
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021 293

Where to Prune: Using LSTM to Guide
Data-Dependent Soft Pruning

Guiguang Ding , Member, IEEE, Shuo Zhang, Zizhou Jia, Jing Zhong, and Jungong Han , Member, IEEE

Abstract— While convolutional neural network (CNN) has
achieved overwhelming success in various vision tasks, its heavy
computational cost and storage overhead limit the practical use
on mobile or embedded devices. Recently, compressing CNN
models has attracted considerable attention, where pruning
CNN filters, also known as the channel pruning, has generated
great research popularity due to its high compression rate.
In this paper, a new channel pruning framework is proposed,
which can significantly reduce the computational complexity
while maintaining sufficient model accuracy. Unlike most exist-
ing approaches that seek to-be-pruned filters layer by layer,
we argue that choosing appropriate layers for pruning is more
crucial, which can result in more complexity reduction but less
performance drop. To this end, we utilize a long short-term
memory (LSTM) to learn the hierarchical characteristics of a
network and generate a global network pruning scheme. On top
of it, we propose a data-dependent soft pruning method, dubbed
Squeeze-Excitation-Pruning (SEP), which does not physically
prune any filters but selectively excludes some kernels involved
in calculating forward and backward propagations depending
on the pruning scheme. Compared with the hard pruning, our
soft pruning can better retain the capacity and knowledge of
the baseline model. Experimental results demonstrate that our
approach still achieves comparable accuracy even when reducing
70.1% Floating-point operation per second (FLOPs) for VGG and
47.5% for Resnet-56.

Index Terms— Deep learning, model compression, computer
vision, image classification.

I. INTRODUCTION

IN RECENT years, deep convolutional neural network
(CNN) has shown a great success in many computer vision

applications, such as image classification [1]–[3], semantic
segmentation [4], image captioning [5]–[7], and object detec-
tion [8]–[10] and recognition [11]–[13]. However, its success
on accuracy has come with a significant amount of model
parameters for storage and expensive training costs on GPUs.

Manuscript received March 6, 2019; revised April 18, 2020 and July 29,
2020; accepted October 2, 2020. Date of publication November 16, 2020; date
of current version November 20, 2020. This work was supported by the Nat-
ural Science Foundation of China under Grant 61925107 and Grant U1936202.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Ming-Ming Cheng. (Corresponding author:
Jungong Han.)

Guiguang Ding, Zizhou Jia, and Jing Zhong are with the School
of Software, Tsinghua University, Beijing 100084, China (e-mail:
dinggg@tsinghua.edu.cn).

Shuo Zhang is with the School of Computing and Communications,
Lancaster University, Lancaster LA1 4YW, U.K.

Jungong Han is with the Department of Computer Science,
Aberystwyth University, Aberystwyth SY23 3DB, U.K. (e-mail:
jungonghan77@gmail.com).

Digital Object Identifier 10.1109/TIP.2020.3035028

Fig. 1. The accuracy of ResNet-56 after one layer is pruned. The same
number of filters are removed in different layers at the same stage. Lm in
x-axis denotes the mth residual block.

They all impede the deployment of CNN on computationally
limited devices, such as mobile or embedded devices. To rem-
edy this situation, it is desired that CNN can be tiny and fast
enough while preserving sufficient accuracy. Therefore, deep
model compression has become a popular research topic.

Current CNN compression techniques can be divided into
four categories. The first category makes use of the quanti-
zation technique, where a model binarization approach [14]
is usually adopted. The second category is network sparse-
ness [15], [16] by removing unimportant weights or setting
it to zero. The third category takes advantage of tensor
factorization technique [17] which combines small tensors and
simple operations to approximate large and complicated ten-
sors. The last category is called filter-wise pruning [18], [19]
which directly removes unimportant convolutional filters. The
filter pruning method preserves the structure of the network,
thus resulting in smaller and faster models with little or no
performance drop. Therefore, the filter pruning technique has
gained the most attention in recent years, which is the focus
of this paper.

Basically, deep CNN model compression is a systematic
task and the pruning decision should be a trade-off of all
factors of the entire model. However, it seems that most
existing pruning approaches [18], [20]–[22] only consider the
information of individual filters but fail to take the correlation
among layers and filters into consideration. In particular, they
mostly focus on evaluating the importance of each filter
individually at each layer and the filters are pruned from
top to bottom or bottom to top in a layer by layer manner.
If it happens to remove a few filters from an important layer,
the performance of the overall system may drop significantly.
On the contrary, pruning many filters in an unimportant layer
may impact little on accuracy but get the model complexity

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0137-9975
https://orcid.org/0000-0003-4361-956X

294 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

dramatically reduced. To demonstrate this, we take the ResNet-
56 as an example. Here, we run the filter pruning experiment
three times, called three stages, at each of which we prune
filters from three layers respectively. There is no interaction
between stages, implying that the experiments at different
stages are independent. At each stage, the same amount of
filters are removed from each of the three layers so that the
model complexities after pruning are identical. To be specific,
we randomly remove the same amount of filters from the layer
10, 12 and 18 when carrying our the stage two experiment,
and we show the accuracy of the model after pruning at
different layers (e.g., L10, L12, or L18 at stage 2) in Figure 1,
on which it is clear that the importance of each layer varies,
as the performance difference in accuracy is quite noticeable.
Therefore, where to prune is a critical issue for pruning
and choosing to prune the layers that have smaller impacts
on the classification accuracy will lead to more complexity
reduction with less performance drop. In Table III, we compare
a traditional pruning method [18] with the proposed approach
that allows to select to-be-pruned layers. It turns out that
our approach achieves a larger pruning rate with sufficient
accuracy preserved.

The above phenomenon motivates us to investigate the
problem of choosing the appropriate layers to prune. In this
paper, we propose a novel approach to evaluate the importance
of each layer and choose less important layers to prune.
Specifically, considering that the CNN usually exploits a
hierarchical structure that can be represented as a string,
we employ long short-term memory (LSTM) [23] as an
evaluation metric to generate the pruning decision for each
layer. The entire algorithm is carried out in two steps:
unimportant layers finding and unimportant filters finding.
To detect the unimportant layers in a deep CNN, the LSTM is
trained using reinforcement learning with model performance
and complexity considered in the reward function. In the
subsequent unimportant filters finding step, a channel-based
method is adopted, which goes over each filter of a certain
neural network layer and finally, a number of filters with
the least importance are pruned. Through several pruning
iterations, the slimmer model is generated, which preserves
the performance of deep CNN while significantly reducing the
complexity of the model. In addition, the new slimmer network
usually ends up having a compact structure, because the
training process of LSTM aids in generating a more efficient
architecture.

Existing pruning methods usually adopt a hard pruning
strategy to remove the unimportant filters from the network
directly, in which the importance evaluation of the filter is
often inaccurate due to ambiguous calculations. Specifically,
when the filter is unimportant for most image data, it is
decided to be an unimportant filter, even if it plays a relatively
important role for a small portion of image data. In this case,
feature extraction and classification performance on those few
images are degraded, which means that employing a hard
pruning strategy will definitely give rise to the decrease of
the overall accuracy. On the contrary, a soft pruning strategy
allows the pruned filters in the previous epoch to be updated
in the next epoch during the training procedure. In this way,

no filters are physically removed and the model capacity can
be recovered from the pruned model.

In this paper, we propose the Squeeze-Excitation-Pruning
(SEP), which is a soft pruning method. Referring to the slim-
mer architecture generated by LSTM, we use the SEP module
to rebuild the baseline network. Meanwhile, the SEP module
is used to generate the importance scores of all filters for each
given image. In our soft pruning, all filters of the baseline
network are preserved, but for each input image, only a portion
of important ones are involved in the forward and backward
calculations. That is, no filters are removed from the network.
When it comes to different image data, different filters might
be softly pruned depending on the selection results of SEP.
This data-dependent soft pruning method retains the capacity
and knowledge of the baseline model, thus ensuring better
performance. Specifically, the complete framework is shown
in Figure 2, and our major contributions are summarized as
follows:

• We argue that where to prune is actually a critical
issue for CNN model compression, which has long
been unfortunately neglected. To this end, propose an
end-to-end framework to prune networks in the correct
order. Concretely, considering the hierarchical structure
of CNN, we employ LSTM as an evaluation model to find
the least important layers and thus generate the pruning
decision for a given network. LSTM is updated using the
policy gradient method with both model performance and
complexity as the reward.

• Rather than adopting a hard pruning strategy, we propose
the SEP pruning method. SEP is a data-dependent soft
pruning method, which preserves all the filter parameters,
but for each image, only some important ones participate
in calculating forward and backward propagations. When
the given image is changed, different filters may be softly
pruned according to the SEP selection.

• Comprehensive experiments are carried out on several
benchmark datasets. The results show that our pruning
method is capable of compressing a variety of network
structures with comparable accuracy and works well on
both convolutional and fully-connected networks. It also
reveals that our method learns the sensitivity of each
network layer.

II. RELATED WORK

Our work is in relation to weight pruning, filter pruning,
compact network design, and neural architecture search, each
being elaborated below.

A. Weight Pruning

Removing network connections is an intuitive model com-
pression method, which mostly focuses on evaluating and
selecting unimportant connections. Reference [16] assesses
the network connections through the second-order derivative
information, but it leads to high computational complexity.
Reference [24] carries out model compression in three steps:
removing connections with the smallest absolute weights val-
ues, quantization, and Huffman encoding. Reference [25],

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

DING et al.: WHERE TO PRUNE: USING LSTM TO GUIDE DATA-DEPENDENT SOFT PRUNING 295

Fig. 2. The framework of our end-to-end pruning method. The first step is to make pruning decisions based on the LSTM evaluation model. After several
epochs, a more efficient and slimmer network structure is finally generated. LSTM is updated in the policy gradient method with both model performance
and complexity as the reward. In the second step, we rebuild the baseline network by deploying the SEP module for each layer and train it from scratch. The
SEP attention module is composed of feature extraction and selection, which generates the weight vector, selects and sets some weights to zero according to
the pruning structure generated in the first step. Then, the feature map in the next convolution layer is scaled by this weight vector to achieve dynamic and
data-dependent soft pruning.

[26] regularize neural network parameters by group Lasso
penalty, resulting in group-level sparsity. [27] prunes connec-
tions between the input and output feature maps with a newly
proposed class of parameters called Synaptic Strength.

B. Filter Pruning

Existing software and hardware libraries usually struggle to
accelerate weight pruning methods. To address this problem,
more works focus on filter-wise pruning. Reference [18] first
proposes to prune parameters at the filter level, which evaluates
a filter by calculating its absolute weights sum and removes
unimportant filters sequentially. Reference [28] assesses the
channels by introducing additional discrimination-aware losses
to increase the discriminative power of the intermediate layers.
ThiNet [21] considers filter pruning to be an optimization
problem and proposes a greedy method to prune filters using
their statistics information in the next layer. Reference [22]
leverages the scaling factors in the batchnorm layers to evalu-
ate filters combined with a sparsity regularization. Different
from the methods above, [29] allows the pruned filters to
be updated during the training procedure. Reference [30]
trains the reinforcement learning agent to predict actions like
whether to remove one layer in network and uses a reward
function to update their agent. Reference [31] applies the
structure regularization to the corresponding out-channels and
in-channels in the continuous network layer. Reference [32]
utilized reinforcement learning to learn two seperate policies
to remove and shrink layers respectively in tiny datasets.
Reference [33] uses attention modules as the criterion to
evaluate the importance of channels and prune channels with
low correlations to accelerate networks. Reference [34] uses

reinforcement learning to predict the action and gets sparsity
to find the redundancy in each layer for pruning.

C. Compact Network Design

Current widely used compact network structures are
designed manually based on expert knowledge. For instance,
ShuffleNet [35] is designed specifically for mobile devices
with limited computing power, which utilizes two new opera-
tions, pointwise group convolution and channel shuffle. As an
extension of ShuffleNet, ShuffleNet V2 [36] performs faster
and more accurately when following some practical guide-
lines. Alternatively, MobileNetV1 [37] is based on a stream-
lined architecture that uses depth-wise separable convolu-
tions to build lightweight deep neural networks. On top of
MobileNetV1, MobileNetV2 [38] adds a novel layer module:
the inverted residual with a linear bottleneck, which improves
the accuracy significantly.

D. Neural Architecture Search

In order to reduce labor costs, automatic design/search
of the network structure by machine has received world-
wide attention in both academia and industry [39]–[43]. For
instance, evolutionary techniques [39]–[41] discover target
models from trivial initial architectures by setting up the vast
search space, which requires enormous computing resources.
Alternatively, [42], [43] utilize the reinforcement learning
mechanism to train the recurrent neural network (RNN) con-
troller to generate the neural networks automatically, which
have achieved good results on various datasets. To reduce the
search space, Nasnet [44] searches for an architectural building
block on a small dataset and then transfers it to a larger

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

296 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

dataset. For further improvement, Mnasnet [45] introduces a
novel factorized hierarchical search space that partitions CNN
layers into groups, within which operation and connection
searches can be carried out. Reference [46] utilizes Bayesian
Optimization to search for a compressed network structure on
a given teacher network.

III. METHOD

In this section, we present our end-to-end pruning method.
Before going into further details, we briefly explain the basic
idea. We first use LSTM to generate the pruning decisions
by evaluating the importance of each layer, where the most
unimportant layers will be selected to be pruned. Once we
have collected such guidance information, the SEP attention
mechanism is employed to rebuild the baseline network.
Basically, we train a SEP from scratch by deploying the
pruning information, e.g., which layers will be pruned and
how many filters in each layer need to be pruned, estimated
by the preceding LSTM. The SEP module consists of two
parts: the pre-SE module includes squeeze and excitation
used for feature extraction and weight vector generation; the
selective-pruning module selects and sets some weights to
zero. Therefore, the SEP module can automatically predict the
importance of each feature map and set some weights to zero
based on the information of feature extraction. The details of
the end-to-end pruning framework in Figure 2 are elaborated
as follows.

(a). Pruning guidance: An initial or intermediate network
representation is fed into LSTM, and LSTM generates
a strategy indicating which layers should be pruned.

(b). Filter selection and fine-tuning: We evaluate the
importance of each filter in the layers chosen by LSTM
with a channel-based method, then prune those unim-
portant filters combined with the recovery mechanism.
Afterwards, we fine-tune the pruned model using the
distillation method.

(c). Updating LSTM: We update LSTM in a reinforcement
learning way incorporating both the performance and
complexity of the pruned model in the reward signal.

(d). Repeat from (a) to (c):
(e). Data-dependent soft pruning: Referring to the slim-

mer architecture generated by LSTM, the baseline net-
work is rebuilt with SEP modules and trained from
scratch to achieve data-dependent soft pruning.

A. Where to Prune

The basic idea can be interpreted as follows: LSTM gen-
erates the pruning probability for each layer. The output of
each layer is associated with two real values, indicating the
probabilities of “Pruning” and “Not Pruning”, respectively.
Suppose the number of all candidate convolution layers is
defined as L, we can get one matrix P ∈ R

L×2, corresponding
to the pruning probabilities of L conv layers. If the probability
of “Not Pruning” is larger than that of “Pruning” in one row,
we treat this row as “0”, meaning we do nothing for this
layer. Otherwise, it is a to-be-pruned layer. In this way, we can

obtain a map, indicating which layers in the network need to
be pruned.

1) Input and Output of LSTM: A neural network is a
hierarchical sequence from input to output connected by
operation nodes, which can be convolution, pooling, and fully-
connected operation. For a common CNN here, the i th node
ξi is denoted as (mi , ni), where the operation type m is
in {0, 1, 2} corresponding to convolution, pooling, and fully-
connected block respectively, operation attribute n equals to
filter number, pooling stride or unit number. Convolution and
fully-connected nodes (final classifier layer is not included) are
called the primary nodes, while pooling and the final classifier
are seen as the secondary nodes because they cannot be pruned
but supply auxiliary information instead.

Since LSTM is good at time series prediction, we use a
2-layer LSTM in Figure 2 to learn the network structure
and produce reasonable pruning decisions. At each timestep,
the current primary node as well as its next primary or sec-
ondary node [ξi , ξi+1] are fed into LSTM equivalent to
[mi , ni , mi+1, ni+1] and the pruning decision whether to prune
the first primary node is generated by a softmax layer. For
a network with N primary nodes, LSTM repeats the above
step N times and N distinct softmax layers predict whether to
prune these nodes or not. Pooling nodes and the final classifier,
taken as the secondary nodes, cannot get pruning predicted but
play a key role in helping LSTM to understand a complete
network structure.

2) Training LSTM With Policy Gradient Method: After
LSTM generates pruning decisions, we prune some filters
in the chosen layers such that a slimmer model can be
obtained. Both performance and complexity of this new model
contribute to the reward signal R for assessing the performance
of LSTM. The trade-off is shown in Eq. 1, where we use
the training loss or accuracy on the validation set to measure
the per f ormance, and use model FLOPs or the number
of PARAM to measure the complexi ty. Let λ be a trade-
off hyperparameter, whose optimal value can be obtained
empirically via experiments:

R = per f ormance − λ × complexi ty. (1)

We use the policy gradient algorithm [47] (Eq. 2) here,
enabling LSTM to generate better pruning strategies. Con-
cretely, we define αt , st and Rk as Action, State and Reward
at time step t of one trajectory respectively. m is the number
of rollouts for a single gradient update. In order to reduce
the variance cuased by sampled trajectories, the reward of the
current input network is taken as our baseline b:

∇θ J (θ) = 1

m

m�
k=1

T�
t=1

∇θ log P(αt |st ; θ)(Rk − b). (2)

B. Filter Selection and Fine-Tuning Strategy

1) Filter Selection and Recovery: LSTM generates a deci-
sion about which layers should be pruned, given an input
network. A convolution node in layer i can be denoted by
a triplet �Ii ,Wi ,Oi �, where Ii ∈ R

xi−1×hi ×wi same as Oi−1
is the input tensor with channels xi−1, height hi and width

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

DING et al.: WHERE TO PRUNE: USING LSTM TO GUIDE DATA-DEPENDENT SOFT PRUNING 297

Fig. 3. Pruning a convolution filter requires removing its corresponding convolution channel set in next layer.

wi . The filter tensor Wi ∈ R
xi×xi−1×k×k with k × k filter size

convolutes with Ii and generates an output tensor Oi with
xi channels. From the perspective of filters, Wi consists of xi

filters Fi ∈ R
xi−1×k×k , while from the perspective of channels,

Wi consists of xi−1 channel sets Ci ∈ R
xi×k×k .

After the j th filter in the layer i Fi, j has been pruned,
its corresponding j th channel set Ci+1, j becomes useless and
should be removed at the same time. Convolution structures in
other layers are not affected and remain unchanged as shown
in Figure 3. It is the output tensor deviation in layer i + 1 that
transfers errors to the final loss and directly leads to worse
performance. Therefore we remove less important filters in
layer i and channel sets in layer i + 1 to minimize the output
value deviation �Oi+1. Since there often exists an activation,
pooling or batchnorm layer between two convolution layers,
the channel sets Ci+1 affect the output value Oi+1 more
directly than convolution filters Fi . We follow Eq. 3 to
measure the importance of each channel set in layer i + 1
by L2-norm, because L2-norm gives an expectation of the
magnitude of the output feature map and reflects the weight
diversity. Then, (Rprune × xi) channel sets with the smallest
scores s j and their corresponding filters in layer i are selected
to be removed.

s j = �(Ci+1, j)�2, s.t . j ∈ [1, xi]. (3)

Eq. 3 is similar to [18] in form, but focuses more on the
least important channel sets in layer i + 1 rather than the least
important filters in layer i , which is a reverse selection process
starting from the occurrence of loss.

After pruning a channel set and its corresponding filter, Fi+1
becomes �Fi+1 and Oi+1 becomes �Oi+1. To reduce the loss
of model performance, we try to minimize �Oi+1 through a
recovery method. In detail, we use the hyperparameter α to
select filters with larger value deviations and scale up those
filter tensors by a certain proportion (Eq. 4). Filters here are
pruned one by one. After one filter and its corresponding
channel set are removed, the recovery mechanism is operated
immediately by:

�Fi+1, j =

⎧⎪⎨
⎪⎩

�Fi+1, j × (
�Fi+1, j �2

��Fi+1, j �2
)2, if 1− ��Fi+1, j �2

�Fi+1, j �2
>

a

xi�Fi+1, j , otherwise.

s.t . j ∈ [1, xi+1] (4)

2) Accelerated Fine-Tuning: In the LSTM training process,
there are many intermediate models produced, then they are
fine-tuned to calculate reward signals and update LSTM.

In order to improve the algorithm efficiency, we use the
distillation method [48] to accelerate the fine-tuning procedure.
Specifically, the input model of LSTM is regarded as a teacher
network, and the pruned model based on the teacher is taken as
a student network. During fine-tuning, we use the loss function
g (Eq. 5) to make student’s probabilities logit f approximate
to teacher’s logit z.

g(x, z, θ) =
�

x

� f (x, θ), z �2
2 . (5)

C. Data-Dependent Soft Pruning

1) SEP Attention Module: The slimmer network architec-
ture with the highest reward can be found from the inter-
mediate models generated by LSTM, which becomes the
reference of the baseline network rebuilding. The key to the
baseline network rebuilding lies in the Squeeze-Excitation-
Pruning (SEP) attention mechanism in Figure 4, on which the
left part is a normal CNN structure with a few convolution
layers while the right part is a SEP module. The SEP module
consists of two parts: the pre-SE module similar to SENet [49]
includes squeeze and excitation used for feature extraction
and weight vector generation, the selective-pruning module
selects and sets some weights to zero. We apply the SEP
operation to the previous conv layer i , then it generates a
weight vector to scale the feature map Oi+1 in layer i + 1.
There are two differences between SENet [49] and our pre-
SE module. Firstly, we perform the SEP operation on the
previous conv layer to predict the weight vector in the next
conv layer. Secondly, after squeezing and dimensionality-
reduction to xi/r with the reduction ratio r , the dimensionality
is increased to xi+1 for the sake of keeping consistency with
the dimensionality of Oi+1.

We denote the output of the sigmoid function as Vi+1, which
is the weight vector in the layer i+1, and denote the number of
filters to prune as mi+1. The slimmer architecture generated by
LSTM determines the value of mi . If the slimmer module has
pruned 36 kernels in the third layer, we set m3 to 36. Regarding
the meaning of the attention mechanism, the larger the weight,
the more important it will be. We set some weights with
minimum values to zero in Eq. 6, because the corresponding
feature maps of these weights are of the lowest importance.
In Eq. 6, the function Fs is a way of using a sorting method to
find the mi+1-th minimum weight in Vi+1. For instance, if the
slimmer module decided to prune mi+1 kernels in the layer
i + 1, we sort the values of Vi+1 in ascending order. Then,
we get the mi+1-th smallest value represented by Fs(mi+1).

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

298 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 4. The schema of the SEP attention module.

Fig. 5. Comparison between two methods.

Fig. 6. The effect of recovery mechanism.

The activation function ReLU sets all weights smaller than
Fs(mi+1) to zero. After the activation operation, we get the
sparser vector �Vi+1, which would scale the feature map xi+1.

�Vi+1 = ReLU(Vi+1 − Fs(mi+1)). (6)

2) Architecture Rebuilding: Given the slimmer network
architecture generated from LSTM, we deploy the SEP mod-

Fig. 7. Sensitivity of VGG-19 for layers.

Fig. 8. Pruning rate within 50 epochs.

Fig. 9. Pruning rate within 150 epochs.

Fig. 10. Pruning rate within 250 epochs.

ules on the baseline network to rebuild it. At the core of the
SEP module is an attention mechanism, which automatically
predicts the importance of each feature map. When the SEP
sets some feature maps to zero, it is equivalent to pruning their
corresponding kernels. Therefore, when it comes to different
image data, different kernels might be utilized according to
the SEP selection. All of the kernel parameters are preserved,
but only some of which participate in calculating the forward

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

DING et al.: WHERE TO PRUNE: USING LSTM TO GUIDE DATA-DEPENDENT SOFT PRUNING 299

and backward propagations. During the model training, SEP
selection strategy is constantly updated, thus indicating this is
a dynamic and data-dependent soft pruning procedure. We do
not prune the kernels physically, but we preserve all the
feature knowledge hierarchy and predict which kernels would
be utilized for a specific image data. Although the SEP module
introduces extra model complexities, the FLOPs of SEP is
negligible because of the fully-connected operation.

In the training process of LSTM, the slimmer model
with smaller size and complexity is generated, which can
be compared with other hard pruning methods. The SEP
algorithm, which is a soft pruning method on the basis of the
slimmer architecture generated by LSTM, can also be applied
independently, given a predefined slimmer architecture.

D. Discussion

The new model compression method presented above is
built upon our previous work in [50], but it differs in many
ways from that work, where the main extensions are summa-
rized as: i) We propose a Squeeze-Excitation-Pruning (SEP),
which is a data-dependent soft pruning method, retaining the
capacity and knowledge of the baseline model. The base-
line network is reconstructed with SEP modules and trained
from scratch to eventually achieve a dynamic soft pruning;
ii) Extensive experiments of SEP method are conducted to
validate its performance. Filter distribution maps based on SEP
soft pruning are also provided; iii) The experimental results
demonstrate that our new proposed SEP method outperforms
the previous work [50] and other state-of-the-art pruning
methods.

We have to point out that training the LSTM to approximate
the slimmer architectures usually takes a long time, which
might be a bottleneck of our algorithm. Concretely, it requires
several epochs to train each student model before the reward
gets maximized. The computational cost of this step can be
high, given a large-scale dataset such as ImageNet.

IV. EXPERIMENTS

We evaluate our method on four benchmark datasets:
MNIST [51], CIFAR-10, CIFAR-100 [52], and ImageNet [53].
Two CIFAR datasets contain 50000 training images and
10000 test images. The MNIST contains 60000 and
10000 images for training and testing respectively. In all the
datasets, 10% of the images are split from the training set as
a validation set used for evaluating new network structures
and calculating their reward signals to LSTM. On CIFAR, all
images are cropped randomly into 32*32 with four paddings
during the training process. Horizontal flip is also adopted.
On MNIST, there is no data augmentation preprocessing.
In ImageNet, there are over 1.28 million training images and
50K validation images of 1,000 classes.

Three networks: VGGNet [1], ResNet [2] and a 3-layer
fully-connected network in [26] are used to validate our
method. We employ a 2-layer LSTM with 100 hidden units to
make pruning decisions. All the experiments are implemented
with PyTorch on one NVIDIA TITAN X GPU.

A. Implementation Details

We train initial models from scratch and calculate their
accuracies as baselines. In the first step of training the LSTM,
the pruning rate Rprune is set to 0.2, and the teacher model
instructs the student model to fine-tune 30 epochs on CIFAR
and 10 epochs on MNIST dataset. LSTM training is terminated
when LSTM no longer produces a better network structure
within 10 epochs. We retrain the network with the best reward
for 250 epochs on CIFAR and 100 epochs on MNIST. For
ImageNet, the pruning rate Rprune is set to 0.1, and the teacher
model instructs the student model to fine-tune 20 epochs.
LSTM training is terminated when LSTM no longer produces
a better network structure within 10 epochs. We then retrain
the network with the best reward for 40 epochs. Both training
and validation datasets are used for retraining the network with
the fixed learning rate of 0.001 for ultimate accuracy.

The new parent structure is created based on the combina-
tion of the current parent structure and the pruning information
for each layer generated by LSTM. Then it is added into the
list of parent structures for the next training epoch. In each
epoch of LSTM training, 5 parent structures with the largest
rewards in the list are picked up and fed into the LSTM
successively for the next training epoch. Their rewards are
taken as baselines b in policy gradient method. If there are
no more than 5 local structures, all local networks are taken
as inputs. In the first epoch, the input is the pre-trained
network. We use FLOPs to measure the complexity of CNN
and PARAM to measure fully-connected networks in order to
keep in line with the existing methods.

After getting the slimmer model from LSTM, we rebuild
the baseline network to deploy the SEP attention modules.
The network redeployed is trained from scratch for 90 epochs
on ImageNet and 200 epochs on the rest of datasets to get its
final accuracy.

B. Filter Selection and Recovery Criteria

Our channel-based method is compared with the filter-based
method [22], which evaluates a filter by calculating the sum
of its absolute weights. We prune some filters from a pre-
trained VGG-16 on CIFAR-10 without applying the recovery
mechanism. Different layers are pruned with the same pruning
rate. Then, we fine-tune the pruned model for 1 epoch. The
experiment is repeated 5 times to eliminate the influence of
random disturbance, and we report the averaged accuracy on
the test set. Figure 5 shows the pruning results with pruning
rate, ranging from 0.1 to 0.9, while both methods are set with
the same configuration. The results reveal that our channel-
based filter selection outperforms the filter-based selection
method.

To evaluate the recovery mechanism, we calculate the accu-
racy of a pruned model on the test set directly without fine-
tuning. Figure 6 indicates that the recovery method helps the
pruned model to recover its performance significantly. Instead
of a random value, we empirically run several experiments
to obtain the optimal value for the hyperparameter α. The
observation is: while the hyperparameter α in Eq. 4 equals
0.8, the pruned model gets the best recovery. In fact, when we

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

300 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE I

RESULTS OF VGG-19 ON CIFAR-10

TABLE II

RESULTS OF VGG-19 ON CIFAR-100

TABLE III

RESULTS OF RESNET-56 ON CIFAR-10

TABLE IV

RESULTS OF A FULLY-CONNECTED NETWORK ON MNIST

prune a completely unimportant channel, the filter it belongs to
does not need to be scaled because the pruned channel almost
has no contribution to the whole network performance. Unless

TABLE V

RESULTS OF RESNET-50 ON IMAGENET

it covers a relatively large proportion of the filter, scaling
operation is unnecessary.

C. Results

Our layer-selection method based on LSTM is compared to
both orderly and global hard filter pruning methods. Specif-
ically, on the fully-connected network and VGG, we report
the pruning results compared with two global pruning meth-
ods [22], [26]. On the Resnet-56, we compare our pruning
method with a series of existing pruning methods, including
an orderly pruning method [18], CP [54], NISP-56 [55],
and FPGM [56]. We also provide SEP results to reveal the
performance of data-dependent soft pruning.

1) VGG-19 on CIFAR-10: We prune the VGG-19 [1] on
the CIFAR-10 dataset. Each convolution layer is followed by
a batch normalization layer [59] and we prune filters from the
FC layer, which is the last layer before classification.

FLOPs is used as an indicator of model complexity. One
multiply-add here is regarded as a floating-point operation
unit. We calculate the reward R according to Eq. 1 where
network’s accuracy in validation set represents per f ormance,
FLOPs represents complexi ty and λ is set to 4 × 10−10.
We summarize the results in Table I comparing our layer-
selective method and SEP method with the global slimming
method [22], which selects unimportant filters in all the layers
first and then prune all of them simultaneously. “Slimming-N”
denotes repeating the slimming method N times. After LSTM
is trained for 150 epochs, the optimal structure emerges,
whose FLOPs is reduced by 84.7% with only 0.36% accuracy
decreased.

We use SEP modules to rebuild the baseline network
referring to the optimal slimmer structure generated by LSTM,
which gets a better performance with only 0.26% accuracy
declined. We also train the slimmer network from scratch for
200 epochs, which is equivalent to a hard filter pruning model,
and compare it with the SEP rebuilding model. The results
show that our soft pruning can maintain higher precision than
the hard pruning.

It is worth noting that [22] takes one multiply-add as two
floating-point operations, so their calculated FLOPs is two
times as much as ours. For a fair and clear comparison,
we convert their FLOPs such that it can be in line with ours.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

DING et al.: WHERE TO PRUNE: USING LSTM TO GUIDE DATA-DEPENDENT SOFT PRUNING 301

Fig. 11. The soft-pruned filters distribution of the last (a) and the second-to-last (b) residual block in LSTM-SEP-2 model based on ResNet-56 on CIFAR-
10 testset. Some filters (red bar) are always discarded on all the images but some (green bar) are discarded on specific images.

It can be observed that our pruned model is more accurate
than the pruned model generated by [22] (−0.26 vs −1.39)
when the FLOPs are comparable (84.7% vs 88.7%).

Moreover, the number of parameters (Params) is an indi-
cation of the memory costs for storing a trained deep model,
which is a widely used criterion for evaluating model pruning
algorithms. Since extra FC layers are added into the proposed
SEP modules, additional parameters are inevitably produced.
As a result, though our LSTM-SEP obtains the best accuracy,
the model parameters are increased a little bit, compared to
Ours-LSTM method without SEP modules. However, from
Table I, we still can see that the accuracy of Ours-LSTM
is over 1% higher than that of Slimming-5 [22] when the
numbers of the parameters of these two trimmed models are
similar (2.92M vs 2.84M).

For further investigation, we plot the sensitivity of each
layer in the pre-trained VGG-19 in Figure 7. Specifically,
at each time we prune one layer while keeping the other layers
unchanged, then calculate the accuracy. The results depict
that the overall sensitivity distribution keeps the same under
different pruning rates and the most sensitive four layers are
layer 2, 3, 4, 5. Figure 8, Figure 9 and Figure 10 represent the
practical pruning rates of each layer for the optimal network
after training LSTM for 50, 150 and 250 epochs respectively.
With more training, the real pruning rate from layer 2 to
5 becomes lower and the other layers are pruned more, which
is consistent with the observation from Figure 7. The results
demonstrate that our method could make reasonable pruning
decisions and learn network sensitivity effectively.

2) VGG-19 on CIFAR-100: We use the same VGG-19 net-
work to evaluate our method on CIFAR-100. Due to more
categories, CIFAR-100 is much more difficult to train than
CIFAR-10. Thus, the training and validation set are both used
to fine-tune the pruned model. Here we use the training loss

to evaluate per f ormance, and set λ to 2 × 10−11 in Eq. 1.
After training LSTM for 123 epochs, we get the best network
whose FLOPs is reduced by 70.1% with no accuracy drop.
The SEP rebuilding model even improves the accuracy by
0.31%, which indicates the superiority of the SEP module.
The attention mechanism improves the model performance.
In the meantime, the soft pruning manner retains the capacity
of the baseline network, thus maintaining the accuracy to the
fullest. As can be seen from Table II, our method outperforms
the slimming method significantly (above 3%), even though
the number of parameters is a little bit higher than that of
Slimming-4 [22].

3) ResNet-56 on CIFAR-10: In this section, we verify the
feasibility of our method on ResNet-56 [2]. Due to the
particularity of the ResNet structure, we only prune the first
convolution layer of each ResNet block and keep the second
convolution layer unchanged. The parameter configuration of
Eq. 1 is the same as the VGG-19 experiment on CIFAR-10.

Table. III reports the results when compared to [18], [54]–
[56], which analyze the sensitivity of each ResNet block first,
then prune filters referring to the analysis results. Note that
all the results of existing algorithms are collected from their
original publications. We do not make any analysis in advance
because our method is capable of automatically learning the
network sensitivity. After LSTM is trained for 32 epochs,
the best network emerges with 47.5% FLOPs reduction and
comparable accuracy. Compared to [18], more filters are
pruned with an acceptable accuracy decrease of 0.11% so that
we get the model with the minimum number of parameters,
which is only 0.49M. For further comparison, we select
the second-best structure with fewer FLOPs reduction, and
it achieves a notable 0.56% accuracy promotion. The SEP
models based on these two slimmer architectures present
more significant performance. Even if compared to a recent

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

302 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

method [56], we still obtain the promising results - the
accuracy of our best slimmer model exceeds that of their
slimmer model by 1.47% when the FLOPs of both models
are equivalent.

In Figure.11, we draw the maps of soft-pruned filters distri-
bution in the last and second-to-last residual block respectively
to show the data dependence of the SEP method. We run the
LSTM-SEP-2 model on CIFAR-10 to check which filters are
discarded for different image data in a specific layer. The x-
axis represents the filter index, while the y-axis represents the
number of images on which this filter is discarded. The last
and the second-to-last residual block both consist of 64 filters.
The CIFAR-10 testset concludes 10000 images. As can be seen
in Figure.11, some filters (red bar) are always discarded on
all the images but some (green bar) are discarded on specific
images. Some filters are always utilized because they are
important to all data. SEP selects different filters for different
images, which reveals that the SEP is data-dependent, and has
the ability to select different filters for different images.

4) A Fully-Connected Network on MNIST: We further val-
idate the effect of our method on multi-layer perceptrons.
We prune a 3-layer fully-connected network compared with
two global pruning methods [22], [26] as shown in Table IV.
Similar to CNN, the evaluation of neurons in the current FC
layer depends on its next FC layer. Here we use the accuracy
on the validation set to measure per f ormance. We set λ
to 1 × 10−7. After 20 epochs, the optimal network structure
emerges with 87% neurons pruned and 0.03% accuracy drop.

5) ResNet-50 on ImageNet: In this section, we verify the
performance of our method on ImageNet, which is a large-
scale dataset. Since ResNet-50 [2] structure is commonly
used by many pruning methods such as SFP [29], CP [54],
GDP [58], we choose it to conduct the pruning experiments for
a fair comparison. Specifically, we prune the first and second
convolution layers of each ResNet block and keep the third
convolution layer unchanged. The parameter configuration of
Eq. 1 is the same as the VGG-19 and ResNet-56 experiments
on CIFAR-10.

Table. V shows that our methods can achieve competitive
performance, compared to state-of-the-art methods including
SFP [29], FPGM [56], CFP [57], CP [54], GDP [58]. Note
that we collect their results from the original publications,
and no pre-trained models are used. Seen from the results,
the performance of LSTM-SEP is better than that of Ours-
LSTM, which shows that our soft pruning can maintain higher
accuracy than the hard pruning. Although the pruning rate of
our methods is slightly lower than that of CFP [57], CP [54]
and GDP [58], the accuracies of Ours-LSTM and LSTM-
SEP are much higher than them. Particularly, the accuracy
of LSTM-SEP exceeds CFP [57] and GDP [58] models by
1.00% and 2.34% respectively and the Top5 accuracies of
our two methods are 1.00% higher than that of CP [54] and
GDP [58]. Besides, in comparison to SFP [29] and FPGM [56]
that also prune filters in a soft manner, LSTM-SEP reduces
more FLOPs of the model with even less accuracy drops.
Overall, it is clear that our method outperforms the state-of-
the-art soft pruning methods.

V. CONCLUSION

In this paper, we have presented a framework to evaluate
the importance of each network layer and to select the most
unimportant layers to prune. Considering the hierarchical
structure of CNN, we employ LSTM as an evaluation model
to generate pruning decisions. Besides, the channel-based filter
selection method and recovery mechanism are adopted to
prune filters effectively. Based on the slimmer architecture
generated from LSTM, we further propose the SEP attention
mechanism to rebuild the baseline network, which realizes
the data-dependent soft pruning. Experimental results show
the superiority of our methods compared to both orderly and
global pruning methods and reveal the ability to learn the
sensitivity of each network layer. In future work, we will,
on one hand, use LSTM model to guide other filter pruning
algorithms, including C-SGD [60] and GSC [61];and on the
other hand, apply the proposed model compression method
to simplify deep models for different visual tasks, such as
video retrieval [62], image classification [63] and 3D recon-
struction [64].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the constructive suggestions.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015, pp. 1–14.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Adv. neural Inf. Process.
Syst., 2012, pp. 1097–1105.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[5] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3156–3164.

[6] S. Ye, J. Han, and N. Liu, “Attentive linear transformation for image cap-
tioning,” IEEE Trans. Image Process., vol. 27, no. 11, pp. 5514–5524,
Nov. 2018.

[7] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in Proc. ICML, 2015, pp. 2048–2057.

[8] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[9] Y. Zhu, C. Zhao, H. Guo, J. Wang, X. Zhao, and H. Lu, “Attention
CoupleNet: Fully convolutional attention coupling network for object
detection,” IEEE Trans. Image Process., vol. 28, no. 1, pp. 113–126,
Jan. 2019.

[10] G. Cheng, J. Han, P. Zhou, and D. Xu, “Learning rotation-invariant
and Fisher discriminative convolutional neural networks for object
detection,” IEEE Trans. Image Process., vol. 28, no. 1, pp. 265–278,
Jan. 2019.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015.

[12] X. Zhang et al., “AlignedReID: Surpassing human-level performance in
person re-identification,” 2017, arXiv:1711.08184. [Online]. Available:
http://arxiv.org/abs/1711.08184

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[14] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. ECCV. Berlin, Germany: Springer, 2016, pp. 525–542.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

DING et al.: WHERE TO PRUNE: USING LSTM TO GUIDE DATA-DEPENDENT SOFT PRUNING 303

[15] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 2. 1990, pp. 598–605.

[16] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Proc. Adv. Neural Inf. Process. Syst.,
1993, pp. 164–171.

[17] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploit-
ing linear structure within convolutional networks for efficient evalua-
tion,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Proc. ICLR, 2017, pp. 1–9.

[19] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
in Proc. ICLR, 2017. pp. 1–17.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep architec-
tures,” 2016, arXiv:1607.03250. [Online]. Available: http://arxiv.org/
abs/1607.03250

[21] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” 2017, arXiv:1707.06342. [Online].
Available: http://arxiv.org/abs/1707.06342

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” 2017,
arXiv:1708.06519. [Online]. Available: http://arxiv.org/abs/1708.06519

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. ICLR, 2016, pp. 1–14.

[25] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing,
vol. 241, pp. 81–89, Jun. 2017.

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[27] C. Lin, Z. Zhong, W. Wu, and J. Yan, “Synaptic strength for convolu-
tional neural network,” in Proc. NIPs, 2018, pp. 10149–10158.

[28] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural
networks,” in Proc. NIPs, 2018, pp. 875–886.

[29] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proc. 27th Int. Joint
Conf. Artif. Intell., Jul. 2018, pp. 2234–2240.

[30] R. Pahwa, M. G. Arivazhagan, A. Garg, S. Krishnamoorthy, R. Saxena,
and S. Choudhary, “Data-driven compression of convolutional neural
networks,” 2019, arXiv:1911.12740. [Online]. Available: http://arxiv.
org/abs/1911.12740

[31] J. Li et al., “OICSR: Out-in-channel sparsity regularization for compact
deep neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 7046–7055.

[32] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2N learning:
Network to network compression via policy gradient reinforcement
learning,” 2017, arXiv:1709.06030. [Online]. Available: http://arxiv.
org/abs/1709.06030

[33] K. Yamamoto and K. Maeno, “PCAS: Pruning channels with atten-
tion statistics for deep network compression,” 2018, arXiv:1806.05382.
[Online]. Available: http://arxiv.org/abs/1806.05382

[34] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 784–800.

[35] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” 2017,
arXiv:1707.01083. [Online]. Available: http://arxiv.org/abs/1707.01083

[36] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. ECCV,
Sep. 2018, pp. 116–131.

[37] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” 2018,
arXiv:1801.04381. [Online]. Available: http://arxiv.org/abs/1801.04381

[39] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architec-
tures to learning,” Evol. Intell., vol. 1, no. 1, pp. 47–62, Mar. 2008.

[40] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[41] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proc. Genetic Evol. Comput. Conf., Jul. 2017, pp. 497–504.

[42] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proc. ICLR, 2017, pp. 1–16.

[43] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural net-
work architectures using reinforcement learning,” in Proc. ICLR, 2016,
pp. 1–16.

[44] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” 2017, arXiv:1707.07012.
[Online]. Available: http://arxiv.org/abs/1707.07012

[45] M. Tan et al., “MnasNet: Platform-aware neural architecture search
for mobile,” 2018, arXiv:1807.11626. [Online]. Available: http://arxiv.
org/abs/1807.11626

[46] S. Cao, X. Wang, and K. M. Kitani, “Learnable embedding space
for efficient neural architecture compression,” 2019, arXiv:1902.00383.
[Online]. Available: http://arxiv.org/abs/1902.00383

[47] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[48] J. Ba and R. Caruana, “Do deep nets really need to be deep,” in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 2654–2662.

[49] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” 2017, arXiv:1709.01507. [Online]. Available: http://arxiv.
org/abs/1709.01507

[50] J. Zhong, G. Ding, Y. Guo, J. Han, and B. Wang, “Where to prune: Using
LSTM to guide end-to-end pruning,” in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 3205–3211.

[51] Y. LeCun, C. Cortes, and C. J. Burges, The MNIST Database of Hand-
written Digits, 1998, vol. 10, 1998, p. 34, [Online]. Available: http://
yann.lecun.com/exdb/mnist

[52] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

[53] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[54] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[55] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[56] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4340–4349.

[57] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Leveraging filter
correlations for deep model compression,” in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Mar. 2020, pp. 835–844.

[58] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning,” in Proc.
27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 2425–2432.

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. ICML,
2015, pp. 448–456.

[60] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal SGD for pruning
very deep convolutional networks with complicated structure,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4943–4953.

[61] X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, “Global sparse
momentum SGD for pruning very deep neural networks,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 6382–6394.

[62] G. Wu et al., “Unsupervised deep video hashing via balanced code for
large-scale video retrieval,” IEEE Trans. Image Process., vol. 28, no. 4,
pp. 1993–2007, Apr. 2019.

[63] Y. Guo, G. Ding, J. Han, and Y. Gao, “Zero-shot learning with
transferred samples,” IEEE Trans. Image Process., vol. 28, no. 4,
pp. 3277–3290, Apr. 2019.

[64] C. Yan, B. Shao, H. Zhao, R. Ning, Y. Zhang, and F. Xu, “3D room
layout estimation from a single RGB image,” IEEE Trans. Multimedia,
vol. 22, no. 11, pp. 3014–3024, Nov. 2020, doi: 10.1109/TMM.2020.
2967645.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMM.2020.2967645
http://dx.doi.org/10.1109/TMM.2020.2967645

304 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Guiguang Ding (Member, IEEE) is currently an Associate Professor with
the School of Software, Tsinghua University, China. Before joining the
School of Software in 2006, he was a Postdoctoral Research Fellow of
the Department of Automation, Tsinghua University. He has published over
100 papers in major journals and conferences, including the IEEE TRANS-
ACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON MULTIMEDIA,
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SIG IR,
AAAI, ICML, IJCAI, CVPR, and ICCV. His current research interests include
the areas of multimedia information retrieval, computer vision, and machine
learning.

Shuo Zhang received the M.Sc. degree from The University of Sheffield,
Sheffield, U.K. He is currently pursuing the Ph.D. degree with the School
of Computing and Communications, Lancaster University, Lancaster, U.K.
His research interests include very deep neural network compression and
acceleration.

Zizhou Jia received the B.S. degree from Wuhan University, Wuhan, China.
He is currently pursuing the master’s with the School of Software Engineering,
Tsinghua University, Beijing, China. His research interests include deep neural
network compression and acceleration.

Jing Zhong received the B.S. degree from the School of Computer Science,
Beijing Institute of Technology, China, in 2016. She is currently pursuing the
M.E. degree with the School of Software, Tsinghua University. Her research
interests include computer vision, machine learning, and model compression.

Jungong Han (Member, IEEE) is currently a Chair Professor with the
Department of Computer Science, Aberystwyth University, U.K. He also holds
an honorary professorship with the University of Warwick, U.K. Previously, he
was working at Lancaster University. His research interests include computer
vision, artificial intelligence, and machine learning.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 09:59:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

