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Abstract

We revisit large kernel design in modern convolutional
neural networks (CNNs). Inspired by recent advances in vi-
sion transformers (ViTs), in this paper, we demonstrate that
using a few large convolutional kernels instead of a stack
of small kernels could be a more powerful paradigm. We
suggested five guidelines, e.g., applying re-parameterized
large depth-wise convolutions, to design efficient high-
performance large-kernel CNNs. Following the guidelines,
we propose RepLKNet, a pure CNN architecture whose ker-
nel size is as large as 31×31, in contrast to commonly used
3×3. RepLKNet greatly closes the performance gap be-
tween CNNs and ViTs, e.g., achieving comparable or supe-
rior results than Swin Transformer on ImageNet and a few
typical downstream tasks, with lower latency. RepLKNet
also shows nice scalability to big data and large models,
obtaining 87.8% top-1 accuracy on ImageNet and 56.0%
mIoU on ADE20K, which is very competitive among the
state-of-the-arts with similar model sizes. Our study fur-
ther reveals that, in contrast to small-kernel CNNs, large-
kernel CNNs have much larger effective receptive fields and
higher shape bias rather than texture bias. Code & mod-
els at https://github.com/megvii-research/
RepLKNet.

1. Introduction
Convolutional neural networks (CNNs) [40, 53] used to

be a common choice of visual encoders in modern computer
vision systems. However, recently, CNNs [40, 53] have
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(A) ResNet-101 (B) ResNet-152 (C) RepLKNet-13 (D) RepLKNet-31

Figure 1. The Effective Receptive Field (ERF) of ResNet-101/152
and RepLKNet-13/31 respectively. A more widely distributed
dark area indicates a larger ERF. More layers (e.g., from ResNet-
101 to ResNet-152) help little in enlarging ERFs. Instead, our
large kernel model RepLKNet effectively obtains large ERFs.

been greatly challenged by Vision Transformers (ViTs) [34,
59, 86, 94], which have shown leading performances on
many visual tasks – not only image classification [34, 104]
and representation learning [4, 9, 16, 100], but also many
downstream tasks such as object detection [24, 59], seman-
tic segmentation [94, 98] and image restoration [10, 54].
Why are ViTs super powerful? Some works believed that
multi-head self-attention (MHSA) mechanism in ViTs plays
a key role. They provided empirical results to demon-
strate that, MHSA is more flexible [50], capable (less in-
ductive bias) [20], more robust to distortions [66, 98], or
able to model long-range dependencies [69, 90]. But some
works challenge the necessity of MHSA [115], attribut-
ing the high performance of ViTs to the proper building
blocks [33], and/or dynamic sparse weights [38,111]. More
works [20,38,42,95,115] explained the superiority of ViTs
from different point of views.

In this work, we focus on one view: the way of build-
ing up large receptive fields. In ViTs, MHSA is usually
designed to be either global [34, 78, 94] or local but with
large kernels [59, 70, 89], thus each output from a single
MHSA layer is able to gather information from a large re-
gion. However, large kernels are not popularly employed
in CNNs (except for the first layer [40]). Instead, a typ-
ical fashion is to use a stack of many small spatial con-
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volutions1 [40, 44, 47, 68, 77, 82, 109] (e.g., 3×3) to en-
large the receptive fields in state-of-the-art CNNs. Only
some old-fashioned networks such as AlexNet [53], Incep-
tions [79–81] and a few architectures derived from neural
architecture search [37,43,56,116] adopt large spatial con-
volutions (whose size is greater than 5) as the main part.
The above view naturally lead to a question: what if we use
a few large instead of many small kernels to conventional
CNNs? Is large kernel or the way of building large recep-
tive fields the key to close the performance gap between
CNNs and ViTs?

To answer this question, we systematically explore the
large kernel design of CNNs. We follow a very simple “phi-
losophy”: just introducing large depth-wise convolutions
into conventional networks, whose sizes range from 3×3
to 31×31, although there exist other alternatives to intro-
duce large receptive fields via a single or a few layers, e.g.
feature pyramids [93], dilated convolutions [13, 101, 102]
and deformable convolutions [23]. Through a series of ex-
periments, we summarize five empirical guidelines to ef-
fectively employ large convolutions: 1) very large kernels
can still be efficient in practice; 2) identity shortcut is vi-
tal especially for networks with very large kernels; 3) re-
parameterizing [30] with small kernels helps to make up the
optimization issue; 4) large convolutions boost downstream
tasks much more than ImageNet; 5) large kernel is useful
even on small feature maps.

Based on the above guidelines, we propose a new
architecture named RepLKNet, a pure2 CNN where re-
parameterized large convolutions are employed to build
up large receptive fields. Our network in general fol-
lows the macro architecture of Swin Transformer [59] with
a few modifications, while replacing the multi-head self-
attentions with large depth-wise convolutions. We mainly
benchmark middle-size and large-size models, since ViTs
used to be believed to surpass CNNs on large data and mod-
els. On ImageNet classification, our baseline (similar model
size with Swin-B), whose kernel size is as large as 31×31,
achieves 84.8% top-1 accuracy trained only on ImageNet-
1K dataset, which is 0.3% better than Swin-B but much
more efficient in latency.

More importantly, we find that the large kernel design
is particularly powerful on downstream tasks. For exam-
ple, our networks outperform ResNeXt-101 [99] or ResNet-
101 [40] backbones by 4.4% on COCO detection [55] and
6.1% on ADE20K segmentation [114] under the similar
complexity and parameter budget, which is also on par with
or even better than the counterpart Swin Transformers but
with higher inference speed. Given more pretraining data

1Convolutional kernels (including the variants such as depth-
wise/group convolutions) whose spatial size is larger than 1×1.

2Namely CNNs free of any attention or dynamic mechanism,
e.g., squeeze-and-excitation [46], multi-head self-attention, dynamic
weights [38, 95], and etc.

(e.g., 73M images) and more computational budget, our
best model obtains very competitive results among the state-
of-the-arts with similar model sizes, e.g. 87.8% top-1 ac-
curacy on ImageNet and 56.0% on ADE20K, which shows
excellent scalability towards large-scale applications.

We believe the high performance of RepLKNet is mainly
because of the large effective receptive fields (ERFs) [63]
built via large kernels, as compared in Fig. 1. Moreover, Re-
pLKNet is shown to leverage more shape information than
conventional CNNs, which partially agrees with human’s
cognition. We hope our findings can help to understand the
intrinsic mechanism of both CNNs and ViTs.

2. Related Work

2.1. Models with Large Kernels

As mentioned in the introduction, apart from a few
old-fashioned models like Inceptions [79–81], large-
kernel models became not popular after VGG-Net [77].
One representative work is Global Convolution Networks
(GCNs) [67], which uses very large convolutions of 1×K
followed by K×1 to improve semantic segmentation task.
However, large kernels are reported to harm the per-
formance on ImageNet. Local Relation Networks (LR-
Net) [45] proposes a spatial aggregation operator (LR-
Layer) to replace standard convolutions, which can be
viewed as a dynamic convolution. LR-Net could benefit
from a kernel size of 7×7, but the performance decreases
with 9×9. With a kernel size as large as the feature map, the
top-1 accuracy significantly reduced from 75.7% to 68.4%.

Recently, Swin Transformers [59] propose to capture the
spatial patterns with shifted window attention, whose win-
dow sizes range from 7 to 12, which can also be viewed
as a variant of large kernel. The follow-ups [32, 58] em-
ploy even larger window sizes. Inspired by the success of
those local transformers, a recent work [38] replaces MHSA
layers with static or dynamic 7×7 depth-wise convolutions
in [59] while still maintains comparable results. Though
the network proposed by [38] shares similar design pattern
with ours, the motivations are different: [38] does not inves-
tigate the relationship between ERFs, large kernels and per-
formances; instead, it attributes the superior performances
of vision transformers to sparse connections, shared param-
eters and dynamic mechanisms. Another three representa-
tive works are Global Filter Networks (GFNets) [72], CK-
Conv [74] and FlexConv [73]. GFNet optimizes the spatial
connection weights in the Fourier domain, which is equiv-
alent to circular global convolutions in the spatial domain.
CKConv formulates kernels as continuous functions to pro-
cess sequential data, which can construct arbitrarily large
kernels. FlexConv learns different kernel sizes for different
layers, which can be as large as the feature maps. Although
they use very large kernels, they do not intend to answer the
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Table 1. Inference speed of a stack of 24-layer depth-wise convolutions with various kernel sizes and resolutions on a single GTX 2080Ti
GPU. The input shape is (64, 384, R, R). Baselines are evaluated with Pytorch 1.9.0 + cuDNN 7.6.5, in FP32 precision.

Resolution R Impl
Latency (ms) @ Kernel size

3 5 7 9 13 17 21 27 29 31

16× 16
Pytorch 5.6 11.0 14.4 17.6 36.0 57.2 83.4 133.5 150.7 171.4
Ours 5.6 6.5 6.4 6.9 7.5 8.4 8.4 8.4 8.3 8.4

32× 32
Pytorch 21.9 34.1 54.8 76.1 141.2 230.5 342.3 557.8 638.6 734.8
Ours 21.9 28.7 34.6 40.6 52.5 64.5 73.9 87.9 92.7 96.7

64× 64
Pytorch 69.6 141.2 228.6 319.8 600.0 977.7 1454.4 2371.1 2698.4 3090.4
Ours 69.6 112.6 130.7 152.6 199.7 251.5 301.0 378.2 406.0 431.7

key questions we desire: why do traditional CNNs under-
perform ViTs, and how to apply large kernels in common
CNNs. Besides, both [38] and [72] do not evaluate their
models on strong baselines, e.g., models larger than Swin-
L. Hence it is still unclear whether large-kernel CNNs can
scale up well as transformers.
Concurrent works.

ConvMixer [87] uses up to 9×9 convolutions to replace
the “mixer” component of ViTs [34] or MLPs [84, 85].
MetaFormer [103] suggests pooling layer is an alternate
to self-attention. ConvNeXt [60] employs 7×7 depth-wise
convolutions to design strong architectures, pushing the
limit of CNN performances. Although those works show
excellent performances, they do not show benefits from
much larger convolutions (e.g., 31×31).

2.2. Model Scaling Techniques

Given a small model, it is a common practice to scale
it up for better performance, thus scaling strategy plays a
vital role in the resultant accuracy-efficiency trade-offs. For
CNNs, existing scaling approaches usually focus on model
depth, width, input resolution [31, 68, 82], bottleneck ratio
and group width [31, 68]. Kernel size, however, is often
neglected. In Sec. 3, we will show that the kernel size is
also an important scaling dimension in CNNs, especially
for downstream tasks.

2.3. Structural Re-parameterization

Structural Re-parameterization [26–30] is a methodol-
ogy of equivalently converting model structures via trans-
forming the parameters. For example, RepVGG targeted at
a deep inference-time VGG-like (e.g., branch-free) model,
and constructed extra ResNet-style shortcuts parallel to the
3×3 layers during training. In contrast to a real VGG-like
model that is difficult to train [40], such shortcuts helped the
model reach a satisfactory performance. After training, the
shortcuts are absorbed into the parallel 3×3 kernels via a
series of linear transformations, so that the resultant model
becomes a VGG-like model. In this paper, we use this
methodology to add a relatively small (e.g., 3×3 or 5×5)
kernel into a very large kernel. In this way, we make the
very large kernel capable of capturing small-scale patterns,
hence improve the performance of the model.

3. Guidelines of Applying Large Convolutions
Trivially applying large convolutions to CNNs usually

leads to inferior performance and speed. In this section, we
summarize 5 guidelines for effectively using large kernels.

Guideline 1: large depth-wise convolutions can be effi-
cient in practice. It is believed that large-kernel convo-
lutions are computationally expensive because the kernel
size quadratically increases the number of parameters and
FLOPs. The drawback can be greatly overcome by apply-
ing depth-wise (DW) convolutions [17,44]. For example, in
our proposed RepLKNet (see Table 5 for details), increas-
ing the kernel sizes in different stages from [3, 3, 3, 3] to
[31, 29, 27, 13] only increases the FLOPs and number of pa-
rameters by 18.6% and 10.4% respectively, which is accept-
able. The remaining 1×1 convolutions actually dominate
most of the complexity.

One may concern that DW convolutions could be very
inefficient on modern parallel computing devices like
GPUs. It is true for conventional DW 3×3 kernels [44, 75,
109], because DW operations introduce low ratio of compu-
tation vs. memory access cost [64], which is not friendly to
modern computing architecture. However, we find when
kernel size becomes large, the computational density in-
creases: for example, in a DW 11×11 kernel, each time
we load a value from the feature map, it can attend at most
121 multiplications, while in a 3×3 kernel the number is
only 9. Therefore, according to the roofline model, the ac-
tual latency should not increase as much as the increasing
of FLOPs when kernel size becomes larger.
Remark 1. Unfortunately, we find off-the-shelf deep learn-
ing tools (such as Pytorch) support large DW convolutions
poorly, as shown in Table 1. Hence we try several ap-
proaches to optimize the CUDA kernels. FFT-based ap-
proach [65] appears reasonable to implement large convo-
lutions. However, in practice we find block-wise (inverse)
implicit gemm algorithm is a better choice. The implemen-
tation has been integrated into the open-sourced framework
MegEngine [1] and we omit the details here. We have also
released an efficient implementation [2] for PyTorch. Ta-
ble 1 shows that our implementation is far more efficient,
compared with the Pytorch baseline. With our optimization,
the latency contribution of DW convolutions in RepLKNet
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Table 2. Results of different kernel sizes in normal/shortcut-free
MobileNet V2.

Shortcut Kernel size ImageNet top-1 accuracy (%)
✓ 3×3 71.76
✓ 13×13 72.53

3×3 68.67
13×13 53.98

reduces from 49.5% to 12.3%, which is roughly in propor-
tion to the FLOPs occupation.

Guideline 2: identity shortcut is vital especially for net-
works with very large kernels. To demonstrate this, we
use MobileNet V2 [75] to benchmark, since it heavily uses
DW layers and has two published variants (with or without
shortcuts). For the large-kernel counterparts, we simply re-
place all the DW 3×3 layers with 13×13. All the models
are trained on ImageNet with the identical training configu-
rations for 100 epochs (see Appendix A for details). Table 2
shows large kernels improve the accuracy of MobileNet V2
with shortcuts by 0.77%. However, without shortcuts, large
kernels reduce the accuracy to only 53.98%.
Remark 2. The guideline also works for ViTs. A re-
cent work [33] finds that without identity shortcut, attention
loses rank doubly exponentially with depth, leading to over-
smoothing issue. Although large-kernel CNNs may degen-
erate in a different mechanism from ViT’s, we also observed
without shortcut, it is difficult for the network to capture lo-
cal details. From a similar perspective as [91], shortcuts
make the model an implicit ensemble composed of numer-
ous models with different receptive fields (RFs), so it can
benefit from a much larger maximum RF while not losing
the ability to capture small-scale patterns.

Guideline 3: re-parameterizing [30] with small ker-
nels helps to make up the optimization issue. We
replace the 3×3 layers of MobileNet V2 by 9×9 and
13×13 respectively, and optionally adopt Structural Re-
parameterization [26,27,30] methodology. Specifically, we
construct a 3×3 layer parallel to the large one, then add
up their outputs after Batch normalization (BN) [49] lay-
ers (Fig. 2). After training, we merge the small kernel as
well as BN parameters into the large kernel, so the resul-
tant model is equivalent to the model for training but no
longer has small kernels. Table 3 shows directly increas-
ing the kernel size from 9 to 13 reduces the accuracy, while
re-parameterization addresses the issue.

We then transfer the ImageNet-trained models to seman-
tic segmentation with DeepLabv3+ [15] on Cityscapes [21].
We only replace the backbone and keep all the default train-
ing settings provided by MMSegmentation [19]. The ob-
servation is similar to that on ImageNet: 3×3 re-param im-
proves the mIoU of the 9×9 model by 0.19 and the 13×13
model by 0.93. With such simple re-parameterization, in-
creasing kernel size from 9 to 13 no longer degrades the

Table 3. Results of 3×3 re-parameterization on MobileNet V2
with various kernel sizes.

Kernel 3×3 re-param
ImageNet

top-1 acc (%)
Cityscapes

val mIoU (%)
3×3 N/A 71.76 72.31
9×9 72.67 76.11
9×9 ✓ 73.09 76.30
13×13 72.53 75.67
13×13 ✓ 73.24 76.60

performance on both ImageNet and Cityscapes.
Remark 3. It is known that ViTs have optimization prob-
lem especially on small datasets [34, 57]. A common
workaround is to introduce convolutional prior, e.g., add
a DW 3×3 convolution to each self-attention block [18,96],
which is analogous to ours. Those strategies introduce ad-
ditional translational equivariance and locality prior to the
network, making it easier to optimize on small dataset with-
out loss of generality. Similar to what ViT behaves [34],
we also find when the pretraining dataset increases to 73
million images (refer to RepLKNet-XL in the next section),
re-parameterization can be omitted without degradation.

Guideline 4: large convolutions boost downstream tasks
much more than ImageNet classification. Table 3 (after
re-param) shows increasing the kernel size of MobileNet
V2 from 3×3 to 9×9 improves the ImageNet accuracy by
1.33% but the Cityscapes mIoU by 3.99%. Table 5 shows a
similar trend: as the kernel sizes increase from [3, 3, 3, 3] to
[31, 29, 27, 13], the ImageNet accuracy improves by only
0.96%, while the mIoU on ADE20K [114] improves by
3.12%. Such phenomenon indicates that models of simi-
lar ImageNet scores could have very different capability in
downstream tasks (just as the bottom 3 models in Table 5).
Remark 4. What causes the phenomenon? First, large
kernel design significantly increases the Effective Receptive
Fields (ERFs) [63]. Numerous works have demonstrated
“contextual” information, which implies large ERFs, is cru-
cial in many downstream tasks like object detection and se-
mantic segmentation [61, 67, 93, 101, 102]. We will discuss
the topic in Sec. 5. Second, We deem another reason might
be that large kernel design contributes more shape biases
to the network. Briefly speaking, ImageNet pictures can
be correctly classified according to either texture or shape,
as proposed in [7, 35]. However, humans recognize ob-
jects mainly based on shape cue rather than texture, there-
fore a model with stronger shape bias may transfer better
to downstream tasks. A recent study [88] points out ViTs
are strong in shape bias, which partially explains why ViTs
are super powerful in transfer tasks. In contrast, conven-
tional CNNs trained on ImageNet tend to bias towards tex-
ture [7,35]. Fortunately, we find simply enlarging the kernel
size in CNNs can effectively improve the shape bias. Please
refer to Appendix C for details.

11956

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:33:13 UTC from IEEE Xplore.  Restrictions apply. 



input

7×7 3×3

BN BN

+

input

7×7

re-parameterize

input

7×7 3×3

+

fuse BN

kernel parameters re-parameterized kernel

Figure 2. An example of re-parameterizing a small kernel (e.g., 3×3) into a large one (e.g., 7×7). See [27, 30] for details.

slide

1 pixel right

shared parametersfeature map

parameters applied 

on the zero paddings

Figure 3. Illustration to convolution with small feature map and
large kernel. Two outputs at adjacent locations only share a part of
kernel weights. Translational equivariance does not strictly hold.

Table 4. Results of various kernel sizes in the last stage of Mo-
bileNet V2. Kernel sizes in previous stages remain to be 3× 3.

Kernel size ImageNet acc (%) Cityscapes mIoU (%)
3×3 71.76 72.31
7×7 72.00 74.30
13×13 71.97 74.62

Guideline 5: large kernel (e.g., 13×13) is useful even on
small feature maps (e.g., 7×7). To validate it, We en-
large the DW convolutions in the last stage of MobileNet
V2 to 7×7 or 13×13, hence the kernel size is on par with or
even larger than feature map size (7×7 by default). We ap-
ply re-parameterization to the large kernels as suggested by
Guideline 3. Table 4 shows although convolutions in the last
stage already involve very large receptive field, further in-
creasing the kernel sizes still leads to performance improve-
ments, especially on downstream tasks such as Cityscapes.
Remark 5. When kernel size becomes large, notice that
translational equivariance of CNNs does not strictly hold.
As illustrated in Fig. 3, two outputs at adjacent spatial lo-
cations share only a fraction of the kernel weights, i.e.,
are transformed by different mappings. The property also
agrees with the “philosophy” of ViTs – relaxing the symmet-
ric prior to obtain more capacity. Interestingly, we find 2D
Relative Position Embedding (RPE) [5,76], which is widely
used in the transformer community, can also be viewed as a
large depth-wise kernel of size (2H−1)×(2W −1), where
H and W are feature map height and width respectively.
Large kernels not only help to learn the relative positions
between concepts, but also encode the absolute position in-
formation due to padding effect [51].

4. RepLKNet: a Large-Kernel Architecture
Following the above guidelines, in this section we pro-

pose RepLKNet, a pure CNN architecture with large ker-

nel design. To our knowledge, up to now CNNs still domi-
nate small models [108,110], while vision transformers are
believed to be better than CNNs under more complexity
budget. Therefore, in the paper we mainly focus on rel-
atively large models (whose complexity is on par with or
larger than ResNet-152 [40] or Swin-B [59]), in order to ver-
ify whether large kernel design could eliminate the perfor-
mance gap between CNNs and ViTs.

4.1. Architecture Specification

We sketch the architecture of RepLKNet in Fig. 4:
Stem refers to the beginning layers. Since we target at

high performance on downstream dense-prediction tasks,
we desire to capture more details by several conv layers at
the beginning. After the first 3×3 with 2× downsampling,
we arrange a DW 3×3 layer to capture low-level patterns, a
1×1 conv, and another DW 3×3 layer for downsampling.

Stages 1-4 each contains several RepLK Blocks, which
use shortcuts (Guideline 2) and DW large kernels (Guide-
line 1). We use 1×1 conv before and after DW conv as
a common practice. Note that each DW large conv uses a
5×5 kernel for re-parameterization (Guideline 3), which is
not shown in Fig. 4. Except for the large conv layers which
provide sufficient receptive field and the ability to aggregate
spatial information, the model’s representational capacity is
also closely related to the depth. To provide more nonlinear-
ities and information communications across channels, we
desire to use 1×1 layers to increase the depth. Inspired by
the Feed-Forward Network (FFN) which has been widely
used in transformers [34,59] and MLPs [26,84,85], we use
a similar CNN-style block composed of shortcut, BN, two
1×1 layers and GELU [41], so it is referred to as ConvFFN
Block. Compared to the classic FFN which uses Layer Nor-
malization [3] before the fully-connected layers, BN has an
advantage that it can be fused into conv for efficient infer-
ence. As a common practice, the number of internal chan-
nels of the ConvFFN Block is 4× as the input. Simply fol-
lowing ViT and Swin, which interleave attention and FFN
blocks, we place a ConvFFN after each RepLK Block.

Transition Blocks are placed between stages, which first
increase the channel dimension via 1×1 conv and then con-
duct 2× downsampling with DW 3×3 conv.

In summary, each stage has three architectural
hyper-parameters: the number of RepLK Blocks
B, the channel dimension C, and the kernel size
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Stem

Stage 1

Transition 1

input 3×3, C1

3×3, C1, DW

1×1, C1

3×3, C1, DW

1×1, C2

3×3, C2, DW

Stage 2

Transition 2

Stage 3

Transition 3

Stage 4

RepLK Block

ConvFFN

RepLK Block

ConvFFN

1×1

1×1

K×K, DW

BN

+

1×1

1×1

GELU

+

…

output

stride=2

stride=2

stride=2

RepLK Block

ConvFFN

BN

Figure 4. RepLKNet comprises Stem, Stages and Transitions. Ex-
cept for depth-wise (DW) large kernel, the other components in-
clude DW 3×3, dense 1×1 conv, and batch normalization [49]
(BN). Note that every conv layer has a following BN, which are
not depicted. Such conv-BN sequences use ReLU as the activation
function, except those before the shortcut-addition (as a common
practice [40, 75]) and those preceding GELU [41].

Table 5. RepLKNet with different kernel sizes. The models are
pretrained on ImageNet-1K in 120 epochs with 224×224 input
and finetuned on ADE20K with UperNet in 80K iterations. On
ADE20K, we test the single-scale mIoU, and compute the FLOPs
with input of 2048×512, following Swin.

ImageNet ADE20K
Kernel size Top-1 Params FLOPs mIoU Params FLOPs
3-3-3-3 82.11 71.8M 12.9G 46.05 104.1M 1119G
7-7-7-7 82.73 72.2M 13.1G 48.05 104.6M 1123G
13-13-13-13 83.02 73.7M 13.4G 48.35 106.0M 1130G
25-25-25-13 83.00 78.2M 14.8G 48.68 110.6M 1159G
31-29-27-13 83.07 79.3M 15.3G 49.17 111.7M 1170G

K. So that a RepLKNet architecture is defined by
[B1, B2, B3, B4],[C1, C2, C3, C4],[K1,K2,K3,K4].

4.2. Making Large Kernels Even Larger

We continue to evaluate large kernels on RepLKNet
via fixing B=[2, 2, 18, 2], C=[128, 256, 512, 1024], vary-
ing K and observing the performance of both classifica-
tion and semantic segmentation. Without careful tuning
of the hyper-parameters, we casually set the kernel sizes
as [13, 13, 13, 13], [25, 25, 25, 13], [31, 29, 27, 13], respec-
tively, and refer to the models as RepLKNet-13/25/31. We
also construct two small-kernel baselines where the kernel
sizes are all 3 or 7 (RepLKNet-3/7).

On ImageNet, we train for 120 epochs with AdamW [62]
optimizer, RandAugment [22], mixup [106], CutMix [105],
Rand Erasing [113] and Stochastic Depth [48], following
the recent works [4, 59, 60, 86]. The detailed training con-
figurations are presented in Appendix A.

For semantic segmentation, we use ADE20K [114],

Table 6. ImageNet results. The throughput is tested with FP32 and
a batch size of 64 on 2080Ti. ‡ indicates ImageNet-22K pretrain-
ing. ⋄ indicates pretrained with extra data.

Model
Input

resolution
Top-1

acc
Params

(M)
FLOPs

(G)
Throughput
examples/s

RepLKNet-31B 224×224 83.5 79 15.3 295.5
Swin-B 224×224 83.5 88 15.4 226.2
RepLKNet-31B 384×384 84.8 79 45.1 97.0
Swin-B 384×384 84.5 88 47.0 67.9
RepLKNet-31B ‡ 224×224 85.2 - - -
Swin-B ‡ 224×224 85.2 - - -
RepLKNet-31B ‡ 384×384 86.0 - - -
Swin-B ‡ 384×384 86.4 - - -
RepLKNet-31L ‡ 384×384 86.6 172 96.0 50.2
Swin-L ‡ 384×384 87.3 197 103.9 36.2
RepLKNet-XL ⋄ 320×320 87.8 335 128.7 39.1

which is a widely-used large-scale semantic segmentation
dataset containing 20K images of 150 categories for train-
ing and 2K for validation. We use the ImageNet-trained
models as backbones and adopt UperNet [97] implemented
by MMSegmentation [19] with the 80K-iteration training
setting and test the single-scale mIoU.

Table 5 shows our results with different kernel sizes. On
ImageNet, though increasing the kernel sizes from 3 to 13
improves the accuracy, making them even larger brings no
further improvements. However, on ADE20K, scaling up
the kernels from [13, 13, 13, 13] to [31, 29, 27, 13] brings
0.82 higher mIoU with only 5.3% more parameters and
3.5% higher FLOPs, which highlights the significance of
large kernels for downstream tasks.

In the following subsections, we use RepLKNet-
31 with stronger training configurations to compare
with the state-of-the-arts on ImageNet classifica-
tion, Cityscapes/ADE20K semantic segmentation and
COCO [55] object detection. We refer to the aforemen-
tioned model as RepLKNet-31B (B for Base) and a wider
model with C = [192, 384, 768, 1536] as RepLKNet-
31L (Large). We construct another RepLKNet-XL with
C = [256, 512, 1024, 2048] and 1.5× inverted bottleneck
design in the RepLK Blocks (i.e., the channels of the DW
large conv layers are 1.5× as the inputs).

4.3. ImageNet Classification

Since the overall architecture of RepLKNet is akin to
Swin, we desire to make a comparison at first. For
RepLKNet-31B on ImageNet-1K, we extend the aforemen-
tioned training schedule to 300 epochs for a fair compari-
son. Then we finetune for 30 epochs with input resolution
of 384×384, so that the total training cost is much lower
than the Swin-B model, which was trained with 384×384
from scratch. Then we pretrain RepLKNet-B/L models on
ImageNet-22K and finetune on ImageNet-1K. RepLKNet-
XL is pretrained on our private semi-supervised dataset

11958

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:33:13 UTC from IEEE Xplore.  Restrictions apply. 



Table 7. Cityscapes results. The FLOPs is computed with
1024×2048 inputs. The mIoU is tested with single-scale (ss) and
multi-scale (ms). The results with Swin are implemented by [36].
‡ indicates ImageNet-22K pretraining.

Backbone Method
mIoU
(ss)

mIoU
(ms)

Param
(M)

FLOPs
(G)

RepLKNet-31B UperNet [97] 83.1 83.5 110 2315
ResNeSt-200 [107] DeepLabv3 [14] - 82.7 - -
Axial-Res-XL Axial-DL [92] 80.6 81.1 173 2446
Swin-B UperNet 80.4 81.5 121 2613
Swin-B UperNet + [36] 80.8 81.8 121 -
ViT-L ‡ SETR-PUP [112] 79.3 82.1 318 -
ViT-L ‡ SETR-MLA 77.2 - 310 -
Swin-L ‡ UperNet 82.3 83.1 234 3771
Swin-L ‡ UperNet + [36] 82.7 83.6 234 -

Table 8. ADE20K results. The mIoU is tested with single-scale
(ss) and multi-scale (ms). The results with 1K-pretrained Swin are
cited from the official GitHub repository. ‡ indicates ImageNet-
22K pretraining and 640×640 finetuning on ADE20K. ⋄ indi-
cates pretrained with extra data. The FLOPs is computed with
2048×512 for the ImageNet-1K pretrained models and 2560×640
for the ImageNet-22K and larger, following Swin.

Backbone Method
mIoU
(ss)

mIoU
(ms)

Param
(M)

FLOPs
(G)

RepLKNet-31B UperNet 49.9 50.6 112 1170
ResNet-101 UperNet [97] 43.8 44.9 86 1029
ResNeSt-200 [107] DeepLabv3 [14] - 48.4 113 1752
Swin-B UperNet 48.1 49.7 121 1188
Swin-B UperNet + [36] 48.4 50.1 121 -
ViT-Hybrid DPT-Hybrid [71] - 49.0 90 -
ViT-L DPT-Large - 47.6 307 -
ViT-B SETR-PUP [112] 46.3 47.3 97 -
ViT-B SETR-MLA [112] 46.2 47.7 92 -
RepLKNet-31B ‡ UperNet 51.5 52.3 112 1829
Swin-B ‡ UperNet 50.0 51.6 121 1841
RepLKNet-31L ‡ UperNet 52.4 52.7 207 2404
Swin-L ‡ UperNet 52.1 53.5 234 2468
ViT-L ‡ SETR-PUP 48.6 50.1 318 -
ViT-L ‡ SETR-MLA 48.6 50.3 310 -
RepLKNet-XL ⋄ UperNet 55.2 56.0 374 3431

named MegData73M, which is introduced in the Appendix.
We also present the throughput tested with a batch size of
64 on the same 2080Ti GPU. The training configurations
are presented in the Appendix.

Table 6 shows that though very large kernels are not in-
tended for ImageNet classification, our RepLKNet mod-
els show a a favorable trade-off between accuracy and
efficiency. Notably, with only ImageNet-1K training,
RepLKNet-31B reaches 84.8% accuracy, which is 0.3%
higher than Swin-B, and runs 43% faster. And even though
RepLKNet-XL has higher FLOPs than Swin-L, it runs
faster, which highlights the efficiency of very large kernels.

4.4. Semantic Segmentation

We then use the pretrained models as the backbones
on Cityscapes (Table 7) and ADE20K (Table 8). Specifi-
cally, we use the UperNet [97] implemented by MMSeg-
mentation [19] with the 80K-iteration training schedule for
Cityscapes and 160K for ADE20K. Since we desire to eval-
uate the backbone only, we do not use any advanced tech-
niques, tricks, nor custom algorithms.

On Cityscapes, ImageNet-1K-pretrained RepLKNet-
31B outperforms Swin-B by a significant margin (single-
scale mIoU of 2.7), and even outperforms the ImageNet-
22K-pretrained Swin-L. Even equipped with DiverseP-
atch [36], a technique customized for vision transformers,
the single-scale mIoU of the 22K-pretrained Swin-L is still
lower than our 1K-pretrained RepLKNet-31B, though the
former has 2× parameters.

On ADE20K, RepLKNet-31B outperforms Swin-B with
both 1K and 22K pretraining, and the margins of single-
scale mIoU are particularly significant. Pretrained with
our semi-supervised dataset MegData73M, RepLKNet-XL
achieves an mIoU of 56.0, which shows feasible scalability
towards large-scale vision applications.

4.5. Object Detection

For object detection, we use RepLKNets as the backbone
of FCOS [83] and Cascade Mask R-CNN [8,39], which are
representatives of one-stage and two-stage detection meth-
ods, and the default configurations in MMDetection [12].
The FCOS model is trained with the 2x (24-epoch) train-
ing schedule for a fair comparison with the X101 (short for
ResNeXt-101 [99]) baseline from the same code base [19],
and the other results with Cascade Mask R-CNN all use
3x (36-epoch). Again, we simply replace the backbone
and do not use any advanced techniques. Table 9 shows
RepLKNets outperform ResNeXt-101-64x4d by up to 4.4
mAP while have fewer parameters and lower FLOPs. Note
that the results may be further improved with the advanced
techniques like HTC [11], HTC++ [59], Soft-NMS [6] or
a 6x (72-epoch) schedule. Compared to Swin, RepLKNets
achieve higher or comparable mAP with fewer parameters
and lower FLOPs. Notably, RepLKNet-XL achieves an
mAP of 55.5, which demonstrates the scalability again.

5. Discussions
1) Large-Kernel CNNs have Larger ERF than Deep
Small-Kernel Models. We have demonstrated large kernel
design can significantly boost CNNs (especially on down-
stream tasks). However, it is worth noting that large ker-
nel can be expressed by a series of small convolutions [77],
e.g., a 7×7 convolution can be decomposed into a stack of
three 3×3 kernels without information loss (more channels
are required after the decomposition to maintain the degree
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Table 9. Object detection on COCO. The FLOPs is computed with
1280×800 inputs. The results of ResNeXt-101-64x4d + Cas Mask
are reported by [59]. The results of 22K-pretrained Swin (without
HTC++ [59]) are reported by [60]. ‡ indicates ImageNet-22K pre-
training. ⋄ indicates pretrained with extra data.

Backbone Method APbox APmask Param
(M)

FLOPs
(G)

RepLKNet-31B FCOS 47.0 - 87 437
X101-64x4d FCOS 42.6 - 90 439
RepLKNet-31B Cas Mask 52.2 45.2 137 965
X101-64x4d Cas Mask 48.3 41.7 140 972
ResNeSt-200 Cas R-CNN [8] 49.0 - - -
Swin-B Cas Mask 51.9 45.0 145 982
RepLKNet-31B ‡ Cas Mask 53.0 46.0 137 965
Swin-B ‡ Cas Mask 53.0 45.8 145 982
RepLKNet-31L ‡ Cas Mask 53.9 46.5 229 1321
Swin-L ‡ Cas Mask 53.9 46.7 254 1382
RepLKNet-XL ⋄ Cas Mask 55.5 48.0 392 1958

of freedom). Given that fact, a question naturally comes
up: why do conventional CNNs, which may contain tens
or hundreds of small convolutions (e.g., ResNets [40]), still
behave inferior to large-kernel networks?

We argue that in terms of obtaining large receptive field,
a single large kernel is much more effective than many small
kernels. First, according to the theory of Effective Re-
ceptive Field (ERF) [63], ERF is proportion to O(K

√
L),

where K is the kernel size and L is the depth, i.e., number of
layers. In other words, ERF grows linearly with the kernel
size while sub-linearly with the depth. Second, the increas-
ing depth introduces optimization difficulty [40]. Although
ResNets seem to overcome the dilemma, managing to train
a network with hundreds of layers, some works [25, 91] in-
dicate ResNets might not be as deep as they appear to be.
For example, [91] suggests ResNets behave like ensembles
of shallow networks, which implies the ERFs of ResNets
could still be very limited even if the depth dramatically in-
creases. Such phenomenon is also empirically observed in
previous works [52]. To summarize, large kernels design
requires fewer layers to obtain large ERFs and avoids the
optimization issue brought by the increasing depth.

To support our viewpoint, we choose ResNet-101/152
and the aforementioned RepLKNet-13/31 as the representa-
tives of small-kernel and large-kernel models, which are all
well-trained on ImageNet, and test with 50 images from the
ImageNet validation set resized to 1024×1024. To visual-
ize the ERF, we use a simple yet effective method (code re-
leased at [2]) as introduced in Appendix B, following [52].
Briefly, we produce an aggregated contribution score ma-
trix A (1024×1024), where each entry a (0 ≤ a ≤ 1) mea-
sures the contribution of the corresponding pixel on the in-
put image to the central point of the feature map produced
by the last layer. Fig. 1 shows the high-contribution pixels
of ResNet-101 gather around the central point, but the outer
points have very low contributions, indicating a limited

ERF. ResNet-152 shows a similar pattern, suggesting the
more 3×3 layers do not significantly increase the ERF. On
the other hand, the high-contribution pixels in Fig. 1 (C) are
more evenly distributed, suggesting RepLKNet-13 attends
to more outer pixels. With larger kernels, RepLKNet-31
makes the high-contribution pixels spread more uniformly,
indicating an even larger ERF. Apart from the visualization,
a quantitative analysis is also presented in Appendix B.
2) Large-kernel Models are More Similar to Human in
Shape Bias. We have found out that RepLKNet-31B has
much higher shape bias than Swin Transformer and small-
kernel CNNs. Please refer to Appendix C for details.
3) Large kernel design is a generic design element that
works with ConvNeXt. Replacing the 7×7 convolu-
tions in ConvNeXt [60] by kernels as large as 31×31 brings
significant improvements, e.g., ConNeXt-Tiny + large ker-
nel >ConNeXt-Small , and ConNeXt-Small + large kernel
>ConNeXt-Base. Please refer to Appendix D.
4) Large kernels outperform small kernels with high di-
lation rates. Please refer to Appendix E for details.

6. Limitations

Although large kernel design greatly improves CNNs
on both ImageNet and downstream tasks, however, accord-
ing to Table 6, as the scale of data and model increases,
RepLKNets start to fall behind Swin Transformers, e.g.,
the ImageNet top-1 accuracy of RepLKNet-31L is 0.7%
lower than Swin-L with ImageNet-22K pretraining (while
the downstream scores are still comparable). It is not
clear whether the gap is resulted from suboptimal hyper-
parameter tuning or some other fundamental drawback of
CNNs which emerges when data/model scales up. We are
working in progress on the problem.

7. Conclusion

This paper revisits large convolutional kernels, which
have long been neglected in designing CNN architectures.
We demonstrate that using a few large kernels instead of
many small kernels results in larger effective receptive field
more efficiently, boosting CNN’s performances especially
on downstream tasks by a large margin, and greatly closing
the performance gap between CNNs and ViTs when data
and models scale up. We hope our work could advance both
studies of CNNs and ViTs. On one hand, for CNN commu-
nity, our findings suggest that we should pay special atten-
tion to ERFs, which may be the key to high performances.
On the other hand, for ViT community, since large convolu-
tions act as an alternative to multi-head self-attentions with
similar behaviors, it may help to understand the intrinsic
mechanism of self-attentions.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin.
Emerging properties in self-supervised vision transformers.
arXiv preprint arXiv:2104.14294, 2021. 1

[10] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12299–12310, 2021.
1

[11] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping
Shi, Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4974–
4983, 2019. 7

[12] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei
Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu,
Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetec-
tion: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019. 7

[13] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on

pattern analysis and machine intelligence, 40(4):834–848,
2017. 2

[14] Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017. 7

[15] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-
rian Schroff, and Hartwig Adam. Encoder-decoder with
atrous separable convolution for semantic image segmenta-
tion. In Proceedings of the European conference on com-
puter vision (ECCV), pages 801–818, 2018. 4

[16] Xinlei Chen, Saining Xie, and Kaiming He. An empirical
study of training self-supervised visual transformers. arXiv
e-prints, pages arXiv–2104, 2021. 1

[17] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 3

[18] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-
aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-
sitional encodings for vision transformers. arXiv preprint
arXiv:2102.10882, 2021. 4

[19] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 4, 6, 7

[20] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin
Jaggi. On the relationship between self-attention and con-
volutional layers. arXiv preprint arXiv:1911.03584, 2019.
1

[21] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 3213–3223. IEEE Computer Society, 2016. 4

[22] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 6

[23] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolu-
tional networks. In Proceedings of the IEEE international
conference on computer vision, pages 764–773, 2017. 2

[24] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. Dynamic head:
Unifying object detection heads with attentions. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7373–7382, 2021. 1

[25] Soham De and Samuel L Smith. Batch normalization bi-
ases residual blocks towards the identity function in deep
networks. arXiv preprint arXiv:2002.10444, 2020. 8

[26] Xiaohan Ding, Honghao Chen, Xiangyu Zhang, Jungong
Han, and Guiguang Ding. Repmlpnet: Hierarchical vi-
sion mlp with re-parameterized locality. arXiv preprint
arXiv:2112.11081, 2021. 3, 4, 5

11961

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:33:13 UTC from IEEE Xplore.  Restrictions apply. 



[27] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. Acnet: Strengthening the kernel skeletons for power-
ful cnn via asymmetric convolution blocks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1911–1920, 2019. 3, 4, 5

[28] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jun-
gong Han, Yuchen Guo, and Guiguang Ding. Resrep: Loss-
less cnn pruning via decoupling remembering and forget-
ting. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4510–4520, 2021. 3

[29] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and
Guiguang Ding. Diverse branch block: Building a con-
volution as an inception-like unit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10886–10895, 2021. 3

[30] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong
Han, Guiguang Ding, and Jian Sun. Repvgg: Making vgg-
style convnets great again. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13733–13742, 2021. 2, 3, 4, 5

[31] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and
accurate model scaling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 924–932, 2021. 3

[32] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining
Guo. Cswin transformer: A general vision transformer
backbone with cross-shaped windows. arXiv preprint
arXiv:2107.00652, 2021. 2

[33] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas
Loukas. Attention is not all you need: Pure attention
loses rank doubly exponentially with depth. arXiv preprint
arXiv:2103.03404, 2021. 1, 4

[34] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im-
age is worth 16x16 words: Transformers for image recogni-
tion at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. 1, 3, 4, 5

[35] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increas-
ing shape bias improves accuracy and robustness. arXiv
preprint arXiv:1811.12231, 2018. 4

[36] Chengyue Gong, Dilin Wang, Meng Li, Vikas Chan-
dra, and Qiang Liu. Improve vision transformers train-
ing by suppressing over-smoothing. arXiv preprint
arXiv:2104.12753, 2021. 7

[37] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560.
Springer, 2020. 2

[38] Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Ji-
aying Liu, and Jingdong Wang. Demystifying local vision

transformer: Sparse connectivity, weight sharing, and dy-
namic weight. arXiv preprint arXiv:2106.04263, 2021. 1,
2, 3

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969,
2017. 7

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 3, 5, 6, 8

[41] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5, 6

[42] Geoffrey Hinton. How to represent part-whole hierarchies
in a neural network. arXiv preprint arXiv:2102.12627,
2021. 1

[43] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V.
Le, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh
Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and
Yukun Zhu. Searching for mobilenetv3. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019,
pages 1314–1324. IEEE, 2019. 2

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2, 3

[45] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 3464–3473, 2019. 2

[46] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 7132–7141,
2018. 2

[47] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 2261–2269. IEEE Computer Society,
2017. 2

[48] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, volume 9908 of Lecture Notes
in Computer Science, pages 646–661. Springer, 2016. 6

[49] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015. 4, 6

[50] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung, Zhen Li,
and Tom Duerig. Scaling up visual and vision-language
representation learning with noisy text supervision. arXiv
preprint arXiv:2102.05918, 2021. 1

11962

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 07:33:13 UTC from IEEE Xplore.  Restrictions apply. 



[51] Osman Semih Kayhan and Jan C van Gemert. On trans-
lation invariance in cnns: Convolutional layers can exploit
absolute spatial location. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14274–14285, 2020. 5

[52] Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Dong Gu
Lee, Wonseok Jeong, and Sang Woo Kim. Dead
pixel test using effective receptive field. arXiv preprint
arXiv:2108.13576, 2021. 8

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1, 2

[54] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1833–
1844, 2021. 1

[55] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages
740–755. Springer, 2014. 2, 6

[56] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 2

[57] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. Understanding the difficulty of training
transformers. arXiv preprint arXiv:2004.08249, 2020. 4

[58] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,
et al. Swin transformer v2: Scaling up capacity and resolu-
tion. arXiv preprint arXiv:2111.09883, 2021. 2

[59] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 2, 5, 6, 7,
8

[60] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. arXiv preprint arXiv:2201.03545, 2022. 3, 6, 8

[61] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3431–3440, 2015. 4

[62] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[63] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in deep
convolutional neural networks. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett, editors, Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 4898–4906, 2016. 2, 4, 8

[64] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. Shufflenet v2: Practical guidelines for efficient cnn

architecture design. In Proceedings of the European con-
ference on computer vision (ECCV), pages 116–131, 2018.
3
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