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Abstract

Unsupervised person re-identification (ReID) aims to
train a feature extractor for identity retrieval without ex-
ploiting identity labels. Due to the blind trust in imper-
fect clustering results, the learning is inevitably misled by
unreliable pseudo labels. Albeit the pseudo label refine-
ment has been investigated by previous works, they gen-
erally leverage auxiliary information such as camera IDs
and body part predictions. This work explores the internal
characteristics of clusters to refine pseudo labels. To this
end, Confidence-Guided Centroids (CGC) are proposed to
provide reliable cluster-wise prototypes for feature learn-
ing. Since samples with high confidence are exclusively
involved in the formation of centroids, the identity infor-
mation of low-confidence samples, i.e., boundary samples,
are NOT likely to contribute to the corresponding centroid.
Given the new centroids, current learning scheme, where
samples are enforced to learn from their assigned centroids
solely, is unwise. To remedy the situation, we propose
to use Confidence-Guided pseudo Label (CGL), which en-
ables samples to approach not only the originally assigned
centroid but other centroids that are potentially embedded
with their identity information. Empowered by confidence-
guided centroids and labels, our method yields compara-
ble performance with, or even outperforms, state-of-the-art
pseudo label refinement works that largely leverage auxil-
iary information.

1. Introduction
Person re-identification (ReID) aims to retrieve a per-

son of interest across multiple cameras [14, 29, 35]. Due to
the label-free training manner, unsupervised person ReID
methods have attracted increasing attention. Unsupervised
ReID methods can be broadly categorized into two types:
unsupervised domain adaptation (UDA) methods [5, 9, 11,
25, 31, 40] and purely unsupervised learning (USL) meth-
ods [2,4,6,23,33]. The former pre-trains a model on person-
related datasets, i.e., source domain, and fine-tunes it on
ReID-related datasets, i.e., target domain. Apart from re-
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Figure 1. Training samples (cluster ID = 1) and their silhouette
scores at epoch 0 (blue), epoch 25 (orange), and epoch 50 (green)
on MSMT17 [24]. Higher silhouette scores denote samples are
clustered at higher confidence. Best viewed in color.

quiring additional annotated labels, UDA methods are vul-
nerable to the large gap between the source domain and the
target domain. In contrast, USL methods do not require any
labeled data for training, which are more challenging but
well fit real-world scenarios. In the paper, we focus on USL
methods.

Existing USL methods generally follow a two-stage
training scheme: 1) clustering, i.e., obtaining the pseudo
labels via a clustering algorithm such as DBSCAN [8],
and 2) network training, i.e., optimizing the network in
a “supervised” manner with assigned cluster IDs. Con-
trastive loss such as InfoNCE [9] or ClusterNCE [6] usu-
ally serves as training objectives. Due to the blind trust in
imperfect clustering results, the learning is inevitably mis-
led by unreliable pseudo labels, where multiple identities
are merged into one cluster or samples of one person are
assigned to multiple clusters. Despite that some pseudo la-
bel refinement [2, 4, 23, 32, 33] have been proposed, they
generally leverage auxiliary information, such as camera
IDs [2, 23], body part predictions [4], and generated sam-
ples [33]. Given the fact that such auxiliary information is
not free in reality, refining pseudo labels by merely exploit-
ing internal characteristics within samples, i.e., the sample-

ar
X

iv
:2

21
1.

11
92

1v
1 

 [
cs

.C
V

] 
 2

2 
N

ov
 2

02
2



wise clustering confidence, appears to be more valuable.
To measure the sample-wise clustering confidence, i.e.,

how well a sample fits its cluster, we employ a met-
ric: silhouette score [19]. The score presents the ratio
between intra-cluster distance and inter-cluster distance,
which ranges from -1 to +1 (higher is better). To demon-
strate the relationship between the clustering confidence
and the silhouette score, we visualize silhouette scores of
training samples of MSMT17 [24] in Fig. 1. Samples are
from the same cluster (cluster ID=1) but at different train-
ing epochs, i.e., 0, 25, and 50, respectively. As training goes
on, the clustering is gradually enhanced by involving more
effective features and the more discriminative network. At
first images are grouped by coarse visual features, yet by
identity-related information in the end. Meanwhile, sample-
wise silhouette scores continuously shift towards higher val-
ues during training. Given this consistency, a conclusion
can be drawn that, a higher silhouette score implies the sam-
ple better fits its cluster, i.e., being clustered at higher con-
fidence. Previous learning schemes [6, 33] adopt all-sample
based centroids, which are obtained by averaging features
of all samples within the cluster, and enforce instances to
approach such centroids. However, our observation sug-
gests that low-confidence samples either are poor in quality
or belong to other identities. Features of such images will
inevitably contaminate centroids regardless of the training
stage. In light of this, we propose Confidence-Guided Cen-
troids (CGC) to provide more reliable cluster-wise proto-
types for feature learning.

Although the reliability of cluster centroids has been im-
proved, the conventional one-hot labeling strategy aggra-
vates a problem. Since high-confidence samples exclusively
contribute to the formation of cluster centroids, the identity-
related information of low-confidence samples can hardly
be presented in the assigned centroid. To illustrate the prob-
lem, an analysis is conducted on MSMT17 [24], where we
intend to investigate how much identity information of low-
confidence samples can be presented in their assigned cen-
troids. We found that, with the vanilla all-sample based
cluster centroids, only 5.83% low-confidence samples have
their identity information embedded in the assigned cen-
troid at the beginning. Although the ratio gradually climbs
to 17.19%, a large proportion of low-confidence samples
(over 80%) still are pushed to “wrong” centroids. Unfortu-
nately, the ratio achieves 14.17% at most with confidence-
guided centroids. Given the situation, the one-hot label-
ing strategy, which enforces samples to learn from the as-
signed centroid solely, is unwise. To address the problem,
we propose to use confidence-guided pseudo labels (CGL),
which encourages instances to approach not only the as-
signed confidence-guided centroid but also others where
their identity information are potentially embedded.

In summary, our contributions are as follows:

• We propose Confidence-Guided Centroids (CGC) to
provide cluster-wise prototypes for feature learning.
The reliability of centroids is improved via filtering out
low-confidence samples during formation.

• To overcome the problem that the identity informa-
tion of low-confidence samples is rarely presented in
their assigned centroids, we propose to use confidence-
guided pseudo labels (CGL) during training. Apart
from the originally assigned centroid, instances are
also encouraged to approach other centroids where
their identity information are potentially embedded.

• The proposed method only exploits internal character-
istic for unsupervised person re-identification. Exten-
sive experiments on benchmark datasets demonstrate
that, our method yields better or comparable perfor-
mances with state-of-the-art ones that largely leverage
auxiliary information.

2. Related work

Unsupervised Person ReID. The existing unsupervised
person ReID methods are divided into two categories: a)
Unsupervised Domain Adaptation (UDA) methods, which
boost the performance by leveraging the knowledge trans-
ferred from the source domain [5, 9, 11, 25, 31, 40], and b)
purely UnSupervised Learning (USL) methods, which do
not require any identity labels during training [2,4,6,17,32,
33]. Since UDA methods are highly prone to be affected
by the large gap between the source domain and the tar-
get domain, they are hardly applicable to real-world scenar-
ios [15, 29]. In the paper, we focus on USL methods.

Generally, USL methods exploit pseudo labels, instead
of actual identity labels, as the guidance during train-
ing. Pseudo labels can be generated either by the image
similarity [17, 22] or clustering algorithms [6, 16, 30, 33].
Specifically, SSL [17] and MMCT [22] formulate unsu-
pervised person ReID as a classification task and predict
pseudo labels based on the image similarity. In terms of
clustering-based methods, BUC [16] and HCT [30] em-
ploy the bottom-up clustering scheme to gradually merge
similar individual samples into clusters. Recently, Cluster-
Contrast [6] adopts a contrastive learning scheme, which
initializes, updates, and performs contrastive loss computa-
tion at the cluster level. However, clustering-based methods
are generally sensitive to the pseudo label noise brought by
imperfect clustering results.
Noise Reduction of Pseudo Label. Recently, how to han-
dle noise pseudo labels in clustering-based methods has be-
come a research hotspot. Specifically, SpCL [9] employs
a self-paced learning scheme to gradually obtain more re-
liable clusters for the pseudo label refinement. CAP [23]
splits each cluster into multiple proxies according to camera
IDs. Such camera-aware proxies eliminate the pseudo label



noise brought by varying viewing points. ICE [2] alleviates
the label noise by enhancing the consistency between aug-
mented and original instances. RLCC [32] refines pseudo
labels with the clustering consensus, which encourages the
consistency between cluster results of two consecutive iter-
ations. PPLR [4] employs the complementary relationship
between reliable features of human global and body parts
for the pseudo label refinement. ISE [33] generates bound-
ary samples from actual samples and their neighboring clus-
ters. The discriminability of the network is improved by
enforcing generated samples to be correctly classified.

Unlike the above methods, this work explores whether
internal characteristics can facilitate the pseudo label refine-
ment. In the paper, we investigate the sample-wise clus-
tering confidence, which describes how well a sample fits
its cluster. With such criteria, we propose to employ better
cluster centroids and pseudo labels for feature learning.

3. Methodology
3.1. Problem Statement

Let T = {xi}Ni=1 denote an unlabeled training dataset,
where xi represents i-th image and N is the number of im-
ages. The USL ReID task aims to train a feature extrac-
tor Eθ in the unsupervised manner, where ReID features
F = {fi}Ni=1 are derived. The identity retrieval during
inference is based on such ReID features. The training
scheme of clustering-based USL methods [6, 9, 23, 33] al-
ternates between two stages:
Stage I: Clustering. At the beginning of each epoch, train-
ing samples are clustered by DBSCAN [8]. Cluster IDs
yi ∈ {1, ..., C} serve as one-hot pseudo labels for the net-
work optimization. Meanwhile, based on clustering results,
a cluster-based memory bankM = {mi}Ci=1 is initialized
by cluster centroids that are formulated as,

mi =
1

|C|
∑
fi∈C

fi, (1)

where fi represents the feature of i-th sample in the cluster
C, and |C| denotes the cluster size.
Stage II: Network Training. With the obtained pseudo la-
bels, the network is then optimized in a “supervised” man-
ner with the training objective, i.e., ClusterNCE [6], which
is formulated as,

L = −log
exp(Φ(f ·m+)/τ)∑C
j=1 exp(Φ(f ·mj)/τ)

, (2)

wherem+ refers to the centroid of the cluster that f belongs
to,mj represents j-th centroid in the memory bank, Φ(u·v)
represents the cosine similarity between vector u and vector
v, and τ is the temperature parameter. The memory bank is
updated in a momentum manner [6] as,

mi ← µ ·mi + (1− µ) · f, (3)

where µ is the updating factor and f refers to the feature of
instance belonging to i-th cluster in the current mini-batch.

In this paper, we follow the framework of iterative clus-
tering and network training. However, our method, as il-
lustrated in Fig. 2, differs from previous works mainly in
two aspects: 1) cluster centroids. Instead of using all sam-
ples to calculate the centroids, we adopt confidence-guided
centroids (CGC) to provide reliable cluster-wise prototypes
for feature learning (Sec. 3.3), and 2) pseudo labels. Apart
from the assigned centroid, our confidence-guided pseudo
labels (CGL) encourages instances to approach other cen-
troids where their identity information are potentially em-
bedded (Sec. 3.4).

3.2. Silhouette Score

To describe the sample-wise clustering confidence, i.e.,
how well a sample fits its cluster, we employ a metric named
silhouette score [19]. The score simultaneously considers
two key factors of clustering, i.e., tightness and separation.

Formally, for i-th data point in cluster CI , its average
distance to other data points within the cluster can be calcu-
lated as,

ai =
1

|CI |
∑

i,j∈CI ,i6=j

d(i, j), (4)

where d(i, j) refers to the distance between i-th and j-th
data points and |CI | represents the cluster size. Similarly,
the distance between i-th data point and samples belonging
to its nearest neighboring cluster CJ can be denoted as,

bi = min
J 6=I

1

|CJ |
∑
j∈CJ

d(i, j). (5)

Given the intra-class distance ai and the minimal inter-class
distance bi, the silhouette score si is formulated as,

si =
bi − ai

max(ai, bi)
. (6)

The silhouette score ranges from [−1, 1]. Note that, the
score of clusters consisting of a single data point is 0. If
an instance has a higher silhouette score, it has a smaller
intra-class distance and a large inter-class distance. In other
words, it is clustered at a higher confidence [19].

3.3. Confidence-guided Centroids

Based on the observation that images with lower sil-
houette scores (confidence) are generally containing high
uncertainty regarding person identity, previous all-sample
based cluster centroids are undoubtedly unwise. To remedy
the problem, we build confidence-guided centroids (CGC)
with high-confidence images only.
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Figure 2. Framework of the proposed method. At the beginning of each epoch, training samples are clustered by DBSCAN [8]. Based on
the original clustering result, we select a confidence-guided subset to build our confidence-guided centroids (CGC). During optimization,
samples are encouraged to approach not only the assigned centroid but others where their identity information are potentially embedded
via our confidence-guided pseudo labels (CGL).

Specifically, the confidence-guided centroid of i-th clus-
ter mi can be formulated as,

mi =
1

|Cq|
∑
fi∈Cq

fi, Cq = {fi ∈ C|si > δ}, (7)

where a confidence-guided subset Cq is selected from the
original cluster C by a silhouette score threshold δ. All
confidence-guided centroids are then stored in a confidence-
guided memory bank Mq = {mi}Ci=1 for network opti-
mization.

According to Fig. 1, our confidence-guided centroids can
filter out images that are poor in quality or with cluttered
backgrounds at early stages. While at later stages, such
centroids effectively exclude some low-confidence samples
that possibly belong to other identities. In summary, the
proposed confidence-guided centroids can provide more re-
liable cluster-wise prototypes for feature learning.

3.4. Confidence-guided Pseudo Labels

Another problem of the clustering-based USL meth-
ods is that, samples, especially low-confidence ones, very
likely carry different identity information with their as-
signed centroids. Our confidence-guided centroids also
confronts with the problem since only high-confidence sam-
ples are included in the formation of centroids, as illus-
trated in Fig. 2. Given the situation, the previous learning
scheme, which enforces samples to approach their assigned
centroids solely regardless of the identity consistency in-
between, is unwise. To alleviate the problem, we propose
to use confidence-guided pseudo labels (CGL). Such label-
ing encourages samples to approach not only the assigned
centroid but other centroids where their identity information
are potentially embedded.

Specifically, we build a distance matrix D ∈ RN×C ,
where N and C denote the number of samples and clus-
ters at the current epoch, respectively. In the paper, clus-

ters consisting of one sample are ignored [6]. As normal-
ized identity features and centroids are adopted,D(i, j) rep-
resents the cosine distance between i-th sample and j-th
confidence-guided centroid. Since similar samples are more
likely to be scattered in neighboring clusters [33], the iden-
tity information of boundary samples is probably embedded
in neighboring centroids. Therefore, when setting the learn-
ing target for samples, neighboring centroids should be as-
signed with higher confidence while distanced ones should
be given lower confidence. To this end, a confidence matrix
P ∈ RN×C is obtained by,

P(i, j) =
pi,j∑C
j=1 pi,j

, pi,j = σ(−D(i, j)), (8)

where P(i, j) represents the confidence of j-th centroid
given by i-th sample,

∑C
j=1 P(i, j) = 1, and σ(·) is the

Sigmoid function. By integrating the confidence matrix
with the originally assigned one-hot pseudo label yi, the
confidence-guided pseudo label of i-th sample ỹi can be for-
mulated as,

ỹi = β · yi + (1− β) · P(i), (9)

where β ∈ [0, 1] is the coefficient for the pseudo label re-
finement.

According to a previous work [26], the training ob-
jective, i.e., ClusterNCE, can be considered as a non-
parametric classifier, where centroids stored in the mem-
ory bank serve as the weight matrix of the classification
layer. Therefore, the training objective of our method can
be rewritten as,

Lq =
1

N

N∑
i=1

[
`ce
(
MT

q fi, ỹi
)]
, (10)

where `ce refers to the cross-entropy loss. Compared to
Eq. (2), the training objective of our method can be ob-
tained by simply applying two modifications: 1) replacing



Algorithm 1: Pipeline of our method

1 Require: Unlabeled data with pseudo labels
T = {(xi, yi)}Ni=1, where yi ∈ {1, . . . , C}

2 Require: Initialize the backbone encoder Eθ
3 Require: Threshold δ for Eq. (7)
4 Require: Coefficient β for Eq. (9)
5 for n in [1, epoch num] do
6 Extracting features F by Eθ
7 Clustering F into C clusters with DBSCAN
8 Building CGC dictionaryMq by Eq. (7)
9 for m in [1, iteration num] do

10 Sampling a mini-batch from T
11 Computing CGL with Eq. (9)
12 Computing loss with Eq. (10)
13 Updating encoder Eθ
14 Updating centroids with Eq. (3)
15 end
16 end

the original M with our confidence-guided memory bank
Mq , and 2) replacing the one-hot pseudo label yi with our
confidence-guided one ỹi. The training details are presented
in Algorithm 1.

4. Experiment
4.1. Datasets and Evaluation Protocol

Datasets. We evaluate our proposed method on Market-
1501 [34] and MSMT17 [24]. Market-1501 includes 32,668
images of 1,501 identities captured by 6 cameras. Among
them, 12,936 images of 751 identities are used for train-
ing while the resting 19,732 images of 750 identities form
the test set. MSMT17 contains 126,441 images from 4,101
identities captured by 15 cameras. The training set is com-
posed of 32,621 images of 1,041 identities and the test set
consists of 93,820 images of 3,060 identities. MSMT17 is
more challenging due to the diversity in backgrounds, illu-
minations, poses, and occlusions.
Evaluation Protocol. Following previous methods [2, 6, 9,
33], the mean average precision (mAP) [1] and the cumula-
tive matching characteristic (CMC) [34] top-1, top-5, top-
10 accuracies are adopted as evaluation metrics. Note that,
there are no post-processing operations, such as rerank-
ing [38], during inference.

4.2. Implementation Details

Following previous works [6, 9, 33], we adopt ResNet-
50 [10] pre-trained on ImageNet [7] as our backbone feature
encoder [6]. All layers after layer-4 are replaced by a gener-
alized mean pooling (GeM) [18] layer followed by the batch
normalization layer [12]. The output 2048-dimensional

ReID features are firstly normalized and then used for iden-
tity retrieval during inference. Our framework is built upon
a state-of-the-art USL method [6]. For a fair comparison,
we follow all experimental settings except for the formation
of cluster centroids and the training objectives, as described
in Sec. 3. The coefficient β in Eq. (9) is empirically set as
0.8 to achieve optimal performances.

During training, input images are resized to 256×128.
We adopt random flipping, cropping, and erasing [39] as
data augmentation. Each mini-batch is formed by 16 iden-
tities, each with 16 images. Both identity and images are
randomly selected from the training set. For the optimiza-
tion, we adopt Adam [13] optimizer with a weight decay of
0.0005. The learning rate is set to 3.5 × 10−4 initially, and
is divided by 10 every 30 epochs. We train for a total of 70
epochs on Market-1501 [34], and 50 on MSMT17 [24].

4.3. Comparison with State-of-the-art Methods

We compare our method with state-of-the-art (SOTA)
unsupervised person ReID methods in Table 1. Compared
with SOTA USL methods, our method outperforms previ-
ous ones, except ISE [33], on both benchmarks. Specif-
ically, our method achieves 85.3% mAP and 94.2% top-1
accuracy on Market-1501 and 34.6% mAP and 63.4% top-
1 accuracy on MSMT17. As stated in Sec. 2, existing SOTA
methods generally leverage auxiliary information to refine
pseudo labels. For example, CAP [23] and ICE [2] lever-
age the camera information, PPLR [4] employs body part
predictions, and ISE [33] generates extra support samples
in the latent space. As a departure from the above meth-
ods, our method yields SOTA performances by involving
internal characteristics, i.e., the sample-wise clustering con-
fidence, only.

Additionally, we report the performance of some well-
known supervised person ReID methods [20, 37] and unsu-
pervised one [2] under the supervised setting in Table 1. De-
spite the absence of identity labels, our method even outper-
forms some supervised person ReID methods. Additionally,
by replacing the pseudo labels with the ground-truth iden-
tity labels provided by datasets, our method outperforms an
USL method (ICE [2]), which proves the potential of our
framework.

4.4. Ablation Study

In this section, we thoroughly analyze the effectiveness
of the proposed strategies, i.e.,confidence-guided centroids
(CGC) and confidence-guided pseudo labels (CGL).
Effectiveness of CGC. We compare models trained with
the vanilla all-sample based cluster centroids (“Baseline”)
and with the proposed confidence-guided ones (“Baseline +
CGC”). The performances are reported in Table 1. As can
be seen, confidence-guided centroids boost the ReID per-
formance by +1.7% / +0.6% on mAP / top-1 accuracy on



Method Reference
Market-1501 MSMT17

mAP top-1 top-5 top-10 mAP top-1 top-5 top-10
Purely Unsupervised
SSL [17] CVPR’20 37.8 71.7 83.8 87.4 - - - -
MMCL [22] CVPR’20 45.5 80.3 89.4 92.3 11.2 35.4 44.8 49.8
HCT [30] CVPR’20 56.4 80.0 91.6 95.2 - - - -
SpCL [9] NeurIPS’20 73.1 88.1 95.1 97.0 19.1 42.3 55.6 61.2
JNTL-MCSA [28] CVPR’21 61.7 83.9 92.3 - 15.5 35.2 48.3 -
GCL [3] CVPR’21 66.8 87.3 93.5 95.5 21.3 45.7 58.6 64.5
IICS [27] CVPR’21 72.9 89.5 95.2 97.0 26.9 56.4 68.8 73.4
JVTC+* [3] CVPR’21 75.4 90.5 96.2 97.1 29.7 54.4 68.2 74.2
OPLG-HCD [36] ICCV’21 78.1 91.1 96.4 97.7 26.9 53.7 65.3 70.2
CAP† [23] AAAI’21 79.2 91.4 96.3 97.7 36.9 67.4 78.0 81.4
ICE [2] ICCV’21 79.5 92.0 97.0 98.1 29.8 59.0 71.7 77.0
ICE† [2] ICCV’21 82.3 93.8 97.6 98.4 38.9 70.2 80.5 84.4
Cluster-Contrast [6] Arxiv’21 82.1 92.3 96.7 97.9 27.6 56.0 66.8 71.5
PPLR [4] CVPR’22 81.5 92.8 97.1 98.1 31.4 61.1 73.4 77.8
PPLR† [4] CVPR’22 84.4 94.3 97.8 98.6 42.2 73.3 83.5 86.5
ISE [33] CVPR’22 84.7 94.0 97.8 98.8 35.0 64.7 75.5 79.4
Cluster-Contrast (*Baseline) Arxiv’21 82.4 92.5 96.9 98.0 31.4 61.2 72.5 76.9
Baseline+CGC - 84.1 93.1 97.2 98.2 34.1 63.1 75.0 79.0
Baseline+CGL - 83.4 93.2 97.1 98.2 33.7 62.5 73.9 78.4
Ours - 85.3 94.2 97.6 98.5 34.6 63.4 74.6 79.3
Supervised
PCB [20] ECCV’18 81.6 93.8 97.5 98.5 40.4 68.2 - -
DG-Net [37] CVPR’19 86.0 94.8 - - 52.3 77.2 - -
ICE (w/ ground-truth) [2] ICCV’21 86.6 95.1 98.3 98.9 50.4 76.4 86.6 90.0
Our (w/ ground-truth) - 87.4 95.3 98.5 99.0 51.0 76.6 87.1 90.1

Table 1. Comparison of ReID methods on Market-1501 and MSMT17 datasets. The best USL results without camera information are
marked with bold. † indicates using the additional camera knowledge.

Market-1501, and +2.7% / +1.9% on MSMT17. Such im-
provements reveal the potential of the clustering confidence
in the pseudo label refinement.

To better understand how our confidence-guided cen-
troids benefit feature learning, we analyze how the sample-
wise confidence varies throughout the training process on
MSMT17. Specifically, we visualize the distribution of
silhouette scores at different epochs in Fig. 3. Note that
scores of outliers are excluded. Several conclusions can
be drawn from the comparison between Fig. 3(a) and
Fig. 3(b). 1) As training goes on, the number of valid sam-
ples gradually increases, representing as larger areas un-
der the curve. 2) Starting from the same point (epoch 0),
with our confidence-guided centroids, a noticeable shift to-
wards higher scores can be found at epoch 25. The shift
implies CGC can effectively reduce the overall number of
low-confidence samples while enhancing high-confidence
ones. 3) The advantage remains until the end of training. At
epoch 50, the number of high-confidence samples increases,
representing by a higher peak closer to 0.4.
Effectiveness of CGL. We also compare the baseline model
(“Baseline”) and the model trained with confidence-guided
pseudo labels (“Baseline + CGL”). The performances are
shown in Table 1. As can be seen, CGL improves mAP and
top-1 accuracy by 1.0% and 0.7% on Market-1501, by 2.3%
and 1.3% on MSMT17. When both CGC and CGL are em-

ployed during training, improvements are +2.9% and +1.7%
on Market-1501, and +3.2% and +2.2% on MSMT17.

In terms of the sample-wise clustering confidence, we
visualize the distribution of silhouette scores in Fig. 3(c),
when CGL is applied during training. Compared to the
model trained without CGL (Fig. 3(b)), CGL further pushes
the score towards a higher value at both epoch 25 and
epoch 50. Less low-confidence samples during training
implies our CGL contributes to better clustering. In sum-
mary, the above qualitative and quantitative results prove
the proposed scheme can boost performance by enhancing
the sample-wise clustering confidence.

4.5. Parameter Analysis

Threshold δ in CGC. To obtain the optimal threshold
δ in Eq. (7) for the proposed confidence-guided centroids
(CGC), three types of threshold selection strategies are ex-
plored, i.e., linear, dynamic and constant, respectively. For
the former two strategies, the threshold gradually increases
as training goes on. The constant strategy employs a fixed
threshold throughout the training process.

Specifically, the linear strategy updates the threshold by
δt = δ0∗t/T +ε, where δ0 limits the range of threshold and
ε is the offset. In the paper, we set δ0 = 0.2 and ε = −0.1.
t and T denote the current epoch and the overall number of
epochs, respectively. In terms of the dynamic strategy, the
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Figure 3. Silhouette scores of valid samples (MSMT17 [24]) at
different epochs. Comparisons are conducted between (a) base-
line model, (b) baseline model with confidence-guided centroids
(CGC), and (c) baseline model with CGC and confidence-guided
pseudo labels (CGL). Best viewed in color.

Method Strategy δ
Market-1501 MSMT17
mAP top-1 mAP top-1

Baseline - - 82.4 92.5 31.4 61.2

Ours

Linear - 85.3 94.2 33.6 63.0
Dynamic - 84.9 93.9 33.0 62.8

Constant
-0.1 83.5 93.4 32.7 62.8

0 84.9 94.0 34.6 63.4
0.1 84.0 93.3 34.0 63.2

Table 2. Comparison of threshold selection strategies of
confidence-guided centroids (CGC) on benchmark datasets.

threshold is updated by δ = δ0 ∗ tanh(0.1 ∗ (t − T/2)).
We set δ0 = 0.1 to achieve δ ∈ [−0.1, 0.1], which is the
same as the linear strategy. The range is set empirically in
the consideration of the image quality and the distribution
of silhouette scores (see Fig. 3). Apart from the varying
threshold, we conduct the constant strategy by fixing the
threshold as {−0.1, 0, 0.1} respectively. The comparisons
between model performances with different strategies are
reported in Table 2. The best performance is achieved when
adopting the linear strategy for Market-1501 and applying
a fixed threshold δ = 0 on MSMT17. The optimal settings
are employed in all experiments.
Coefficient β in CGL. To analyze the impact of the coef-
ficient β in the proposed confidence-guided pseudo labels
(CGL), we tune the value of parameter β from 0 to 1 while
keeping others fixed. According to Eq. (9), when β is set
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Figure 4. Comparison of coefficient β in confidence-guided
pseudo labels (CGL) on (a) Market-1501 and (b) MSMT17.

to 0 or 1, our method decomposes down to using the confi-
dence matrix or the one-hot pseudo label exclusively during
training. The results on two benchmarks are illustrated in
Fig. 4. As shown, as β increases from 0 to 0.8, both mAP
and top-1 accuracy increase. A slight performance drop can
be found when increasing β from 0.8 to 1. To achieve the
best performance, we set β = 0.8 for all experiments.

4.6. More Discussions

Identity Feature Distribution. To better understand the
advantages of the proposed strategies, we visualize the dis-
tribution of identity features via t-SNE [21]. Specifically, 20
identities are randomly selected from Market-1501 [34] and
MSMT17 [24], respectively. Features of selected identities
are extracted by the baseline model and our model is trained
with confidence-guided centroids (CGC) and confidence-
guided pseudo labels (CGL). The distribution of identity
features is illustrated in Fig. 5. As can be seen, due to the
vast variety in camera views, backgrounds, and poses, the
feature distribution of MSMT17 is more chaotic than that of
Market-1501. Despite such challenges, with the aid of the
proposed strategies, features of the same identity are dis-
tributed more compactly while features of different identi-
ties are further separated.
Identity Consistency Score. The current learning scheme
enforces samples to approach their assigned cluster cen-
troids, where their identity information are embedded.
However, the existence of noisy labels will lead samples
to “wrong” centroids. It is especially problematic for low-
confidence samples, i.e., boundary samples, because they
can be closer to other centroids than the assigned ones.

To investigate the problem, we conduct an experiment
on MSMT17 to analyze how much the identity informa-
tion of boundary samples can be presented in the assigned
centroids, i.e., the identity consistency in-between. Specif-
ically, we select clusters whose size is over 100 at each
epoch. For each cluster, samples whose silhouette scores
rank at the bottom 5% are empirically marked as bound-
ary samples. Formally, let C = {(xi, gi)}Nc

i=1 denote a
cluster with Nc samples, where gi refers to the ground-
truth identity label provided by the dataset. An identity
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Figure 5. Visualization of the identity feature distribution via t-
SNE [21] on (a) Market-1501 and (b) MSMT17. For each group,
features are derived by the baseline model (left) and the model
trained with the proposed confidence-guided centroids (CGC) and
pseudo labels (CGL) (right), respectively. Model performances
(mAP) are also denoted. Different identities are denoted by differ-
ent colors. Best viewed in color.

set G = {gk}Mk=1 is then constructed by overall M iden-
tities occurring in the cluster. Following the formation
of vanilla all-sample based cluster centroids (Eq. (1)), the
identity information embedded in the centroid can be ob-
tained by linearly integrating all identities within the clus-
ter via weights Q = {qk}Mk=1, where qk is obtained by
qk = 1

|C|
∑
gi∈C 1{gi = gk}. |C| denotes the cluster size.

1{gi = gk} equals to 1 when gi = gk, otherwise 0. Then,
the identity consistency score (ICS) between boundary sam-
ples and the cluster centroid of C can be calculated as,
ICS = 1

Nc

∑
gi∈C qk · 1{gi = gk}.

Similar to the vanilla scheme, ICS of our confidence-
guided centroids (CGC) scheme can be computed by simply
replacing C with the confidence-guided subset Cq during the
computation of the weight qk. Since low-confidence sam-
ples are filtered out in the formation of confidence-guided
centroids, the identity set G only includes identities of sam-
ples with high confidence scores. We compare the average
ICS throughout the training with vanilla all-sample based
cluster centroids and the proposed confidence-guided ones,
and obtain the curves in Fig. 6.

For the vanilla scheme, only 5.83% boundary samples
carry the same identity information with their assigned cen-
troid at the beginning. Although the ratio gradually climbs
to 17.19%, a large proportion of boundary samples (over
80%) still are pushed to centroids where their identity in-
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Figure 6. Identity consistent score (ICS) of boundary samples at
different epochs. Vanilla and CGC refer to the previous all-sample
based cluster centroids and the proposed confidence-guided cen-
troids, respectively.

formation are rarely presented. Unfortunately, the problem
has been aggravated by confidence-guided centroids, where
the ratio achieves 14.17% at most. The low identity consis-
tency scores point out the seriousness of the problem and
validates the necessity of our confidence-guided pseudo la-
bels.

5. Conclusion

This paper focused on the pseudo label refinement for
clustering-based unsupervised person ReID, which aims to
alleviate the pseudo label noise brought by imperfect clus-
tering results. Instead of relying on auxiliary information
such as camera IDs, body parts, or generated samples, we
refined pseudo labels with internal characteristics, i.e., the
sample-wise clustering confidence. Specifically, we pro-
posed to use confidence-guided centroids (CGC) to provide
reliable cluster-wise prototypes for feature learning, where
low-confidence instances are filtered out during the forma-
tion of centroids. Additionally, targeting at the problem that
a large proportion of samples are pushed to “wrong” cen-
troids, we propose to use confidence-guided pseudo labels
(CGL). Such labeling enables samples to approach not only
the assigned centroid but other clusters where their identi-
ties are potentially embedded. With the aid of CGC and
CGL, our method yields comparable performances with, or
even outperforms, state-of-the-art pseudo label refinement
works that largely leverage auxiliary information.
Limitations and Broader Impact. Although we conducted
multiple threshold strategies in the paper, the range is se-
lected empirically. We are interested in exploring adaptive
thresholds in the future. Despite that our method did NOT
leverage either identity labels or auxiliary information, it
may still involve a concern for human privacy during the
data collection. Therefore, the legal utilization of person
ReID data should be regulated strictly to avoid ethical is-
sues.
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