc) challenge, Int. J. Comput. Vis. 88 (2) (2010) 303–338.

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L.
Zitnick, Microsoft coco: Common objects in context, in: European conference
on computer vision, Springer, 2014, pp. 740–755. .

[3] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, in: Advances in neural information
processing systems, 2015, pp. 91–99. .

[4] J. Dai, Y. Li, K. He, J. Sun, R-fcn: Object detection via region-based fully
convolutional networks, arXiv preprint arXiv:1605.06409 (2016). .

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object
detection, in: Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2980–2988.

[6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-
time object detection, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[7] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy
of object detection, arXiv preprint arXiv:2004.10934 (2020). .

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single
shot multibox detector, in: European conference on computer vision, Springer,
2016, pp. 21–37. .

[9] B. Wu, F. Iandola, P.H. Jin, K. Keutzer, Squeezedet: Unified, small, low power
fully convolutional neural networks for real-time object detection for
autonomous driving, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017, pp. 129–137. .

[10] Z. Tian, C. Shen, H. Chen, T. He, Fcos: Fully convolutional one-stage object
detection, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9627–9636.

[11] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint triplets for
object detection, in: Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 6569–6578.

[12] H. Law, J. Deng, Cornernet: Detecting objects as paired keypoints, in:
Proceedings of the European conference on computer vision (ECCV), 2018,
pp. 734–750..

[13] M. Cristani, R. Raghavendra, A. Del Bue, V. Murino, Human behavior analysis in
video surveillance: a social signal processing perspective, Neurocomputing
100 (2013) 86–97.

[14] Y. Liu, D. Zhang, Q. Zhang, J. Han, Part-object relational visual saliency, IEEE
Trans. Pattern Anal. Mach. Intell. (2021).

[15] X. Wang, X. Zhang, Y. Zhu, Y. Guo, X. Yuan, L. Xiang, Z. Wang, G. Ding, D. Brady,
Q. Dai, et al., Panda: A gigapixel-level human-centric video dataset, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 3268–3278. .

[16] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint
arXiv:1804.02767 (2018). .

[17] Z. Cai, N. Vasconcelos, Cascade r-cnn: Delving into high quality object
detection, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 6154–6162.

[18] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, B. Yu, Recent advances in
convolutional neural network acceleration, Neurocomputing 323 (2019) 37–
51.

[19] Y. Miao, Z. Lin, X. Ma, G. Ding, J. Han, Learning transformation-invariant local
descriptors with low-coupling binary codes, IEEE Trans. Image Process. (2021).

[20] Q. Zhang, N. Huang, L. Yao, D. Zhang, C. Shan, J. Han, Rgb-t salient object
detection via fusing multi-level cnn features, IEEE Trans. Image Process. 29
(2019) 3321–3335.

[21] D. Brockmann, T. Geisel, The ecology of gaze shifts, Neurocomputing 32 (2000)
643–650.

[22] G. Ciaparrone, F.L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, F. Herrera, Deep
learning in video multi-object tracking: a survey, Neurocomputing 381 (2020)
61–88.

[23] X. Wu, D. Sahoo, S.C. Hoi, Recent advances in deep learning for object
detection, Neurocomputing 396 (2020) 39–64.

[24] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of the 2001 IEEE computer society conference on
computer vision and pattern recognition. CVPR 2001, vol. 1, IEEE, 2001, pp. I-I. .
23
[25] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580–587.

[26] R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448. .

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE conference on computer vision and
pattern recognition, Ieee, 2009, pp. 248–255. .

[28] M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 10781–10790.

[29] C. Zhu, F. Chen, Z. Shen, M. Savvides, Soft anchor-point object detection, arXiv
preprint arXiv:1911.12448 (2019)..

[30] Z. Yang, S. Liu, H. Hu, L. Wang, S. Lin, Reppoints: Point set representation for
object detection, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9657–9666.

[31] H. Qiu, Y. Ma, Z. Li, S. Liu, J. Sun, Borderdet: Border feature for dense object
detection, in: European Conference on Computer Vision, Springer, 2020, pp.
549–564. .

[32] Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object
detection, in: Proceedings of the IEEE international conference on computer
vision, 2019, pp. 6054–6063.

[33] E.H. Adelson, C.H. Anderson, J.R. Bergen, P.J. Burt, J.M. Ogden, Pyramid methods
in image processing, RCA Engineer 29 (6) (1984) 33–41.

[34] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid
networks for object detection, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2117–2125.

[35] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small
object detection, arXiv preprint arXiv:1902.07296 (2019). .

[36] R. LaLonde, D. Zhang, M. Shah, Clusternet: Detecting small objects in large
scenes by exploiting spatio-temporal information, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4003–
4012. .

[37] F. Yang, H. Fan, P. Chu, E. Blasch, H. Ling, Clustered object detection in aerial
images, in: Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 8311–8320.

[38] X. Yuan, L. Fang, Q. Dai, D.J. Brady, Y. Liu, Multiscale gigapixel video: a cross
resolution image matching and warping approach, in: 2017 IEEE International
Conference on Computational Photography (ICCP), IEEE, 2017, pp. 1–9.

[39] Y. Wang, L. Wang, H. Lu, Y. He, Segmentation based rotated bounding boxes
prediction and image synthesizing for object detection of high resolution
aerial images, Neurocomputing 388 (2020) 202–211.

[40] J. Zhou, C.-M. Vong, Q. Liu, Z. Wang, Scale adaptive image cropping for uav
object detection, Neurocomputing 366 (2019) 305–313.

[41] J. Gao, Q. Wang, Y. Yuan, Scar: Spatial-/channel-wise attention regression
networks for crowd counting, Neurocomputing 363 (2019) 1–8.

[42] Z. Li, M. Dong, S. Wen, X. Hu, P. Zhou, Z. Zeng, Clu-cnns: Object detection for
medical images, Neurocomputing 350 (2019) 53–59.

[43] M. Najibi, B. Singh, L.S. Davis, Autofocus: Efficient multi-scale inference, in:
Proceedings of the IEEE International Conference on Computer Vision, 2019,
pp. 9745–9755. .

[44] B. Singh, M. Najibi, L.S. Davis, Sniper: Efficient multi-scale training, in:
Advances in neural information processing systems, 2018, pp. 9310–9320. .

[45] M. Gao, R. Yu, A. Li, V.I. Morariu, L.S. Davis, Dynamic zoom-in network for fast
object detection in large images, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 6926–6935.

[46] A. Neubeck, L. Van Gool, Efficient non-maximum suppression, in: 18th
International Conference on Pattern Recognition (ICPR’06), vol. 3, IEEE, 2006,
pp. 850–855. .

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, in: Advances in neural information processing systems,
2019, pp. 8026–8037. .

[48] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014). .

Kai Chen received his M. Sc. degree and B. Sc. degree
from school of Software, Tsinghua University, Beijing,
China in 2017 and 2014 respectively. He is a Ph. D.
candidate in School of Software, Tsinghua University,
Beijing, China. His research interests focuses on visual
perception tasks via deep learning methods, including
object detection, person re-identification, etc.

http://refhub.elsevier.com/S0925-2312(21)01887-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0005
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0025
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0030
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0050
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0050
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0050
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0050
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0055
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0055
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0055
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0055
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0065
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0065
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0065
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0070
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0085
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0085
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0085
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0085
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0090
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0095
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0095
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0100
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0100
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0100
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0105
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0110
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0110
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0110
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0115
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0115
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0125
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0140
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0140
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0140
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0140
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0150
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0150
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0150
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0150
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0160
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0165
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0165
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0170
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0185
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0190
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0195
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0200
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0205
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0210
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0210
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0225
http://refhub.elsevier.com/S0925-2312(21)01887-7/h0225


K. Chen, Z. Wang, X. Wang et al. Neurocomputing 477 (2022) 14–24
Zerun Wang received his B. Sc. degree from School of
Software, Tsinghua University, Beijing, China in 2019.
Now he is a master candidate in School of Software,
Tsinghua University, Beijing, China. His research inter-
ests focuses on deep learning-based visual tasks
including object detection, image restoration, etc.
Xueyang Wang is currently a master student in Tsin-
ghua-Berkeley Shenzhen Institute (TBSI), Tsinghua
University. He received B.E. from Xi’an Jiaotong Uni-
versity in 2019. His research interest is computer vision.
Dahan Gong received the B.S. and M.S. degree from
School of Software, Tsinghua University, Beijing, China
in2015 and 2018 respectively, and currently is a Ph.D.
student in the same department. His research interests
include computer vision and inference optimization.
24
Longlong Yu Graduated as an undergraduate from
School of Software, Tsinghua University, Beijing, China
in 2013. He was an Engineer in YQ Education & Tech-
nology Group Inc, between 2013 and 2017. Now he is in
charge of artificial intelligence research in his own
startup company.
Yuchen Guo received his Ph. D. degree and B. Sc. degree
from School of Software, Tsinghua University, Beijing,
China in 2018 and 2013 respectively. He was a Postdoc
researcher in Department of Automation, Tsinghua
Univerisity, between 2018 and 2020. Now he is an
assistant researcher in Beijing National Research Center
for Information Science and Technology, Tsinghua Uni-
versity. His research interests focuses on brain inspired
artificial intelligence.
Guiguang Ding is currently an Associate Professor with
the School of Software, Tsinghua University, China. His
research interests include the areas of multimedia
information retrieval, computer vision, and machine
learning.


	Towards real-time object detection in GigaPixel-level video
	1 Introduction
	2 Related work
	2.1 Object detection
	2.2 Object detection in large-scale scene

	3 Proposed GigaDet
	3.1 GigaDet framework
	3.2 Patch generation
	3.3 DecDet
	3.4 Implementation details

	4 Experiments
	4.1 Dataset and settings
	4.1.1 Dataset
	4.1.2 Evaluation metric
	4.1.3 Experimental setup

	4.2 Inference speedup
	4.3 Necessity of patch generation
	4.4 Ablation study on GigaDet settings
	4.4.1 Scales of patch candidates
	4.4.2 Size of input for DecDet
	4.4.3 w/o direct detection
	4.4.4 patch IoU threshold

	4.5 Meticulous study on inference time
	4.6 Disadvantages analysis

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


