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Learning Transformation-Invariant
Local Descriptors With Low-

Coupling Binary Codes
Yunqi Miao , Zijia Lin , Xiao Ma , Guiguang Ding , Member, IEEE, and Jungong Han

Abstract— Despite the great success achieved by prevailing
binary local descriptors, they are still suffering from two
problems: 1) vulnerable to the geometric transformations;
2) lack of an effective treatment to the highly-correlated bits
that are generated by directly applying the scheme of image
hashing. To tackle both limitations, we propose an unsuper-
vised Transformation-invariant Binary Local Descriptor learning
method (TBLD). Specifically, the transformation invariance of
binary local descriptors is ensured by projecting the original
patches and their transformed counterparts into an identical
high-dimensional feature space and an identical low-dimensional
descriptor space simultaneously. Meanwhile, it enforces the dis-
similar image patches to have distinctive binary local descriptors.
Moreover, to reduce high correlations between bits, we propose a
bottom-up learning strategy, termed Adversarial Constraint Mod-
ule, where low-coupling binary codes are introduced externally to
guide the learning of binary local descriptors. With the aid of the
Wasserstein loss, the framework is optimized to encourage the
distribution of the generated binary local descriptors to mimic
that of the introduced low-coupling binary codes, eventually
making the former more low-coupling. Experimental results on
three benchmark datasets well demonstrate the superiority of the
proposed method over the state-of-the-art methods. The project
page is available at https://github.com/yoqim/TBLD.

Index Terms— Binary local descriptor, patch matching, deep
learning.

I. INTRODUCTION

ALOCAL descriptor is used to characterize the region
around an interest point in an image, i.e., image

patch. Local descriptors are widely applied in visual tasks
like visual search [1], object recognition [2] and face recogni-
tion [3], [4], etc. Therefore, learning effective local descriptors
has become an active topic in the community of computer
vision. Recently, binary local descriptors, due to the high
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compactness and high matching speed, have become prevalent
for applications with large-scale data.

Over the past decade, numerous binary local descriptors
have been proposed, including hand-crafted ones (BRISK [5],
BRIEF [6], ORB [7], etc.), and learning-based ones (Bin-
boost [8], LDAHash [9], etc.). Inspired by the advances of
deep learning techniques, deep learning approaches for binary
local descriptors have recently drawn increasing attention,
like DeepBit [10], DBD-MQ [11], L2-Net [12], and Graph-
Bit [13]. Depending on whether the labeled data are required,
deep binary local descriptors can be further categorized as
supervised [12], [14], [15] and unsupervised [10], [11], [13],
[16] ones. Supervised methods generally achieve better per-
formance with the supervision given by pairwise labels, indi-
cating whether two patches come from the same category or
not. However, such pairwise labels are too expensive to obtain
in real-world applications. Therefore, unsupervised learning
methods have gained more attention recently. Despite the
remarkable performance improvements, there are still prob-
lems that need to be better addressed.

Firstly, an effective binary local descriptor should be
robust against geometric transformations, i.e., rotation, scal-
ing, and viewpoint changes. The robustness of local descrip-
tors will affect the matching accuracy in matching/retrieval
tasks [17]. Earlier binary local descriptors [5]–[7] are built
upon hand-crafted sampling patterns or pairwise intensity
comparisons, which are vulnerable to geometric distortions
due to the high sensitivity of hand-crafted features. Thus,
hand-crafted binary local descriptors tend to have unstable
performances [10]. On the other hand, most existing deep
unsupervised binary local descriptors focus more on gen-
erating effective compact codes but pay little attention to
the robustness against geometric transformations [11], [13].
A prior work, DeepBit [10], enhances the robustness of
the descriptor against rotation via minimizing the Hamming
distance between the descriptors of an original image and
its transformed counterparts. Although it provides an intuitive
way to generate the transformation-invariant local descriptors,
a problem might be that such work is based on the idea that an
original image and its transformed counterparts should be rep-
resented by different descriptors. However, ideally, the same
object is expected to be described by exactly the same descrip-
tor, regardless of the viewpoint or distance changes. Therefore,
simply minimizing the distance between the original image
and its transformed counterparts is not the optimal solution.
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Fig. 1. The pipeline of the proposed TBLD. Firstly, patches from the “Original set” are augmented by rotating and scaling to build “Transformed sets”. Then
visual features of the image patches from the “Original set” and “Transform sets” are extracted from the VGG16 network. Subsequently, visual features are
encoded by a Transformation-invariant Feature Encoder to obtain high-dimensional transformation-invariant features. On top of that, transformation-invariant
binary local descriptors are obtained by Binary Descriptor Generator. f , d denote the dimension of high-dimensional transformation-invariant features and
binary local descriptors, respectively. N is the number of training samples. Additionally, an Adversarial Constraint Module (ACM) is introduced to reduce
bit correlations.

Secondly, an effective binary local descriptor is supposed to
be informative, i.e., each bit carrying distinctive information.
However, previous learning-based descriptors generally follow
the scheme of image hashing. Yet an image patch, as a
small region around an interest point, generally contains much
less information than an image. Therefore, directly employing
image hashing schemes can probably lead to highly-correlated
bits, which means information contained in different bits can
be redundant during encoding. That would make the learned
descriptor not compact enough. To explain the problem of
correlated bits, we first evaluate the average amount of infor-
mation conveyed by image patches and images with Shannon
entropy. Then, we derive hash codes and binary local descrip-
tors from images and patches, respectively, with two popular
hashing methods: DeepBit [10] and Bi-half Net [18]. Later,
we compare the correlations between bits under different code
length settings with mean Absolute Correlations (mAC), which
indicates the average correlation between bits. A higher mAC
means a higher bit correlations. Details of mAC could be found
in Section IV-D2. Specifically, the same number of images and
image patches are randomly selected from an image dataset
(CIFAR10 [19]) and an image patch dataset (Brown [20]) and
are resized to the same size. The average Shannon entropy
and mAC scores are illustrated in Table I. Seen from the
results, the mAC scores under 32 bits and 64 bits settings are
given by DeepBit since both source code and trained models
are provided. The mAC scores under 128 bits and 256 bits
settings are obtained by reproducing Bi-half Net based on
the provided source code. Table I clearly demonstrates that
images, with a higher average Shannon entropy, generally
carry more complex information than image patches. When
image hashing schemes are directly employed to derive binary
local descriptors, the average correlations between bits exceed
that of images by 1.17%, 3.22%, 9.9% and 10.13% under

TABLE I

COMPARISON OF THE AVERAGE SHANNON ENTROPY BETWEEN IMAGES

AND IMAGE PATCHES, AND THAT OF MEAN ABSOLUTE

CORRELATIONS (MAC) (%) BETWEEN CORRESPONDING

HASH CODES AND BINARY DESCRIPTORS, UNDER
DIFFERENT CODE LENGTH SETTINGS

32, 64, 128 and 256 bits settings in terms of mAC scores,
respectively. Strong correlations between bits will undoubtedly
deteriorate the representability of local descriptors [15], [21].
To mitigate the problem, most existing deep learning based
works enforce the bits of binary local descriptors to be
evenly distributed [10], [13], [22], which is performed on
each training batch. However, such batch-based constraints
generally suffer from a problem that the data distribution of
a single batch cannot well represent that of the whole dataset
due to the limited number of samples within a batch.

To tackle both limitations, in this paper, we propose a novel
Transformation-invariant Binary Local Descriptor learning
method (TBLD), which is trained in an unsupervised man-
ner. The pipeline of TBLD is illustrated in Fig. 1. Specif-
ically, it takes the “Original set” and “Transformed sets”
as input. The former consists of the original image patches
from the dataset, while the latter is built by rotating and
scaling the original image patches. The framework aims to
derive transformation-invariant and low-coupling binary local
descriptors.

To generate transformation-invariant binary local descrip-
tors, visual features extracted from original image patches and
their transformed counterparts are enforced to be projected
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into an identical Euclidean subspace and an identical Ham-
ming subspace simultaneously. Meanwhile, the distinctiveness
between binary local descriptors of dissimilar image patches
are maximized. To achieve that, instead of utilizing two
separate terms during the optimization, an integrated loss term,
the contrastive loss [23], is introduced here to propagate the
neighboring structures of data from a high-dimensional feature
space to a low-dimensional descriptor space. As a departure
from [23], where ALL the transformed samples within a
training batch are employed as negative samples, we here
propose a Negative Pairs Selection Strategy to adaptively select
“Negative pairs” for each image patch during the training.
By doing so, similar image patches from the same batch
will form only ONE negative pair with a given image patch,
instead of multiple negative pairs, thus dramatically reducing
the computational costs. To the best of our knowledge, the
contrastive loss is, for the first time, applied in the binary
local descriptor learning work.

In the meantime, to reduce bit correlations, instead of man-
ually imposing deterministic regularization terms on a batch
of binary local descriptors, low-coupling binary codes are
introduced externally here to guide the learning of binary local
descriptors. Specifically, an Adversarial Constraint Module
(ACM), which adopts the scheme of generator-discriminator,
is adopted. The Wasserstein loss employed in the Discrim-
inator minimizes the distributional discrepancy between the
binary local descriptors generated by the framework and the
introduced low-coupling binary codes. Although the proposed
bottom-up learning strategy is employed at the batch level
as the most correlations regularizers do, the optimization
of Discriminator is an accumulated result of all previous
batches, meaning that the adopted adversarial regulariza-
tion is not restricted to the number of samples within a
batch.

In summary, the contributions made in our work are mainly
three-fold:

• An unsupervised binary local descriptor, which unites
transformation-invariant and low-coupling properties,
is proposed. To ensure the transformation invariance of
binary local descriptors, the contrastive loss is, for the first
time, applied in the learning of binary local descriptors.
Instead of involving a large number of negative sam-
ples, a Negative Pairs Selection Strategy is proposed to
selectively pick up a portion of “Negative pairs” for each
training batch.

• We highlight the problem of the high correlations between
bits in binary local descriptors when directly applying
image hashing methods. To tackle that, we introduce
a bottom-up learning strategy, termed Adversarial Con-
straint Module (ACM). Low-coupling binary codes gen-
erated externally are employed to guide the learning of
binary local descriptors by minimizing their Wasserstein
distances. This, by all means, is distinct from existing
methods that simply using a hard threshold to enforce
each bit to be evenly-distributive.

• Experimental results on three benchmark datasets show
that our proposed descriptor surpasses existing binary
descriptors by a clear margin in various visual tasks.

II. RELATED WORK

A. Binary Local Descriptors

1) Hand-Crafted Binary Local Descriptors: Binary local
descriptors have attracted much attention due to their high
matching efficiency over the past decade. Early binary local
descriptors are typically hand-crafted and rely on inten-
sity comparisons with a predefined pattern, like BRIEF [6],
BRISK [5], and ORB [7], etc. These descriptors perform a
set of pairwise intensity comparisons within image patches to
generate compact binary codes.

However, manually predefined sampling modes and inten-
sity comparisons are sensitive to the geometric transformations
and distortions on the original images, thereby leading to
unstable performance.

2) Learning-Based Binary Local Descriptors: Later on,
inspired by learning to hash methods for image retrieval [4],
[24], learning-based binary local descriptors appeared [8], [9].
For instance, LDAHash [9] jointly minimizes the intra-class
covariance of the descriptors and maximizes the inter-class
covariance with Linear Discriminant Analysis (LDA), to pro-
duce a binary string from a SIFT descriptor. Binboost [8]
aims to learn the illumination and viewpoint invariant binary
descriptors with each bit being computed by a boosted binary
hash function, which achieves state-of-the-art performance
on patch matching task. However, these methods generally
adopt simple binary intensity tests and thus are incapable of
describing the domain-specific features of image patches [25].

Inspired by the advances in deep learning based image
hashing approaches [22], [26], deep learning based binary
descriptors have become dominant, which can be further
categorized into supervised ones [12], [14], [15], [27] and
unsupervised ones [10], [11], [13]. Supervised methods, which
rely on the pair-wise/triplet-wise similarity labels of image
patches to learn the descriptors, generally achieve better
performance. L2-Net [12] is an end-to-end local descriptor
learning framework, which preserves the neighboring rela-
tionship between matching pairs by enforcing the corre-
sponding descriptors to be the nearest neighbors. On top of
that, HardNet [14] maximizes the distance between match-
ing pairs and the closest non-matching sample in a train-
ing batch, which extends the pair-wise mining strategy to
triplet-wise one. CDbin [15] proposes a lightweight Convolu-
tional Neural Network (CNN) to learn binary local descriptors,
where the neighboring relationship of data is preserved and
the bit information is enriched. Apart from learning from
pair/triplet similarity labels, DOAP [27] proposes a novel
list-wise learning-to-rank formulation for learning local feature
descriptors, which directly optimizes a ranking-based retrieval
performance metric, i.e., Average Precision. Considering that
annotated labels are expensive to obtain, supervised methods
can probably be unfavorable in real-world applications.

Recently, unsupervised binary local descriptors [10], [11],
[13], which do not require pair-wise similarity labels, have
gained increasing attention. Existing works improve the rep-
resentability of binary local descriptors from mainly two
aspects: 1) enhancing the robustness to geometric transforma-
tions; 2) enriching the embedded information via reducing the
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bit correlations. For the former, DBD-MQ [11] enhances the
quality of binary descriptors by applying a data-dependent
binarization strategy. A K-AutoEncoders network is trained
along with the holistic features to classify bits into the
0/1 categories with the minimal reconstruction error. Such
a distribution strategy delivers stronger robustness, since bits
from similar holistic features are more likely to be quantized
into the same binary codes. Aside from improving the bina-
rization functions, GraphBit [13] improves the robustness of
local descriptors by enhancing the responsibility of each bit.
The mutual information between inputs and related bits are
maximized, so that the ambiguous bits could receive additional
instruction for confident binarization. DeepBit [10] augments
patches via rotation and scaling, and employs a Siamese
network to minimize the distances between the binary local
descriptors of original image patches and their augmented
counterparts. However, from the perspective of the essence of
local descriptors, which is to describe the content in an image
patch, we argue that the same content should be described by
the same local descriptors in spite of viewpoints, instead of
similar ones.

With respect to bit correlation reduction, existing works,
e.g., DH [22], DeepBit [10], GraphBit [13], UDBD [28],
simply enforce the learned local descriptors to be evenly-
distributive, i.e., encouraging the mean of each bit to be 0.5
with the bit value ranging in [0, 1]. On top of that,
BinGAN [16] embeds an adjusted Binarization Representation
Entropy Regularizer to increase the entropy of the partic-
ular pairs of binary vectors that are not correlated in the
high-dimensional feature space. Generally, such constraints
are performed within training batches. However, the number
of samples within a training batch is limited, meaning that
the feature distribution of each batch cannot well represent
that of the whole dataset. Therefore, imposing batch-based
constraints typically fails to achieve the global optimum.
Instead of performing constraints directly on the derived binary
local descriptors, the framework here encourages to learn
the mapping from the derived binary local descriptors to the
low-coupling binary codes, which are introduced externally.

In the paper, the transformation invariance of binary local
descriptors is achieved by projecting original image patches
and their transformed counterparts into an identical Euclidean
subspace and an identical Hamming subspace with the help
of the contrastive loss. Additionally, we propose a bottom-up
learning strategy assisted with Wasserstein loss to reduce bit
correlations, where low-coupling binary codes are introduced
externally to guide the learning of binary local descriptors.

B. GAN Based Local Descriptor

Generative Adversarial Network (GAN) [29] has been
extensively involved in unsupervised learning, where synthetic
images are continuously generated to “fool” the network dur-
ing training for improving the discriminability of the network.
Inspired by its successful applications in feature learning [30],
[31] and text-to-image generation [32], GAN has been recently
introduced in the field of image hashing [33], [34]. Hash-
GAN [33] utilizes generators to synthesize diverse images, and

employs a discriminator to distinguish the synthetic images
and the real ones. Meanwhile, a Hash Encoder learns the
binary hash codes with the similarity information between
images being preserved. BGAN [34] employs an auto-encoder
to jointly learn binary hash codes in the middle and gener-
ate synthetic images at the end. The representability of the
learned binary hash codes is improved by minimizing the
distances between reconstructed images and the original ones.
Meanwhile, the neighboring structures of images and features
are also preserved. More recently, GAN has been applied
in the learning-based binary descriptors [16]. BinGAN [16]
takes an intermediate layer representation of a discriminator
as the compact local binary descriptor. Two regularizers are
also proposed to reduce the correlation between binary local
descriptors.

Contrary to our work, HashGAN [33] and BGAN [34] are
specifically designed for image retrieval task and use tanh-like
activation for binarization. However, our work focuses on
patch descriptor based tasks, like patch matching. Additionally,
instead of taking the intermediate representations from the
discriminator, we here employ Discriminator along with a
set of low-coupling binary codes to guide the network to
directly generate low-coupling binary local descriptors from
Descriptor Generator.

III. PROPOSED METHOD

A. Framework

To learn effective binary local descriptors, we propose
a Transformation-invariant Binary Local Descriptor learning
framework (TBLD), which improves the representability of
local descriptors in terms of the robustness and bit correlations.
To enable binary local descriptors to be invariant to trans-
formations, inspired by visual representation learning [23],
the contrastive loss is employed to preserve the neighboring
structures of data. Specifically, the original image patches and
their transformed counterparts are projected to an identical
Euclidean subspace and an identical Hamming subspace, while
the distinctiveness between binary local descriptors of dis-
similar image patches are maximized. Additionally, an Adver-
sarial Constraint Module (ACM) is introduced to reduce bit
correlations, where low-coupling binary codes are introduced
externally to guide the learning of binary local descriptors.

The pipeline of the proposed TBLD is depicted in Fig. 1.
Specifically, given an image patch set I 0 = {I 0

i }c
i=1 with

c patches, I 0
i refers to the i -th image patch. We firstly build

v transformed patch sets, with each containing one certain
type of transformation on the original image patches, like
rotation or scaling. Then, the whole training set I = {I i }vi=0 is
formed by I 0 and the v transformed patch sets {I i }vi=1. After
that, visual features of all patches, T = {T i ∈ R

t×c}vi=0,
are extracted via the well-known VGG16 network [35], where
t refers to the feature dimension. Subsequently, visual features
are encoded by a Transformation-invariant Feature Encoder
to obtain r -dimensional transformation-invariant features X ∈
R

r×c. On top of that, a group of b-bit transformation-invariant
binary local descriptors B ∈ R

b×c are obtained by binariz-
ing the output of Binary Descriptor Generator F ∈ R

b×c
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Fig. 2. The selection of “Negative sets” in Negative Pairs Selection Strategy.
Visual features of image patches are firstly clustered into 32 clusters. For
a given batch during training, the corresponding “Negative set” is formed
according to the feature cluster of patches within the batch.

as follows:
B = sign(F). (1)

Here, we assume that r>b. As claimed, image patches
and their transformed counterparts are united to the identical
high-dimensional features X and binary local descriptors B.

B. Transformation-Invariant Binary Local Descriptors

1) Selection of “Pseudo Positive Pairs” and “Pseudo Neg-
ative Pairs”: To preserve the neighboring structures of image
patches from the feature space to the descriptor space, the con-
trastive loss is performed after both Transformation-invariant
Feature Encoder and Binary Descriptor Generator. For both
modules, the feature representations of “Pseudo Positive pairs”
are projected to an identical Euclidean subspace and an
identical Hamming subspace. Meanwhile, the distinctiveness
between the feature representations of “Pseudo Negative pairs”
are maximized. Since pair-wise matching labels are not avail-
able here, we employ the neighboring relationships of image
patches to build both “Pseudo Positive pairs” and “Pseudo
Negative pairs”. For simplicity, we use “Positive pairs” and
“Negative pairs” to refer to “Pseudo Positive pairs” and
“Pseudo Negative pairs”, respectively.

Specifically, a “Positive pair” is built by an original patch
and any one of its transformed counterparts. And a “Negative
pair” is formed by an original patch and a sampled “Negative
set”. In our scenario, there are numerous image patches in the
dataset, which means exhaustively pairing the given original
patch with the rest of patches seems impractical in terms of the
computational costs. Therefore, we propose a Negative Pairs
Selection Strategy, which selectively picks up a “Negative set”
to form the “Negative pairs”. Concretely, given a batch with
M image patches, q different image patches are selected
to form a “Negative set” according to their “clusters”. The
selection of “Negative set” is illustrated in Fig. 2, where

the extracted visual features T are clustered into 32 clusters
offline. During training, for a given batch, the cluster distrib-
ution of the image patches within the batch is analyzed. Then
samples are randomly selected from the uncovered clusters to
build the “Negative set”. If all the clusters are covered, samples
are selected randomly and evenly from each cluster to form
the “Negative set”. In the experiment, q is empirically set
as 4096, considering the balance between computational cost
and data diversity.

2) Contrastive Loss: Given the “Positive pairs” and
“Negative pairs”, the contrastive loss is performed after
both Transformation-invariant Feature Encoder and Binary
Descriptor Generator to propagate the neighboring struc-
tures from high-dimensional features to compact binary local
descriptors. The two loss terms are represented by LCr

and LCb , respectively, which enforce “Positive pairs” to have
identical transformation-invariant high-dimensional features
and compact binary local descriptors, respectively. Meanwhile,
the distinctiveness between feature representations of “Nega-
tive pairs” is maximized. Firstly, LCr is formulated as follows.

LCr = −
v∑

i=0

M∑
m=1

α
γ
i

M
log

e−sr DistE (xi
m,xm)

e−sr DistE (xi
m,xneg)

, (2)

where xi
m denotes the output of Transformation-invariant

Feature Encoder of the m-th patch from the i -th “Transformed
sets”, and xm is the transformation-invariant high-dimensional
feature of the m-th patch. DistE (xi

m, xm) represents the dis-
tance between xi

m and xm , which is formulated as follows,

DistE (x
i
m, xm) = �xi

m − xm�2
2. (3)

In the denominator, we adopt the average Euclidean distance
between xi

m and the corresponding high-dimensional “nega-
tive” set xneg formed by the real-valued representations of q
“negative” samples. which is denoted as,

DistE (x
i
m, xneg) = 1

q

∑
x j ∈xneg

�xi
m − x j�2

2. (4)

In Eq. (2), αi denotes the to-be-learned non-negative weight
w.r.t the i -th “Transformed sets”, which sums up to 1. γ is a
smoothing parameter and sr denotes the temperature parameter
for real-valued local descriptors, which are empirically set
as 3 and 0.1, respectively.

Similarly, the contrastive loss applied after Binary Descrip-
tor Generator, i.e., LCb , is defined as,

LCb = −
v∑

i=0

M∑
m=1

α
γ
i

M
log

e−sb DistH (bi
m,bm)

e−sb DistH (bi
m,bneg)

, (5)

where bi
m denotes the binary feature representations of the

m-th patch in the i -th “Transformed sets”, and bm indicates
the transformation-invariant binary local descriptor of the
m-th patch. DistH denotes the Hamming distance and DistH

represents the average Hamming distance between the binary
string of the given image patch and the binary local descriptors
of its counterparts from the “Negative set” bneg . sb denotes
the temperature parameter for binary local descriptors, which
is empirically set as 0.1.
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However, directly optimizing binary values will make the
back-propagation of the framework infeasible, which is known
as the ill-posed gradient problem [34]. In the paper, we replace
bi

m and bm in Eq. (5) with the relaxed real-valued representa-
tions output by Binary Descriptor Generator before the bina-
rization f i

m , and the to-be-binarized transformation-invariant
local descriptors fm , respectively. Then Eq. (5) can be rewrit-
ten as follows.

LCb = −
v∑

i=0

M∑
m=1

α
γ
i

M
log

e−sb DistE ( f i
m, fm)

e−sb DistE ( f i
m, fneg)

. (6)

The replacement requires a low quantization error between
the binary local descriptors and the corresponding relaxed
real-valued feature representations. Therefore, a quantization
loss term L Q is employed, which is denoted as,

L Q =
v∑

i=0

M∑
m=1

α
γ
i

M
� f i

m − bm�2
2, (7)

where f i
m denotes the relaxed real-valued feature representa-

tions of the m-th patch in the i -th “Transformed sets”. And
bm refers to the transformation-invariant binary local descrip-
tor of the m-th patch, which refers to the m-th column in B.

C. Low-Coupling Binary Local Descriptors

Apart from enhancing the robustness of binary local descrip-
tors against transformations, decorrelating bits of the compact
descriptor is also of great importance. As revealed previously,
correlated bits convey overlapped information, thus weakening
the representation capacity of the binary local descriptors.
According to [36], Wasserstein distance can measure the
distance between two non-overlapped data distributions, which
perfectly fits the situation where discrete and continuous
distributions coexists. Inspired by this, we advocate the use of
Wasserstein loss to minimize the Wasserstein distance between
the data distribution of low-coupling binary codes and the
feature distribution of the derived binary local descriptors.
Although the Wasserstein loss has been successfully employed
in applications like person re-identification [37], [38], it has
never been employed to learn binary local descriptors yet.

In the paper, a bottom-up learning strategy is proposed to
reduce bit correlations, termed Adversarial Constraint Module
(ACM). The structure of ACM is depicted in Fig. 3, which
adopts the scheme of generator-discriminator in the adversarial
learning.

Specifically, the proposed framework serves as a Descrip-
tor Generator to derive binary local descriptors. Meanwhile,
a sampler is employed to generate low-coupling binary codes
by randomly and independently sampling 0/1 values from the
Bernoulli distribution with the probability p = 0.5, which
conforms to the principle of local descriptors in [10]. Given
the input, a Discriminator, consisting of 3 fully-connected (fc)
layers, is followed. The first two fc layers are followed by a
ReLU activation function. In Discriminator, the Wasserstein
loss is employed to encourage the derived binary local descrip-
tors to mimic the distribution of the low-coupling binary codes
by alternately optimizing the Discriminator and the Descriptor
Generator.

Fig. 3. The structure of Adversarial Constraint Module (ACM). The
Discriminator takes the derived binary local descriptors from the Descriptor
Generator and the low-coupling binary codes sampled from the Bernoulli
distribution as input. With the help of Wasserstein loss, Discriminator and
Descriptor Generator are alternately trained to learn the mapping from the
derived binary local descriptors to the low-coupling binary codes.

Formally, given a training batch with M image patches I =
{Ii }M

i=0, a batch of binary local descriptors B = {bi}M
i=0 could

be learned by the Descriptor Generator. Similarly, to avoid
the ill-posed gradient problem, we replace the binary local
descriptors B with the relaxed representations F = { fi }M

i=0,
which refers to the real-valued feature representations out-
put by the Binary Descriptor Generator before binarization.
Additionally, the low-coupling binary codes Br = {bri }M

i=0
are sampled under the Bernoulli distribution. The Wasserstein
distance between F and Br could be approximated by,

max Ebri ∼b[D(bri )] − E fi ∼P f [D( fi )], (8)

where D refers to the discriminator. P f and b refer to
the feature distribution of F and data distribution of Br ,
respectively.

According to [36], Eq. (8) holds only when Lipschitz
constraint is satisfied. Therefore, following [39], Lipschitz
constraint is enforced by penalizing the p-norm of the gradient
of the discriminator w.r.t. the input, i.e., �∇x D(x)�p ≤ 1.
According to [39], enforcing the gradient norm constraint
everywhere is intractable, so we only enforce it on the space
that is uniformly sampled from the feature distribution P f

and the data distribution b. Integrating the regularizer to the
objective function, Wasserstein loss employed in Adversarial
Constraint Module can be denoted as follows.

LW = −Ebri ∼b[D(bri )] + E fi ∼P f [D( fi )]
+δEx̂∼Px̂

[(�∇x̂ D(x̂)�2 − 1)2], (9)

where x̂ ∼ Px̂ is sampled from both inputs with a random
sample weight � ∼ U [0, 1], and it can be formulated as,

x̂ = � fi + (1 − �)bri . (10)

Notably, there are some negative values in the F since the
Binary Descriptor Generator is trained to push F to [−1, 1].
However, the sampled binary local descriptors Br ∈ [0, 1].
To unify the two inputs, we replace the 0 in sampled binary
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local descriptors Br with −1. Additionally, to eliminate the
input noise, we also apply L2 normalization on F before
sending it to the Discriminator.

D. Loss Function

As our method adopts the scheme of generator-
discriminator, two learning objectives, i.e., LG for the Descrip-
tor Generator and L D for the Discriminator, are employed,
respectively.

1) Descriptor Generator Objective: Given the 1) the con-
trastive loss LCr in Euclidean space, 2) the contrastive
loss LCb in Hamming space, and 3) quantization loss L Q ,
the objective for Descriptor Generator is written as follows:

LG = LCr + LCb + βL Q − λDE fi∼P f [D( fi )], (11)

where β balances the contribution of L Q , and λD controls the
penalty of the Discriminator, which are both empirically set
as 1. Note that, to avoid plunging the network into the trivial
solution, where all the real-valued feature representations
become an all-zero or infinite matrix, we enforce the L2-norm
of the real-valued feature representations of each query to be 1,
i.e., �xi

m�2 = 1. To simplify the learning process, we integrate
the constraint in the objective as L N , which is denoted as
follow.

L N =
v∑

i=0

M∑
m=1

α
γ
i

M
(1 − �xi

m�2), (12)

Therefore, the objective LG can be formulated as,

LG = LCr + LCb + βL Q + λL N − λDE fi ∼P f [D( fi )],(13)

where λ is the weight for the regularizer L N , which is set as
1e-5 empirically.

2) Discriminator Objective: The Discriminator objective
L D is defined by,

L D = λD LW , (14)

where λD is the same hyper-parameter as in Eq. (13). In the
paper, Descriptor Generator and Discriminator are trained
with the SGD [40] optimizer with the initial learning rate being
5e-7 and 1e-8, respectively.

E. Optimization

The training procedure of TBLD is summarized in Algo-
rithm 1. Firstly, the parameters of Descriptor Generator,
w, are initialized following the Kaiming initialization [41].
The non-negative weights for the “Original set” and “Trans-
formed sets”, α = {αi }vi=0, are all initialized as 1/v. Given
the to-be-learned variables, i.e., the transformation-invariant
high-dimensional features X , the transformation-invariant
binary local descriptors B, and weights for input α, an alter-
nating optimization method is proposed to solve the objective
Eq. (13) via conducting the following steps iteratively.

(i) Update X . With B, wr , wb, α fixed, the objective func-
tion w.r.t. X can be rewritten as,

ψ1 = min
X

LCr . (15)

Algorithm 1 The training procedure of the proposed TBLD.

By setting the derivation of Eq. (15) w.r.t. X as 0, we can
get the closed-form solution of X:

X =
∑v

i=1 α
γ
i X i

∑v
i=1 α

γ
i

. (16)

(ii) Update B. Similarly, with other parameters fixed,
we can rewrite the objective function w.r.t. B as follows.

ψ2 = min
B

L Q . (17)

According to Eq. (1), B can be obtained by binarizing F
with the sign function. F can be obtained in a similar
manner with X . To conclude, B can be obtained as,

B = sign
(∑v

i=1 α
γ
i Fi

∑v
i=1 α

γ
i

)
. (18)

(iii) Update α. At the end of each epoch, with other para-
meters fixed, we can rewrite the objective function w.r.t.
α as follows.

ψ3 = min
α

v∑
i=0

α
γ
i (

˜Li
Cr

+ ˜Li
Cb

+ β L̃i
Q + λL̃i

N ), (19)

where ˜Li
Cr

, ˜Li
Cb

, L̃i
Q , L̃i

N are obtained from LCr , LCb ,
L Q , L N by factoring out αγi , respectively. Suppose that

Li = ˜Li
Cr

+ ˜Li
Cb

+ β L̃i
Q + λL̃i

N , the optimal α can be
derived as,

αi = (Li )
1

1−γ
∑v

j=0(L
j )

1
1−γ

. (20)

After alternately updating the parameters in Descriptor
Generator and Discriminator until the network converges,
the low-coupling binary local descriptors are derived from the
Descriptor Generator.
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TABLE II

COMPARISONS OF 95% ERROR RATE (%) WITH THE STATE-OF-THE-ART LOCAL DESCRIPTORS ON THE BROWN DATASET. THE CODE
LENGTHS ARE INDICATED BY DIM AND BYTES FOR REAL-VALUED LOCAL DESCRIPTORS AND BINARY ONES, RESPECTIVELY

IV. EXPERIMENT

We evaluate the proposed binary local descriptor learning
method on three widely used public datasets, i.e., Brown [20],
HPatches [43], and Mikolajczyk [44]. Comparisons with
the state-of-the-arts are conducted on visual analysis tasks
like patch matching, patch retrieval, and patch verification.
In this section, we will start by introducing the datasets and
experimental settings, then present and analyze the comparison
results.

A. Dataset Descriptions

• Brown dataset [20] contains three subsets: Liberty, Notre
Dame and Yosemite. Each subset contains 400,000 to
600,000 gray-scale image patches for training and
100,000 patch pairs for testing. The size of image patches
in the dataset is 64 × 64. For the test sets, half of the
pairs are matched and others are non-matched. In the
experiment, we follow the settings in [8], i.e., training
the network with one subset and then evaluating it on the
other two subsets. There are 6 train-test combinations in
total.

• HPatches dataset [43] consists of 116 image sequences,
with 59 containing significant viewpoint changes and the
rest containing illumination deformations. Each sequence
includes a reference image and 5 target images. Image
patches are detected in the reference image with Differ-
ence of Gaussians (DoG) detector and projected on the
target images using the ground truth homographies. The
sizes of patches are normalized to 65 × 65. Following
the setting in [15], the to-be-evaluated model in this
experiment is trained on the Liberty subset of the Brown
dataset.

• Mikolajczyk dataset [44] is proposed to investigate the
robustness of descriptors to viewpoints (Graffiti), com-
pression artifacts (Ubc), illumination changes (Leuven),
blurriness (Trees), and zoom and rotation (Boat). Each
subset comprises a reference image and 5 target images,
which are sorted by an increasing degree of distortions.
Since TBLD is proposed to deal with the scale and
viewpoint transformation, the evaluation is conducted
on the corresponding scenes, i.e., Boat and Graffiti.

Following the protocol in [44], SIFT keypoint detector
is firstly employed to detect 1000 interest points for
each image in an image pair. Then the keypoints are
matched via an exhaustive search based on the Hamming
distance between the corresponding binary descriptors.
Following the setting in [8], the to-be-evaluated model in
this experiment is trained on the Notre Dame subset of
the Brown dataset.

B. Implementation Details

To preprocess the input data, two types of transformations,
i.e., rotation and scaling, are employed to derive the trans-
formed sets. Rotation angles range in {−10,−5, 5, 10}, and
scaling factors are set as 0.8 and 1.2. To obtain features from
the fc7 layer (4096-d) of the pre-trained VGG16 [35], the input
patches are firstly resized into 256 × 256 and then cropped to
224 × 224. We here set the length of real-valued and binary
local descriptors as 1024 and 256, following the setting of [13].
The batch size is 32 and the maximum iteration is 10000.

C. Comparison With State-of-the-Arts

1) Results on Brown Dataset: Experiments on the Brown
dataset aim to evaluate the performance of the proposed
approach on the patch matching task. Following [10], [11],
[13], the adopted evaluation metric is 95% error rate, which
denotes the percent of incorrect matches when 95% of the
ground-truth matched patches are found. Lower 95% error rate
represents better performance. Comparisons are conducted
with the state-of-the-art works, including supervised descrip-
tors (e.g., D-BRIEF [42], and BinBoost [8]) and unsupervised
ones (e.g., BRISK [5], BRIEF [6], and GraphBit [13], etc.).
The comparison results are reported in Table II, where the
results of real-valued descriptor SIFT [17] and supervised
descriptors are also provided as references.

As can be seen, TBLD outperforms the state-of-the-art
unsupervised binary descriptors, including both hand-crafted
and deep learning based ones, on all the subsets. A decline
of 11% can be found in terms of 95% error rate in contrast to
the best unsupervised binary local descriptor learning method
so far (GraphBit [13]). It is worth mentioning that when
compared with a widely-used floating-point descriptor, i.e.,
SIFT [17], the proposed TBLD obtains a lower 95% error
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Fig. 4. ROC curves of the proposed TBLD and the state-of-the-art on the brown dataset, with all the train-test combinations among three subsets.

rate, along with a much lower computation cost for measuring
similarities.

Moreover, Receiver Operating Characteristic (ROC) curves
of the state-of-the-art unsupervised binary local descriptors
are plotted in Fig. 4. The curves illustrate the true posi-
tive rate (TPR) against false positive rate (FPR) at various
threshold settings. For a fair comparison, we firstly reproduce
the algorithms and then plot the curves. In terms of deep
learning based binary local descriptors, the competitors include
DeepBit [10] and GraphBit [13] because only their source
codes are provided and GraphBit [13] still maintains the best
performance until now. As can be seen, the ROC curves from
TBLD rank at the top on all train-test configurations.

2) Results on HPatches Dataset: We use HPatches dataset
to evaluate the performance of binary local descriptors on three
visual tasks: patch matching, patch retrieval, and patch verifi-
cation. Specifically, descriptors are compared in the matching
task to find matched patches between the reference image and
the target ones. For the patch retrieval task, local descriptors
are employed to match a query patch to a pool of patches
extracted from many images. In terms of patch verification,
descriptors are utilized to classify whether two patches are
matched or not.

Following the evaluation metrics suggested by [43],
we compare TBLD with the state-of-the-art descriptors in
terms of mean average precision (mAP). The comparison
results are reported in Table III. Higher mAP means better
performance. Again, the binary local descriptors are catego-
rized as supervised and unsupervised ones according to the
training manner. Since DBD-MQ [11] and BinGAN [16] did
not report the results on the HPatches dataset, they are not
included in Table III.

It can be seen that TBLD beats all unsupervised baselines,
including both hand-crafted ones (BRISK [5], BRIEF [6],

TABLE III

COMPARISONS OF MAP (%) WITH THE STATE-OF-THE-ART

BINARY LOCAL DESCRIPTORS ON THE HPATCHES DATASET

ORB [7]) and deep learning based ones (DeepBit [10],
GraphBit [13]) on all the tasks. Specifically, compared to
GraphBit [13], TBLD improves the mAP score by 8.2%, 6.8%,
4.5%, respectively, in the three tasks. Here we also provide the
result of the real-valued SIFT [17] for a reference. It can be
observed that our method even outperforms SIFT on the patch
verification task with a 4.58 % increase in terms of mAP.

3) Results on Mikolajczyk Dataset: Experiments are con-
ducted on the Mikolajczyk dataset [44] to prove the generaliza-
tion of the binary local descriptors on the patch matching task.
Here, we compare TBLD with both hand-crafted binary local
descriptors (BRISK [5], ORB [7]), and the best deep learning
based one so far (GraphBit [13]). Considering the fairness,
the binary local descriptors are set as 32 bytes for all the
methods. Specifically, we firstly reproduce the algorithm and
then employ the Recognition rate to evaluate the performance
following [6], [17]. The Recognition rate can be obtained as
follows,

• Extracting n1 interest points from the reference image,
and n2 from the target image. Among them, n matching
pairs are obtained from the ground-truth homograph
transformation matrix.
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Fig. 5. Recognition rate on the Mikolajczyk dataset. TBLD outperforms
other state-of-the-art binary local descriptors learning approaches in terms of
recognition rate on all reference-target configurations.

• For each interest point in the reference point set, finding
the nearest neighbor in the target point set via binary local
descriptors.

• Counting the number of correct matches nc, and calcu-
lating the recognition rate with r = nc/n.

Following the previous works [6], [8], for an image, inter-
est points are firstly detected by the SURF Hessian-based
detector and patches are then cropped and normalized to the
required size of each descriptor. Specifically, for BRISK [5]
and ORB [7], the sizes of patches keep unchanged. As for
GraphBit and our method, the patches are resized to 224×224
for feature extraction.

Fig. 5 illustrates the recognition rates of the state-of-the-art
binary local descriptors on both Boat and Graffiti scenes
with the challenges of zoom/rotation and viewpoint variations,
respectively. As can be seen, TBLD outperforms other state-
of-the-art binary local descriptors on all the reference-target
configurations. Additionally, it can be found that, compared
to the Boat scene, our method performs better on the Graffiti
scene, where a significant increase in the recognition rate can
be seen for all configurations. We attribute it to that the gap
between training scenes (Notre Dame) and Graffiti is relatively
smaller than Boat. Results on the Mikolajczyk dataset further
verify the generalization ability of the proposed method.

4) Comparison Using a Unified Metrics: Additionally,
to show the superiority of our method clearly, we evaluate the
performance of the learned binary descriptors on the patch
matching task of the three datasets in terms of a unified
metrics: mAP. For fair comparisons, we have to reproduce
some representative baselines, including hand-crafted ones
(BRIEF and ORB) and deep learning based one (GraphBit),
and evaluate their performances by ourselves, because existing
algorithms failed to evaluate their works using the same metric
on different datasets. Due to time constraints, only state-of-
the-art binary descriptor learning methods are chosen.

The mAP scores are illustrated in Table IV. The model used
for evaluation is trained on the Liberty subset of the Brown
dataset. Note that, the mAP scores of the Mikolajczyk dataset
are obtained by the patch matching between the target image
(img1) and the reference image with the mildest distortion
(img2). As can be seen, the proposed TBLD still outperforms
the state-of-the-art approaches on the three datasets when a
unified metric is employed.

D. Ablation Study

1) Transformation Invariance: Firstly, we investigate the
transformation invariance of binary local descriptors derived
by TBLD. Since the to-be-evaluated models are trained on

TABLE IV

COMPARISON OF MAP (%) WITH THE STATE-OF-THE-ART
BINARY DESCRIPTORS ON THE THREE DATASETS

Fig. 6. Visualization of patches from the Hpatches dataset. Patches from the
reference image (REF) are shown in the first row. Patches from target images
with the increasing level of geometric noises: EASY, HARD and TOUGH,
are shown in row 2 to 4, respectively.

the Brown dataset, which probably tends to adapt better
to the transformations within the dataset, we conduct the
analysis on the other two datasets. For the Mikolajczyk dataset,
as discussed above, both Boat and Graffiti subsets contain a
certain type of transformations, which means the transforma-
tion invariance of the derived binary local descriptors has been
proved by the results in Fig. 5. Therefore, here the ablation
study is conducted on the HPatches dataset [43] to evaluate
the robustness of the derived binary local descriptors against
geometric noises and viewpoints.

a) Geometric Noise: Specifically, image patches in the
HPatches dataset have been divided into different subsets
according to the level of geometric noises, which are indicated
by EASY, HARD and TOUGH. Examples of the reference
and the target image patches in each subset are shown
in Fig. 6. On each subset, we compare our TBLD with other
transformation-invariant binary local descriptors: BRISK [5],
ORB [7] and DeepBit [10] in terms of mAP, following the
settings in [43]. The results are illustrated in Fig. 7. As can be
seen, the proposed TBLD achieves a higher mAP on all the
subsets, which proves the robustness of our method against
multiple levels of geometric noises.

b) Viewpoints: For the task of patch matching, HPatches
further groups the data with different levels of geometric
noises, into “ILLUM” and “VIEW” subsets, to facilitate
the evaluation of the robustness of binary local descrip-
tors against illumination and viewpoints changes. Since
the proposed TBLD focuses on improving the robust-
ness of descriptors against transformations like rotation and
scaling, the comparison is specifically conducted on the
“VIEW” subsets. The mAP of the state-of-the-art unsuper-
vised transformation-invariant binary local descriptors on the
“VIEW” subsets are illustrated in Fig. 8.
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Fig. 7. Performance of the state-of-the-art transformation-invariant binary local descriptors on the three tasks in the HPatches dataset. For each task, data
are divided into three subsets according to the level of geometrical noises, which are indicated by EASY, HARD, and TOUGH, respectively.

TABLE V

COMPARISON OF 95% ERROR RATE (%) WITH THE MODEL TRAINED WITH THE EVENLY-DISTRIBUTIVE CONSTRAINT ON THE BROWN DATASET

Fig. 8. Comparison with the state-of-the-art transformation-invariant binary
local descriptors on the “VIEW” subsets of the patch matching task in terms
of mAP(%).

As can be seen, although our method underperforms
BRISK [5] on the overall mAP of the patch matching task
(15.39% and 15.97%, respectively), it outperforms BRISK on
the three “VIEW” subsets from EASY, HARD, and TOUGH,
respectively. The results prove the robustness of the binary
local descriptors derived by TBLD against viewpoints changes.

2) Effectiveness of Adversarial Constraint Module : We
prove the effectiveness of the Adversarial Constraint Mod-
ule (ACM) from two aspects. 1) We compare the proposed
bottom-up strategy (ACM) with the evenly-distributive con-
straint employed to reduce the bit correlations in the existing
works, such as DH [22] and DeepBit [10]. 2) We investigate
the contribution of ACM by comparing the bit correlations
of binary descriptors derived by models trained with (w/)
and without (w/o) ACM. Since the HPatches [43] and the
Mikolajczyk [44] are designed only for evaluation, we only
conduct the comparisons on the Brown dataset [20].

a) Comparison with the evenly-distributive constraint.:
To compare with the evenly-distributive constraint, we remove
ACM from the framework and employ the evenly-distributive
constraint, which is denoted as follows,

L M = ∑K
k=1 ||μk − 0, 5||2, μk = 1

N

N∑
n=1

bnk, (21)

where K is the length of binary descriptors and μk denotes
the mean value of each bit over N samples within a mini-
batch. Therefore, the overall objective for the to-be-compared
models can be derived as,

L = LCr + LCb + βL Q + λL N + L M . (22)

The performances of the derived binary descriptors are evalu-
ated in terms of 95% error rates, which are reported in Table V.
It can be observed that binary descriptors derived by the
proposed method outperform those derived by the model
trained with the evenly-distributive constraint with lower 95%
error rates.

b) Bit Correlation Reduction: To investigate the reduc-
tion of bit correlations brought by ACM, we compare the
correlations between bits of binary descriptors derived by the
models trained with (w/) and without (w/o) ACM, respec-
tively. Specifically, we train the proposed network on the
three subsets of the Brown dataset separately, with the same
experimental settings, except that ACM is removed from each
model.

With the derived binary descriptors, the average bit corre-
lations are evaluated by mean Absolute Correlations (mAC).
Specifically, given N to-be-evaluated image patches with cor-
responding k-bit binary descriptors B = {b1, . . . bn}, the mAC
score is calculated as follows,

m AC = 1

k(k − 1)

∑
i, j �=i

|Pij |, (23)

Pij =
∑N

n=1(bin − b̄i )(b jn − b̄ j )√∑N
n=1(bin − b̄i )2

√∑N
n=1(b jn − b̄ j )2

, (24)

where Pij presents the Pearson correlation coefficient between
the i -th bit and the j -th bit. Specifically, bin denotes the i -th bit
of the binary descriptor of the n-th image patch. b̄i and b̄i are
the mean values of the i -th bit and the j -th bit over N image
patches. According to the definition of mAC, it can be inferred
that a lower mAC score means lower bit correlations.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 14,2023 at 05:48:08 UTC from IEEE Xplore.  Restrictions apply. 



MIAO et al.: LEARNING TRANSFORMATION-INVARIANT LOCAL DESCRIPTORS 7565

TABLE VI

COMPARISON OF THE MEAN ABSOLUTE CORRELATIONS (%) OF BINARY
LOCAL DESCRIPTORS DERIVED BY MODELS WITH (W/) AND

WITHOUT (W/O) Adversarial Constraint Module.
	 REFERS TO THE RELATIVE DECREASE

The mAC scores of binary local descriptors derived by mod-
els with (w) or without (w/o) ACM are reported in Table VI.
As can be seen, with ACM, the correlation between bits is
reduced by 3.65%, 22.92%, 6.04%, respectively, in terms of
mAC score, which proves its effectiveness on bits correlation
reduction.

V. CONCLUSION

In this paper, we have proposed a Transformation-invariant
Binary Local Descriptor learning method, termed TBLD,
which is trained in an unsupervised manner. Three major
contributions are made in the paper. First, we proposed a
framework that derives transformation-invariant binary local
descriptors. Based on the argumentation that the same object
should be described by the same local descriptors, the original
image patches and their transformed counterparts are projected
to an identical Euclidean subspace and an identical Hamming
subspace with the help of the contrastive loss. Second, to solve
the problem brought by directly applying the scheme of
image hashing in local descriptor learning, which refers to
the high correlations between bits, we propose an Adversarial
Constraint Module (ACM). A set of low-coupling binary codes
are introduced to guide the learning of binary local descriptors.
By means of Wasserstein loss, the framework is optimized to
transfer the distribution of the learned binary local descriptors
to the low-coupling ones, thereby making the learned ones as
low-coupling as possible. Third, experimental results on three
benchmark datasets well demonstrate the superiority of the
proposed approach over the state-of-the-art methods.

APPENDIX

A. Image Entropy

For the experiment mentioned in Section I, we evaluate the
average amount of information conveyed by image patches
and images with Shannon entropy, which serves as a measure-
ment of image information and is extensively used in image
processing applications [45]. The Shannon Entropy is defined
as,

E = −
256∑
i=1

pilog(pi), (25)

where pi denotes the probability of the i -th gray-level value
occurring in an image or an image patch. A higher Shannon
entropy means more information are carried.
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