2107.14444v1 [cs.CV] 30 Jul 2021

arxXiv

WORK IN PROGRESS

Manipulating Identical Filter Redundancy for
Efficient Pruning on Deep and Complicated CNN

Xiaohan Ding, Tianxiang Hao, Jungong Han, Yuchen Guo, Guiguang Ding

Abstract—The existence of redundancy in Convolutional Neural Networks (CNNs) enables us to remove some filters/channels with
acceptable performance drops. However, the training objective of CNNs usually tends to minimize an accuracy-related loss function
without any attention paid to the redundancy, making the redundancy distribute randomly on all the filters, such that removing any of
them may trigger information loss and accuracy drop, necessitating a following finetuning step for recovery. In this paper, we propose to
manipulate the redundancy during training to facilitate network pruning. To this end, we propose a novel Centripetal SGD (C-SGD) to
make some filters identical, resulting in ideal redundancy patterns, as such filters become purely redundant due to their duplicates;
hence removing them does not harm the network. As shown on CIFAR and ImageNet, C-SGD delivers better performance because
the redundancy is better organized, compared to the existing methods. The efficiency also characterizes C-SGD because it is as fast
as regular SGD, requires no finetuning, and can be conducted simultaneously on all the layers even in very deep CNNs. Besides,
C-SGD can improve the accuracy of CNNs by first training a model with the same architecture but wider layers then squeezing it into

the original width.

Index Terms—Deep Learning, Convolutional Neural Network, Model Compression and Acceleration, Filter Pruning, Channel Pruning.

1 INTRODUCTION

ONVOLUTIONAL Neural Networks (CNNs) have become
Cthe de facto standard for computer vision and very deep
architectures are much sought-after by visual tasks, such as image
recognition, due to their approaching human-level performance.
However, as CNNs grow wider and deeper, their memory foot-
print, power consumption and required floating-point operations
(FLOPs) have increased dramatically, thus limiting their adoption
within platforms without rich computational resource, like embed-
ded systems. In this context, CNN compression and acceleration
methods have been prevalent during the past few years, and the
main research pathways include tensor low rank expansion [1],
connection pruning [2], filter pruning [3], quantization [4], knowl-
edge distillation [5], efc.

This paper focuses on filter pruning, a.k.a. channel pruning [6]
or network slimming [7], because of its three unique features:
1) generic - it can handle various CNNs with no assumptions on
the application field, the network architecture or the deployment
platform; 2) effective - it can significantly reduce the required
FLOPs of the network, which serve as the main criterion of
computational burdens; 3) complementary to other techniques -
it simply produces a thinner network with no customized struc-
ture or extra operation, which is orthogonal to the other model
compression and acceleration methods.

e Xiaohan Ding, Tianxiang Hao, Guiguang Ding are with the School of
Software, Tsinghua University, Beijing 100084, China.

e Jungong Han is with the Computer Science Department, Aberystwyth
University, SY23 3FL, UK.

o Yuchen Guo is with the the Department of Automation, Tsinghua Univer-
sity, Beijing 100084, China.

o dxhl7@mails.tsinghua.edu.cn beyondhtx, jungonghan?77, yuchen.w.guo
@gmail.com dinggg @tsinghua.edu.cn,.

o This work was supported by the National Key R&D Program of China (No.
2018YFC0806900), the National Natural Science Foundation of China
(No. 61571269, 61327902), and the National Postdoctoral Program for
Innovative Talents (No. BX20180172).

e Corresponding author: Yuchen Guo, Guiguang Ding.

In the past few years, tremendous efforts have been devoted to
filter pruning techniques from both academia and industry. Due to
the widely observed redundancy in CNNs [4], [8], [9], [10], [11],
[12], numerous works have shown that, if a CNN is pruned without
a big decline in performance, a follow-up finetuning procedure
may restore the performance to a certain degree. Some prior
works [3], [13], [14], [15], [16], [17] estimate the importance of
filters by a variety of metrics, directly remove some filters and re-
construct the network with the remaining ones. However, though
the pruned filters are less important in some sense, they are not
purely redundant, hence the performance will be degraded. More-
over, some recent powerful networks adopt complicated structures,
like shortcut [18] and dense connection [19], where some layers
must be pruned in the same pattern as others, raising an open
problem of constrained filter pruning. This further challenges
such pruning techniques, as the important filters at different layers
usually reside in different positions, such that some important
filters have to be pruned due to the constraints. In order to reduce
the destructive impact of pruning, another family of methods [20],
[21], [22], [23], [24], [25] seeks to zero out some filters in
advance, where group-Lasso Regularization [26] is frequently
used. The rationale behind is simple: the model undergoes less
damage during pruning if the magnitudes of the pruned parameters
have been reduced in advance. This is because pruning filters
is mathematically equivalent to setting all of their parameters to
zero. However, such regularizations cannot literally zero out the
filters but merely reduce the magnitudes of their parameters to
some extent (Sect. 4.5), hence the pruning operation still damages
the model and a finetuning process remains necessary [20], [21],
[22]. Essentially, zeroing filters out can be regarded as producing a
redundancy pattern, which we refer to as small-norm redundancy
for convenience. As some filters become more redundant (i.e.,
smaller in magnitude) than before but still not purely redundant,
small-norm redundancy pattern is non-ideal.

In this paper, we also aim to produce some redundancy patterns

WORK IN PROGRESS

in CNNs for filter pruning. However, unlike the non-ideal small-
norm redundancy pattern, we seek to produce ideal patterns, where
some filters are purely redundant, such that the removal of them is
not harmful to the model. To this end, we intend to merge multiple
filters into one, thus generating a redundancy pattern where some
filters are identical. In the meantime, supervised by the model’s
original objective function, the performance is maintained. Com-
pared to the importance-based filter pruning methods, doing so
requires no heuristic knowledge about the importance of a filter.
In contrast to the small-norm methods, the redundancy pattern is
ideal, which enables absolutely lossless pruning and eliminates the
need for a time-consuming finetuning process.

The intuition motivating the proposed method is an obser-
vation of the information flow in CNNs, as shown in Fig. 1. It
reveals 1) if two or more filters are trained to become identical,
due to the linearity of convolution, we can simply discard all
but leave one filter, and add up the parameters along the cor-
responding input channels of the next layer. Doing so will lead
to ZERO damage on performance; 2) by encouraging multiple
filters to grow closer in the parameter hyperspace, which we
refer to as the centripetal constraint, though they start to produce
increasingly similar information, the information conveyed from
the corresponding input channels of the next layer is still in
full use. Therefore, the representational capacity of our model
is probably weaker than that of the original expensive model,
but stronger than a counterpart with the filters being zeroed out
(Sect. 4.5), as the input channels corresponding to the zeroed-
out filters no longer contribute to the information flow [22].
On the other hand, we will show that compared with a model
without any manipulated redundancy, training with identical filters
delivers higher accuracy (Sect. 4.7). Our codes are released at
https://github.com/DingXiaoH/Centripetal-SGD to encourage fur-
ther studies. Our contributions are summarized as follows:

e We propose to produce ideal redundancy patterns in CNNs
by training some filters to become identical (Fig. 2) via
Centripetal SGD (C-SGD), an efficient SGD optimization
method which can solve constrained filter pruning. Here
“centripetal” means “several objects moving towards a cen-
ter”, which describes the behavior of the filters in C-SGD.

o We present an efficient implementation of C-SGD with ma-
trix multiplications, which introduces no observable compu-
tational burdens, compared to normal SGD.

o As our theoretical contribution, we show that training a model
with identical filters using C-SGD from scratch delivers
higher accuracy than a counterpart without such redundancy.
This serves as evidence for supporting our motivation (Fig. 1)
as well as the assumption that redundancy helps the conver-
gence of neural networks [5], [27].

e We propose a novel approach, Scaling and Squeezing, to
improve the accuracy of CNNs, which first trains a model
with the same architecture but wider layers and then squeezes
it into the original width via C-SGD. Compared to the
prior methods which fail to utilize the weights inherited
from a wider model by pruning and finetuning, Scaling and
Squeezing can improve the performance by a clear margin.

e Our experiments on CIFAR-10 and ImageNet have beaten
many recent competitors by a clear margin in pruning several
benchmark models. Our results on COCO detection and VOC
segmentation demonstrate the generalization performance of
C-SGD on the downstream tasks.

2 RELATED WORK
2.1 Filter Pruning

Numerous inspiring researches [2], [28], [29], [30], [31], [32],
[33] have shown that it is feasible to remove a large portion
of connections (i.e., weights) from a neural network without
a significant performance drop. However, as such methods do
not make the parameter tensors smaller but just sparser, little
or no acceleration can be observed without the support from
specialized software and hardware platforms. Then it is natural
for researchers to go further on CNNs: by removing filters instead
of sporadic connections, we transform the wide convolutional
layers into narrower ones, hence the FLOPs, memory footprint
and power consumption are significantly reduced. One kind of
methods estimates the importance of filters by some means, then
selects and prunes the unimportant filters carefully to minimize the
performance loss. Some prior works measure a filter’s importance
by the classification accuracy reduction (CAR) [16], the channel
contribution variance [13], the Taylor-expansion criterion [15], the
magnitude of convolution kernels [3] and the average percentage
of zero activations (APoZ) [14], respectively; Luo et al. [34] select
filters based on the information derived from the next layer; Yu et
al. [12] take into consideration the effect of error propagation;
He et al. [6] select filters by solving the Lasso regression; He et
al. [35] pick up filters with the aid of reinforcement learning. An-
other category seeks to train the network under certain constraints
to zero out some filters [20], [21], [22], [23], [24], [25], where the
representative is group-Lasso Regularization.

Some major drawbacks of the prior works are as follows.
1) For the importance-based methods, the filter importance metrics
are essentially heuristic, as it is not clear why the proposed
metrics reflect the inherent importance of filters. Also, it is hard
to judge if a heuristic metric is theoretically better than another.
2) Since removing whole filters can degrade the performance
a lot, the models are usually pruned in a layer-by-layer [13],
[14], [21] or filter-by-filter [15], [16] manner. Running on today’s
very deep CNNs, such pruning processes may not only become
time-consuming but also suffer from the notorious problem of
error propagation and amplification through multiple layers when
estimating the filter importance [12]. 3) Many of these works
require one or more finetuning processes after pruning to re-
store the accuracy [13], [14], [15], [21], [22]. However, Liu et
al. [36] have empirically found out that finetuning a pruned
model may not always guarantee higher accuracy, compared to
training from scratch, as the pruned model might be trapped into
a bad local minimum. 4) The regularization-based methods may
bring significant extra computational burdens. For example, in our
experiments (Sect. 4.5), group-Lasso Regularization [26] on 3/8
of the filters slows down the training by about 2X, as it requires
costly square root operations. 5) Many of the methods cannot
handle the constrained filter pruning problem on ResNets (Fig. 5),
so the researchers choose to sidestep this problem by only pruning
the internal layers in residual blocks [3], [6], [7]. Li et al. [3] and
Ding et al. [23] tried pruning the troublesome layers according to
the importance scores of others in order to meet the constraints,
but predictably resulted in significantly lower accuracy.

In contrast, our method features 1) no heuristic knowledge
about the filter importance, 2) the capability of pruning every
target layer simultaneously, 3) no need for finetuning, 4) negligible
extra computations, and 5) global slimming on all the layers in
complicated CNN architectures.

https://github.com/DingXiaoH/Centripetal-SGD

WORK IN PROGRESS 3

P il P pifiling

T DHG o9) 65

Fig. 1: Zeroing-out vs. centripetal constraint. This figure shows a CNN with 4 and 6 filters at the 1st and 2nd convolutional layer,
respectively, which takes a 2-channel input. Left: the 3rd filter at conv1 is zeroed out (i.e., all the entries in the parameter tensor of the

3rd filter are close to zero, more precisely, K. . (1) .3 ~ 0 using the formulation described in Sect. 3.1), thus the 3rd feature map channel

is close to zero (M (1) ~ 0), implying that the 3rd input channels of the 6 filters at conv2 are useless. During pruning, the 3rd filters at
convl and the 3rd 1nput channels of the 6 filters at conv2 are removed. Right: the 3rd and 4th filters at conv1 are forced to grow close
by the centripetal constraint until the 3rd and 4th feature map channels become identical. But the 3rd and 4th input channels of the 6
filters at conv2 can still grow without constraints, making the encoded information still in full use. When pruned, the 4th filter at conv1
is removed, and the 4th input channel of every filter at conv2 is added to the 3rd channel.

2

[1]2[3]4[5]6[7][8] [1]2[3]4[5]6[7][8]

Network
Structure ggggyggg ﬁﬁﬁﬁpﬁﬁﬁ OQQQ
@ """""""""" m """"""""""""""""" ?’ """""""""" ,';Z—'—'-'-' """"""""""
Parameter | [’1/;4/]6 ’
Hyperspace
‘ 2] 5) (| 2D/3 ’ 5/7 ’ 5]

Fig. 2: The C-SGD pruning pipeline. When we seek to slim a 8-filter convolutional layer down to 4 filters, we divide the filters into 4
clusters according to their location in the parameter hyperspace. For instance, for a 3 X 3 convolutional layer which takes a 64-channel
feature map as input, every filter kernel has 3 x 3 x 64 = 576 parameters, thus the dimensionality of hyperspace is 576. During C-SGD
training, the filters in each cluster become closer and eventually identical. When the training is completed, we remove all but one filter

for each cluster, and adjust the following layer as Fig. 1.

This paper represents a very substantial extension of our
previous conference paper [37]. The main technical novelties,
compared with [37], are as follows. 1) We propose a novel CNN
training methodology, Scaling and Squeezing, in order to improve
the performance of CNN based on C-SGD. 2) We present more
experimental results including the pruning results on VGG [61],
the torchvision [38] version of ResNet-50, and the object detection
and semantic segmentation results on COCO and VOC. 3) We
present more illustrations and discussions of the motivation and
derivation of C-SGD together with its relation to the prior works.
4) We present thorough comparisons and discussions of different
clustering methods, including k-means, even and imbalanced clus-
tering, on several benchmark models. 5) We perform controlled
experiments to justify the significance of solving the constrained
filter pruning problem. 6) We present more detailed discussions of
the efficiency of C-SGD and its applications.

2.2 Other Methods

Apart from filter pruning, some works compress and accelerate
CNNs in other ways. Considerable works [1], [27], [39], [40], [41],
[42], [43], [44] decompose or approximate parameter tensors;
quantization techniques [4], [45], [46], [47], [48] approximate
a model using fewer bits per parameter; knowledge distillation
methods [5], [49], [50] transfer knowledge from a big network
to a smaller one; some researchers seek to speed up convolution

with the help of perforation [51], FFT [52], [53] or DCT [54];
Wang et al. [55] compact feature maps by extracting informa-
tion via a Circulant matrix. And some compression techniques
can be combined to achieve the desired trade-off. E.g., a well-
known preceding work named Deep Compression [4] noticed and
significantly reduced the redundancy of deep CNN by connection
pruning, quantization and Huffman encoding, but no filter pruning.

Of note is that C-SGD-based filter pruning is orthogonal to
these techniques described above, as it simply shrinks a wide CNN
into a narrower one with no special structures or extra operations.

3 FILTER PRUNING VIA CENTRIPETAL SGD
3.1

In modern CNNs, batch normalization [56] and linear scaling
transformation commonly follow convolutional layers. For sim-
plicity and generality, we regard a convolutional layer together
with its subsequent batch normalization and scaling layer, if any,
as a whole. Let ¢ be the layer index, M® g Rhixwixci pe the
output feature map of la zer 1 with a spatial resolution of h; X w;
and ¢; channels, and M. . be the j-th channel. The convolutional
layer ¢ with kernel size ul X v; has one 4th-order tensor and four
vectors as parameters ar most, namely, u(9, (0~ 300 ¢ Rei
and K g Ruixvixci-1x¢i where K is the convolution
kernel, u(i) and o are the mean and standard deviation of

Formulation

WORK IN PROGRESS

batch normalization, 'y(i) and ,B(i) are the scaling factor and
bias term of the linear transformation, respectively. Then we use
PO = (KO 4 o® ~0) 3)) o denote the parameters of
layer <. In this paper, a ﬁlter 7 at layer % refers to the five-tuple
comprising all the parameter slices related to the output channel j
of layer ¢, formally,
K2
F(]) _ (K() I)7

FETED)

) 40,8, ()

where K. (1) ; 1s the j-th slice along the axis which differentiates
the c filters, i.e., the 4th axis in our formulation.

This layer takes M (1) e RM-1Xwi—1X¢iz1 ag jnput and
outputs M (1), Let * be the 2-D convolution operator, the j-th
output channel is
;z 11]\/_[(1) K()Z) '—Mg)

k,j

@ _ l) @)
M = >0 + 8 (@)

J

Pruning filters at a certain layer normally conducts the follow-
ing three steps: 1) deciding which filters to prune, 2) deleting the
corresponding parameters in the kernel, e.g., along the 4th axis in
our formulation, and 3) handling the vector parameters p, o,y
and 3 accordingly. In practice, we equivalently reconstruct a new
network with a narrower layer, and use the parameters of the
remaining filters in the original model for initialization.

For example, the importance-based filter pruning methods [3],
[12], [13], [14], [15], [16] define the importance of filters by some
means to guide the selection of important filters. Let Z; be the
filter index set of layer ¢ (e.g., Zo = {1, 2, 3,4} if the 2nd layer
has 4 filters), T be the filter importance evaluation function and 6;
be the threshold, the remaining set, i.e., the index set of the filters
which survive the pruning, is

Ri={jeL | T(FY)>0}. 3)

We construct the parameters for the slimmed layer by assem-
bling the parameters sliced from the original tensor and vectors
into the new parameters P(*). That is,

PO = (K r 1R 00 . BR) . @

R

The input channels of the next layer corresponding to the
pruned filters should also be discarded (Fig. 1),

plit) — (K:(’f237:7u(i+1)’ O,(i+1)7,7(i+1)”8(i+1)). (5)

Then we initialize the new network using P® and PU+Y),

3.2 Centripetal SGD

In this subsection, we present the update rule of C-SGD together
with some discussions of its properties. An intuitive illustration
will be provided in the following subsection.

For each layer, we first divide the filters into clusters, where
the number of clusters equals the desired number of filters, as we
preserve only one filter for each cluster. We use C; and H to denote
the set of all filter clusters of layer ¢ and a specific cluster in the
form of a filter index set, respectively. We generate the clusters
by k-means [57] or arbitrarily, between which our experiments
demonstrate only minor difference (Sect. 4.4). In the following
sections, we use k-means clustering unless otherwise noted.

o K-means clustering. We aim to generate clusters with low
intra-cluster distance in the parameter hyperspace, such that
collapsing them into a single point less impacts the model,

4

which is natural. To this end, we simply flatten the filter’s
kernel and use it as the feature vector for k-means clustering.

o Even clustering. We can generate clusters with no consid-
eration of the filters’ inherent properties. Let ¢; and r; be
the number of original filters and desired remaining filters
(i.e., number of clusters) at layer ¢, respectively, each cluster
will have [¢;/r;| filters at most. For example, if the 2nd
layer has 6 filters and we wish to slim it to 4 filters, we
will have Cy = {7‘[1,7'[2,7'[3,7'[4}, H, = {1,2},7‘[2 =
{37 4}’ Hs = {5}7 Hy = {6}

o Imbalanced clustering. An extreme solution is to put ¢; —
r;+1 filters into one single cluster, such that each of the other
clusters has only one filter. In the above example, we will
have H; = {1,2,3}, Ha = {4}, H3 = {5}, H4 = {6}.

We use H(j) to denote the cluster containing filter j, e.g.,
H(3) = H1 and H(6) = H4 in the above example of imbalanced
clustering. Let F'(U) be the kernel or a vector parameter of filter 7,
at each training iteration, the update rule of C-SGD is

FU) « FU) 4 7 AFU)

AFU) — XW —nF@ ©
L F®
L zen0 T pG)y
[H (j)]

where L is the original objective function, 7 is the learning rate,
1 is the original weight decay factor, and € is the only hyper-
parameter we introduced, which is called the centripetal strength.

The intuition behind Eq. 6 is quite simple: for the filters in
the same cluster, the increments derived by the objective function
are averaged (the first term), the normal weight decay is applied
as well (the second term), and the difference in the initial values
is gradually eliminated (the last term), so the filters will move
towards their center in the hyperspace.

Let £ be the layer index set, e.g., £ = {1, 2,3} if the model
has 3 convolutional layers, we use the sum of squared kernel
deviation x to measure the intra-cluster similarity, i.e., how close
filters are in each cluster,

x=> Y |IK!

€L JEL;

ZkeH(n K,

5t ,J
It is easy to derive from Eq. 6 that x is lowered monotonically and
exponentially with a constant learning rate 7, if the floating-point
operation errors are ignored.

In practice, we fix 77 and reduce 7 with time just as we do
in regular SGD training, and set € casually. Intuitively, C-SGD
training with a large € prefers rapid change to stable transition.
If € is too large, e.g., 10, the filters are merged immediately such
that the whole process becomes equivalent to training a destroyed
model from scratch. If € is extremely small, like 1 x 10719, the
difference between C-SGD training and normal SGD is almost
invisible during a long time. However, since the difference among
filters in each cluster is reduced monotonically and exponentially,
even an extremely small e can make the filters close enough for
absolutely lossless pruning, sooner or later. In this sense, we claim
that such a redundancy pattern is ideal. As will be shown in Sect.
5.2, the performance of C-SGD is robust to the value of €.

3.3 An Intuitive lllustration of C-SGD

A simple analogy to weight decay (i.e., £-2 regularization) may
help understand Centripetal SGD. Fig. 3a shows a 3-D loss

WORK IN PROGRESS

97, SRS %%) "‘“‘i\\
47000 ““ﬁ\\ AN 4770800 \\“@1!\ N\
GO GO

(a) Normal weight decay. (b) Centripetal constraint.

Fig. 3: Gradient descent direction on the loss surface of regular
weight decay and centripetal constraint without merging the orig-
inal gradients.

surface, where a certain point A corresponds to a 2-D parameter
a = (a1, as). Suppose the steepest descent direction is AQq, we
have AQy = —g—g, where L is the objective function. Weight
M is commonly applied to reduce overfitting [58], that is,
AQ1 = —na, where 1 is the model’s weight decay factor, e.g.,
1 x 10~* for ResNets [18]. The actual gradient descent direction
then becomes Aa = AQ2 = AQo + AQ1 = —g—s —na.

If we wish to make A and B closer to each other than they
used to be, a natural idea is to push both A and B towards their
midpoint M (‘%"b), as shown in Fig. 3b. The gradient descent
direction of point A becomes

oL
Aa:A—)Qg—&—A—Q;:—%—na+e(%—a), 8)

where € is a hyper-parameter controlling the intensity or speed of
pushing A and B close. Similarly,
oL
Ab=———nb+e
a5~ 1o+l
Further, we wish to force point A and B to become increas-
ingly close and eventually the same. Formally, let ¢ be the number
of training iterations, we aim to achieve

a+b

—b). 9)

lim [la® —b®| =0, (10)
t—o00
which implies
lim || —ptHY| =0, (11)
t—o00
or
Jlim [[(a® =) +7(Aal” — ABY)[=0, (12)

since a1 = a® +7Aa® and b0 = b 7 AB®) | where
T is the learning rate. We seek to achieve Eq. 12 by both

lim (Aa'” — AbW) =0, (13)
t—o00

lim (a® —b®) =0. (14)

t—o0

Namely, as two points are growing closer, their gradients
should become closer accordingly for the training to converge.
But here we encounter a problem: given Eq. 8 and Eq. 9, we have

oL oL
ob) da®)

Aa® — Ab® = ()+ (n+e) (D —a®) | (15)

5
softmax <
®
[c1 [O]
[ReLu | [[ReLu |
LA] [B]

Fig. 4: An example explaining that equal parameters do not imply
equal gradients. Let L be the loss function of a simple network,
L(x,y) = softmax(W (C(ReLU(Ax))+D(ReLU(Bx))), y),
A = B does not imply g—f‘ = 55 because C' # D. In the
case of two filters in CNNss, their outputs (feature map channels)
are convolved by different kernels at the subsequent layer, so we
cannot ensure the equality of their gradients using normal SGD.

: oL 8L \ _
but cannot ensure tlgglo (3500 — Bacr) = 0. Actually, as shown
_ oL

in Fig. 4, even a = b does not imply % = ¢ so Eq. 13 cannot
be met with Eq. 8 and Eq. 9.

We solve this problem by merging the gradients derived from
the original objective function. For simplicity and symmetry, we
replace both 2% in Eq. 8 and 2£ in Eq. 9 by 1(2& + 2L). This
way ensures the supervision information encoded in the objective-
function-related gradients to be preserved so as to maintain the
model’s performance, and Eq. 12 to be met, which can be
easily verified. Intuitively, we deviate a from the steepest descent
direction according to the information of b and deviate b vice
versa, just like the normal ¢-2 regularization deviates both a and
b towards the origin of coordinates. In summary, we have

1,0L OL a+b
Aa=—5Ga tap) ety e a9
1,0L OL a+b
A= (Ga T o) Ty T D

which is exactly the degraded version of Eq. 6.

3.4 Efficient Implementation of C-SGD

The efficiency of modern CNN training and deployment plat-
forms, e.g., Tensorflow [59], is dependent on large-scale tensor
operations. We therefore seek to implement C-SGD by efficient
matrix multiplications which introduce minimal computational
burdens. Concretely, given a convolutional layer ¢, the kernel
K € R%iXviX¢i-1X¢ and the gradient g—IL(, we reshape K to
W € R%iVi¢i-1X¢ gnd g—IL{ to ;—fo, accordingly. We construct the
averaging matrix I' € R%*% and decaying matrix A € R *%
as Eq. 19 and Eq. 20 such that Eq. 18 is equivalent to Eq. 6, which
can be easily verified. Obviously, when the number of clusters
equals that of the filters, Eq. 18 degrades into normal SGD with
I" = diag(1), A = diag(n). The other trainable parameters (i.e.,
~ and (3) are reshaped into W € R'*¢ and handled in the same
way. In practice, we observe almost no difference in the speed
between normal SGD and C-SGD using Tensorflow on Nvidia
GeForce GTX 1080Ti GPUs with CUDA9.0 and cuDNN?7.0.
oL

W« W — 7(—=T + WA).

oW (18)

WORK IN PROGRESS

1
——— if H(m)=H(n),
0 elsewise .
+ c_if
n+e ifm=n,
[H (m)]
Amn = ‘ ifm #n, Hm) = H(n)
[H (m)]
0 elsewise .
(20)

3.5 Filter Trimming after C-SGD Training

When the training is completed, since the ideal redundancy pat-
terns have emerged, i.e., the filters in each cluster have become
identical, picking up which one makes no difference. We simply
pick up the first filter (i.e., the filter with the smallest index) in
each cluster to form the remaining set for each layer,

R; = {mm(?—l) | VH € Cl} .

For the following layer, we add the to-be-deleted input chan-
nels to the corresponding remaining one (Fig. 1),
(i4+1) (i+1)

K:,:,k,: — ZK:,:,H(]C)A,: vk € Ri)
then we delete the redundant filters as well as the input channels of
the following layer as Eq. 4, 5. Due to the linearity of convolution
(Eq. 2), no damage is caused, hence no finetuning is needed.

@2y

3.6 C-SGD for Constrained Filter Pruning

Recently, accompanied by the advancement of CNN design philos-
ophy, several efficient and compact CNN architectures [18], [19]
have emerged and become favored in the real-world applications.
Although some excellent works [11], [12], [14], [15], [41] have
shown that the classical plain CNNs, e.g., AlexNet [60] and
VGG [61], are highly redundant and can be pruned significantly,
the pruned versions are usually still inferior to the more up-to-date
and complicated CNNs in terms of both accuracy and efficiency.

Filter pruning for very deep and complicated CNNs is chal-
lenging due to: 1) Firstly, these models are designed in con-
sideration of the computational efficiency, which makes them
inherently compact and efficient. 2) Secondly, these networks
are significantly deeper than the classical ones, thus layer-by-
layer pruning becomes too time-consuming, and the errors can
increase dramatically when propagated through multiple layers,
thus making the estimation of filter importance less accurate [12].
3) Most importantly, some innovative structures are heavily used
in these networks, e.g., shortcuts [18] and dense connections [19],
raising an open problem of constrained filter pruning.

For example, in each stage of ResNets, every residual block
is expected to add the learned residuals to the stem feature
maps produced by the first or the projection layer (referred to as
pacesetter), thus the last layer of every residual block (referred to
as follower) must be pruned in the same pattern as the pacesetter,
i.e., the remaining set R of all the followers and the pacesetter
must be the same, or the model will be damaged so badly
that finetuning cannot restore its accuracy. However, important
filters in the pacesetters and followers usually reside in different
positions, such that we have to prune some important filters in
some layers due to the constraints. An intuitive explanation is
shown in Fig. 5.

6

[112]3T4]5T6]8]

e |
00000000

osdsess |
—9

4908
9995958

[1123]4]5T6IR8]

ai...c IPPPPPP8

Fig. 5: We explain the problem of constrained filter prunin_g in
a ResNet where an 8-channel featuremap (denoted by Cz(; €
]thw, 1 < ¢ < 8) is fed into a residual block, and the output
of the last layer of residual block C!Y, is added onto C’Z.(Z). Here
we have Céi)t = C(i) + Cﬁi)s,VI < i < 8. By filter pruning,

m
we expect to remove one or several channels without breaking the
correspondence between the remaining channels which are added
up. Therefore, the remaining sets of the first and last layer must
be the same. Otherwise, if we prune the 7th filter at the first layer
and the 2nd filter at the last layer of residual block for example,
we will end up with C'2, = ¢? + %), %), = ¢V + c{7)
... Hence the correspondence breaks, and the model is destroyed.

[3x364] [3x364] * F
[3x364]
[3x364] [3X?‘a64] 3x364
[3x364 | [3><3‘64]

(a) Original. (b) Clipped. (c) Sampled. (d) Slimmed.

Fig. 6: Compared to prior works which only clip the internal
layers [3] or insert sampler layers [6], [7] on ResNets, C-SGD
literally “slims” the network.

In some successful explorations, Li et al. [3] sidestep this
problem by only pruning the internal layers on ResNet-56, i.e.,
the first layers in the residual blocks. Liu et al. [7] and He et
al. [6] skip these troublesome layers and insert an extra sampler
layer before the internal layers during inference time to reduce
the input channels. Though these methods can prune the models
to some extent, from a holistic perspective, the networks are not
literally “slimmed” but actually “clipped”, as shown in Fig. 6.

We have partly solved this open problem by C-SGD, where
the key is to force different layers to learn the same redundancy
pattern. For example, if the layer p and ¢ have to be pruned in the
same pattern, we only generate clusters for the layer p by some
means and assign the resulting cluster set to the layer ¢, namely,
Cq < Cp. Then during C-SGD training, the same redundancy

WORK IN PROGRESS 7
_______________ -

[T2T3T4]5T617[8] (pacesetter) ' [6] V- [DICIDIA[CIBID[D] [DICTA[B]
k-means ! A g STl
L2 "

[DICTRIA[SB[R/B

ooy Bge | HfEm 00090908 09000909 099
MRBEREHR b --- -+ JH " Gy | “\3 « [EIGIRIS/ESTE[H]
000000 EeEm om0 000 oy
<fanower) I ‘ DICHANEINE
00000900 P 7727 00000000 oo

o d s D
(intemal) Pl R O] 5 KILITTT KSR IL[T1]
000000 S mg | L 0w 0000000 0909
TR

i 00000009 i e parameter hyperspace 0000000 3 00000009 E oo E

Original Network Clustering C-SGD Training Trimming Slimmed Network
Fig. 7: Sketch for slimming ResNets. We take the first stage of a toy ResNet where every layer has 8 filters for example. Since every
convolutional layer is directly followed by exactly one batch normalization layer, we view them as a whole. We generate clusters for
the pacesetter and internal layers in each stage by k-means for example. Before C-SGD training, the clustering result of a pacesetter is

assigned to its followers in order to produce the same redundancy pattern.

09089047 \ 00y 0000000 ooy
TR o LF FIERG

o0

...................

o9

\ N

CCTTTTITTTTD ConAare
e i1 I R e
o909 m 0909 g0 o0
OO e L Gogiigisosyis L gagaasamoos L-yvomnisim
Original Netv}ork Clustering C-SGD Tralining Trimminlg Slimmed Neltwork

Fig. 8: Sketch for slimming DenseNets. We take a toy DenseNet with growth rate 4 for example. Considering the special dense
connection and pre-activation structure of DenseNets, we treat the batch normalization layers separately, which are denoted by the
rectangles with chessboard-like background. As the output feature map of every convolutional layer serves as the input of one or more
batch normalization layers, we generate clusters for every convolutional layer and apply the clustering results C to every following batch
normalization layer at the corresponding position, such that the gradients of v and (3 are transformed as the preceding convolutional
layers. Note that a batch normalization layer can be regarded as a degraded case of the definition in Sect. 3.1 without loss of generality.

patterns among filters at both layer p and g are produced. Le., if
the j-th and k-th filters at layer p become identical, we ensure
the sameness of the j-th and k-th filters at layer ¢ as well,
thus the troublesome layers can be pruned along with others
with no performance loss. Fig. 7 and Fig. 8 illustrate how we
prune ResNets and DenseNets, respectively, where each rectangle
represents a filter, and different filters labeled by the same letter
become identical during C-SGD training.

3.7 C-SGD for Scaling and Squeezing: a New Training
Methodology

In this paper, we propose Scaling and Squeezing, a novel CNN
training methodology based on C-SGD, to improve the perfor-

mance of CNN without any extra parameters or FLOPs. Con-
cretely, given an off-the-shelf CNN architecture, we first train a
model with regular SGD from scratch, where some layers are
wider than the original. Naturally, such a wide model will be
more powerful than the original one but at the costs of more
parameters and computations. Then we use C-SGD to slim it
down to the original structure. As will be shown in Sect. 4.9,
the performance of the resulting model will be lower than the
wide one, but higher than a counterpart with the same structure
trained with regular SGD. Intuitively, when the filters in each
cluster are constrained to grow closer, the learned knowledge
is gradually “squeezed” into the cluster center, i.e., the merged
filter, such that the resulting model becomes more powerful than

WORK IN PROGRESS

the normal counterpart. Interestingly, it is observed that scaling
and pruning globally, including those troublesome layers, yields
better performance than only scaling and pruning the easy-to-
prune layers. This observation highlights the significance of C-
SGD in partly solving the constrained filter pruning problem.

The key distinguishing Scaling and Squeezing from simply
pruning a bigger model into a smaller one with the traditional
pruning methods is that the former improves the performance by
a significant margin while the latter cannot outperform a regularly
trained counterpart due to the weakness of their non-ideal redun-
dancy patterns. Recently, Liu et al. [36] validated several pruning-
and-finetuning methods [2], [3], [6], [7], [15], [34] and empirically
found out that with the same width, the network obtained by
pruning delivers no better performance than a counterpart trained
from scratch. The authors state that though the remaining weights
are considered important by the pruning criteria, inheriting them
does not help the finetuning process achieve better accuracy, but
might trap the pruned model into a bad local minimum. However,
our method does not judge the parameters by their importance
and discard the unimportant ones, nor finetune a model after lossy
pruning. On the contrary, by averaging the gradients of filters in
each cluster (Eq. 6), we fully utilize the information encoded in
the objective function to supervise the whole cluster and reduce
the possibility of being trapped into a local minimum.

Of note is that Scaling and Squeezing manipulates the model’s
structure for higher accuracy, which is complementary to the
other techniques for improving CNN performance like stronger
data augmentation, advanced loss functions, etc. Though Scaling
and Squeezing increases the training costs, it is still practical as
a methodology to boost the performance of CNNs, because we
usually care about the inference-time performance and efficiency
more than the training costs in real-world applications, as we com-
monly train our models on the powerful GPU/TPU workstations
and deploy them to multiple front-end devices where the efficiency
matters. By Scaling and Squeezing, we obtain a model of the same
structure as a normally trained counterpart, thus the increased
accuracy can be regarded as free benefits, from the viewpoint of
the end users.

4 EXPERIMENTS

We performed abundant experiments to evaluate C-SGD. 1) We
validated the effectiveness of C-SGD by pruning several common
benchmark models on CIFAR-10 [62] and comparing with the
reported results from several recent competitors. 2) We justified
the practicability of C-SGD on real-world applications by pruning
on ImageNet [63]. 3) We validated the generalization performance
of C-SGD on COCO detection and VOC segmentation. 4) We
compared different clustering methods and discovered a minor
difference. 5) We demonstrated the superiority of C-SGD over the
zeroing-out methods in the sense that C-SGD converges faster and
enables lossless pruning by producing ideal redundancy patterns.
6) A series of controlled experiments were conducted to fairly
compare C-SGD and some other pruning methods with the same
training settings. 7) We found out that when both trained from
scratch, a model with identical filters can outperform another
one without, thus providing empirical evidence supporting the
assumption that redundancy can help the convergence of neural
network. 8) We justified the significance of solving the constrained
filter pruning problem by showing that global slimming on ResNet
yields better performance than simply clipping the easy-to-prune

8

layers. 9) We verified the effectiveness of Scaling and Squeezing
by training a model with the same architecture but wider layers,
squeezing it into the original width and comparing with the
normally trained counterparts.

4.1 Pruning Results on CIFAR-10

In this subsection, we aim to preliminarily evaluate C-SGD by
some pruning experiments and comparisons with the recent com-
petitors on CIFAR-10 (Table. 1). Our results are marked by bold
font. Since our base models deliver different accuracy than the
competitors, we present the absolute and relative error increase,
which are commonly adopted as the metrics to compare the change
of accuracy on different base models. For example, the Topl
accuracy is 93.53% for our base VGG [61] model and 92.20%
for the result labeled as C-SGD-VGG-D, such that the absolute
and relative error increase are 93.53% — 92.20% = 1.33% and
% = 20.55%, respectively. For each trial we start from a
well-trained base model, cluster the filters by k-means, apply C-
SGD training on all the layers simultaneously, prune every layer
and test the resulting model.

The base models are trained from scratch for 600 epochs to
ensure the convergence, which is longer than the usually adopted
benchmarks (160 [18] or 300 [19] epochs), because we expect
to perform pruning on a fully trained base model, such that the
accuracy increase (in the case of VGG, Res56, Res110, Dense40)
cannot be simply attributed to the training on a base model which
has not fully converged. We use the data augmentation techniques
adopted by He et al. [18], i.e., padding to 40 x 40, random
cropping and flipping. The hyper-parameter € is casually set to
3 x 1073, We perform C-SGD training for 600 epochs with batch
size 64 and a learning rate initialized as 3 x 10~2 then multiplied
by 0.1 when the loss stops decreasing.

We start with VGG, a 13-layer plain network. As a common
practice, every convolutional layer is followed by a batch normal-
ization. In order to compare with other competitors with different
pruning ratios, we prune the base model with four different target
width settings labeled from A to D to reach around 60%, 75%,
85%, 90% FLOPs reduction, respectively, which are shown in
Table. 2. As we do not intend to push the state-of-the-art results
on such a simple network, we set the target width casually. E.g.,
the 13 layers of the model labeled as C-SGD-VGG-C has 20, 50,
80, 80, 80, 80, 80, 60, 60, 60, 60, 60, 60 filters, respectively, such
that around 85% FLOPs are reduced. To obtain a series of models
with descending FLOPs, we iteratively apply C-SGD pruning, e.g.,
C-SGD-VGG-C is the input to C-SGD-VGG-D. The comparison
shows the superiority of C-SGD over the competitors. Though
some prior works succeeded in pruning VGG with improved
performance, they did not achieve an increase so significant at
such high pruning ratios (e.g., 0.25% at 75.15%). Moreover, we
observe no accuracy drop even when the FLOPs reduction reaches
85.15%. Of note is that the comparisons are biased towards the
competitors as it is more challenging to prune a higher-accuracy
model without accuracy drop.

For ResNets, we aim to reduce around 60% FLOPs of every
model by pruning 3/8 of every convolutional layer, thus the
parameters and FLOPs are reduced by 1 — (5/8)? = 61%. As
the original ResNets have 16, 32 and 64 filters at each layer in
the three stages, respectively, we denote their structure as 16-
32-64, and our pruned models as 10-20-40. Aggressive as the
pruning is, we observe no obvious accuracy drop. Better still,

WORK IN PROGRESS

9

TABLE 1: Pruning Results on CIFAR-10 sorted by the FLOPs reduction ratio. Note that a negative error increase denotes an
improvement in the accuracy. For ResNets, “internal” and “sampler” denote that the architecture is still 16-32-64, but the internal
layers of residual blocks are clipped, or the sampler layers are inserted in front of the blocks, as described in Fig. 6.

Model Result Base Topl Pruned Topl ggs;gr?O% FE%PS Paj;)ms Architecture
VGG Li et al. [3] 93.25 93.40 -0.15/7-2.22 34.2 64.0 -
VGG Network Slimming [7] 93.66 93.80 -0.14 /-2.20 51.0 88.5 -
VGG Hu et al. [64] 92.71 92.74 -0.03/-0.41 56.2 84.0 -
VGG GSFP [65] 93.25 93.29 -0.04/0.59 61.46 74.21 -
VGG C-SGD-VGG-A 93.53 94.10 -0.57 / -8.80 61.69 86.28 -
VGG Jiang et al. [66] 93.46 93.40 0.06 /091 67.6 92.7 -
VGG Zhu et al. [67] 93.58 93.31 0.27/74.20 68.75 88.23 -
VGG Zhou et al. [68] 91.0 90.6 0.4/4.44 71.42 97.44 -
VGG 2PFPCE [69] 92.98 92.76 0.22/3.13 74.83 74.53 -
VGG C-SGD-VGG-B 93.53 93.78 -0.25 /7 -3.86 75.15 90.09 -
VGG Huang et al. [70] 92.77 89.37 3.40/47.02 80.6 92.8 -
VGG Ding et al. [23] 92.92 92.44 0.48/6.77 81.39 93.51 -
VGG Singh et al. [71] 93.49 93.02 0477721 83.43 95.83 -
VGG C-SGD-VGG-C 93.53 93.59 -0.06 / -0.92 85.02 96.54 -
VGG C-SGD-VGG-D 93.53 92.20 1.33 / 20.55 90.12 97.95 -
Res56 Li et al. [3] 93.04 93.06 -0.02/-0.28 27.60 13.7 internal
Res56 NISP-56 [12] - - 0.03 /- 43.61 42.60 -
Res56 Zhu et al. [67] 93.39 93.40 -0.01/-0.15 47.36 52.38 -
Res56 Channel Pruning [6] 92.8 91.8 1.0/ 13.88 50 - sampler
Res56 ADC [35] 92.8 91.9 097125 50 - sampler
Res56 FPGM [72] 93.59 93.26 0.33/5.14 52.6 - -
Res56 LFPC [73] 93.59 93.24 0.35/5.46 52.9 - -
Res56 AFP [23] 93.93 92.94 0.99/16.30 60.85 60.90 10-20-40
Res56 C-SGD-Res56-10-20-40 93.39 93.62 -0.23 / -3.47 60.85 60.90 10-20-40
Res110 Li et al. [3] 93.53 93.30 0.23/3.55 38.60 324 internal
Res110 NISP-110 [12] - - 0.18 /- 43.78 43.25 -
Res110 GAL-0.5 [74] 93.50 92.74 0.76 / 11.6 48.5 - -
Res110 HRank [75] 93.50 93.36 0.14/2.15 58.2 - -
Res110 C-SGD-Res110-10-20-40 94.38 94.41 -0.03 / -0.53 60.89 60.92 10-20-40
Res164 Network Slimming [7] 94.58 94.73 -0.15/-2.76 44.90 35.2 sampler
Res164 C-SGD-Res164-12-24-46 94.83 95.08 -0.25/ -4.83 45.24 54.75 12-24-46
Res164 C-SGD-Res164-10-20-40 94.83 94.81 0.02 /0.38 60.91 60.93 10-20-40
Dense40 Network Slimming [7] 93.89 94.35 -0.46/-7.52 55.00 65.2 -
Dense4) C-SGD-Dense40-5-8-10 93.81 94.56 -0.75 /12.11 60.05 36.16 5-8-10

the increased depth does not degrade the effectiveness of C-SGD,
which distinguishes C-SGD from the layer-by-layer methods. We
also produced a ResNet-164 labeled as 12-24-46, such that its
FLOPs are comparable with Liu et al. [7].

The original DenseNet-40 has 12 filters at every incremental
convolutional layer, but the pruned model has 5, 8 and 10 filters for
the three stages, respectively, such that the FLOPs are reduced by
60.05%, and an accuracy increase is achieved, which is consistent
with but better than that of Liu et al. [7].

4.2 Pruning Results on ImageNet

Table. 3 and Table. 4 show the pruning results of our method and
other works on the original ResNet-50 [18], which is a commonly
adopted benchmark in the filter pruning literature. Since many
competitors experimented with the torchvision [38] version of
ResNet-50 (denoted by Res50B), we also prune it for the fair

TABLE 2: Width settings of four pruned VGG models labeled
from A to D.

Layer original A B C D
1 64 20 20 20 20
2 64 50 50 50 50
3 128 100 100 80 60
4 128 120 120 80 60
5-7 256 200 150 80 50
8 512 200 150 60 50
9-13 512 100 100 60 50

comparison (Table. 5). The only difference between the original
ResNet-50 and Res50B is that the former conducts downsampling
by the 1 X 1 conv at the beginning of a stage while the latter uses

WORK IN PROGRESS

10

TABLE 3: Pruning ResNet-50 on ImageNet using the same data preprocessing as ThiNet [34].

Result Base Topl Base Top5 Pruned Topl Pruned Top5 ggs%grrﬁ% ggg%grfﬁ;o Fll(%)Ps Paf(i%ms
ThiNet-70 72.88 91.14 72.04 90.67 0.84/3.09 0.47/5.30 36.75 33.72
C-SGD-Res50-70 74.17 91.77 73.80 91.71 0.37/1.43 0.06 / 0.72 36.75 33.72
ThiNet-50 72.88 91.14 71.01 90.02 1.87/6.89 1.12/12.64 55.76 51.56
C-SGD-Res50-50 74.17 91.77 73.00 91.42 1.17 / 4.52 0.35/4.25 55.76 51.56

TABLE 4: Pruning ResNet-50 on ImageNet using bounding box distortions and color shift, sorted by the FLOPs reduction ratio.

Result Base Topl Base Top5 Pruned Topl Pruned Top5 ngfiqgr?% 255;5?;0 F]I,%PS PT;DmS
C-SGD-Res50-70 75.33 92.56 75.27 92.46 0.06 / 0.24 0.10/1.34 36.75 33.38
NISP [12] - - - - 0.89 /- -/ - 44.01 43.82
Singh et al. [71] - 92.65 - 922 -/ - 0.45/6.13 44.45 40.92
C-SGD-Res50-60 75.33 92.56 74.93 92.27 0.40 / 1.62 0.29 / 3.89 46.24 42.83
CFP [76] 75.3 922 734 914 1.9/7.69 0.8/10.25 49.6 -
Channel Pr [6] - 922 - 90.8 -/ - 1.4/17.94 50 -
SPP [77] - 91.2 - 90.4 -/- 0.8/9.09 50 -
HP [78] 76.01 92.93 74.87 9243 1.14/4.75 0.50/7.07 50 325
ELR [79] - 92.2 - 91.2 -/- 1/12.82 50 -
GDP [80] 75.13 92.30 71.89 90.71 324/13.02 1.59/20.64 51.30 -
SSR-L2 [25] 75.12 92.30 71.47 90.19 3.65/14.67 2.11/2740 55.76 51.56
C-SGD-Res50-50 75.33 92.56 74.54 92.09 0.79 / 3.20 0.47 / 6.31 55.76 51.50
ThiNet [81] 75.30 92.20 72.03 90.99 327/13.23 1.21/15.51 55.83 -

TABLE 5: Pruning the standard torchvision ResNet-50 (denoted by Res50B) on ImageNet using default data augmentation.

Result Base Topl Base Top5 Pruned Topl Pruned Top5 ng/izg?oz) gl())s/?{flrrﬁ;o FIi(;OPs Paj;()ms
C-SGD-Res50B-70 76.15 92.87 75.94 92.88 021/0.88 -0.01/-0.14 36.38 33.38
SFP [82] 76.15 92.87 74.61 92.06 1.54/6.45 0.81/11.36 41.8 -
GAL-0.5 [74] 76.15 92.87 71.95 90.94 4.20/17.61 1.93/27.06 43.03 -
HRank [75] 76.15 92.87 74.98 92.33 1.17/4.90 0.54/7.57 43.76 -
C-SGD-Res50B-60 76.15 92.87 75.80 92.65 0.35/1.46 0.22 / 3.08 46.51 42.83
Autopr [83] 76.15 92.87 74.76 92.15 1.39/5.82 0.72/10.09 51.21 -
FPGM [72] 76.15 92.87 74.83 92.32 1.32/5.53 0.55/77.71 53.5 -
C-SGD-Res50B-50 76.15 92.87 75.29 92.39 0.86 / 3.60 0.48/6.73 55.44 51.50

the 3 x 3 conv. For pruning each model, we train with C-SGD for
70 epochs with a learning rate initialized as 0.03 and multiplied
by 0.1 at the 30th, 50th and 60th epochs, respectively. We use a
batch size of 256 on 8 GPUs, weight decay of 10™%, centripetal
strength € = 0.05.

First, we compare C-SGD with ThiNet [34], [81], a classic
filter pruning method (Table. 3). For the fair comparison, we
augment the training data in the same way [34], i.e., the images
are simply resized to 256 x 256, then 224 x 224 random cropping
and horizontal flipping are adopted. Because of such weak image
distortion, the accuracy of our base model is lower than that
reported in the ResNet paper [18]. At test time, we use a single
central crop. Following ThiNet, all the internal layers in each
residual block of C-SGD-Res50-70 and C-SGD-Res50-50 are
shrunk to 70% and 50% of the original width, respectively.

Then, we provide the comparison of C-SGD and some more
recent competitors using the standard data augmentation methods
including bounding box distortions and color shift (Table. 4). Our

base model reaches a Topl/Top5 accuracy of 75.33%/92.56%.
Though the base models of some competitors have different
accuracies, the results are still comparable in terms of the absolute
and relative error increase. Following ThiNet and Lin ef al. [25],
we slim the internal layers down to 70%, 60% and 50% of the
original width, respectively.

With Res50B, we use the official pre-trained model and the
default official data preprocessing [84] (Table. 5).

As can be observed, our pruned models exhibit fewer FLOPs
and lower error increase. Of note is that, instead of carefully tuning
the target network width, we simply apply the same pruning ratio
for each internal layer. Better results are promising to be achieved
if more layer sensitivity analyzing experiments [3], [6], [12] are
conducted, and the target network structures are tuned accordingly.

Another set of experiments are conducted on DenseNet-
121 [19] (Table. 6). Without consideration of the layers’ sensitivity
or the filters’ importance, the same pruning ratio is applied for
each stage. For C-SGD-Densel21-A, the internal layers, i.e., the

WORK IN PROGRESS

first layers in each dense block, are shrunk to 7/8 of the original
width, and the incremental factors of the first three stages become
18, 20, 24, respectively. For C-SGD-Densel121-B, the internal
layers are further slimmed down to 3/4 of the original width.
We prune the lower-level layers harder than the higher-level ones
not because of any prior knowledge about the model, but simply
because such layers operate on higher-resolution feature maps so
that reducing their width results in higher acceleration. Though
DenseNet-121 is not usually chosen as a benchmark model for
pruning because of its complicated and compact structure, we can
slim it with minor decrease in the accuracy. Such a success shows
the significance of C-SGD in solving the constrained filter pruning
problem and the effectiveness of the strategy described in Fig. 8.

4.3 Semantic Segmentation and Object Detection

We verify the effectiveness of C-SGD on the downstream tasks
including semantic segmentation and object detection.

First, we use the augmented VOC 2012 dataset for semantic
segmentation as a common practice [85], [86], which has 10,582
images for training (trainaug set) and 1449 images for validation
(val set). We construct a PSPNet [87] with the original pre-trained
ResNet-50B as the backbone and finetune with a poly learning
rate policy with base of 0.01 and power of 0.9, weight decay of
10~* and a global batch size of 16 on 4 GPUs for 50 epochs.
Then we use the pruned models denoted as C-SGD-Res50B-70
and C-SGD-Res50B-60 (Table. 5) as the backbones and finetune
with the identical settings.

Then we experiment with COCO detection. More specifically,
the training set is COCOZ2017train and the validation set is
COCO2017val. We construct a Faster RCNN [88] with FPN [89]
and the original pre-trained ResNet-50B as the backbone. We
finetune for 12 epochs with a learning rate initialized as 0.02 and
multiplied by 0.1 at the 8th and 11th epochs respectively. Then we
use C-SGD-Res50B-70 and C-SGD-Res50B-60 as the backbones
again all with the identical settings.

Table. 7 demonstrates the generalization performance of the
pruned models, which show very minor or even no decrease in the
mloU on VOC and AP on COCO.

4.4 Studies on the Clustering Methods

To study the effects of different clustering methods, we perform
another set of experiments using the same settings as before
except for even or imbalanced clustering. As shown in Table. 8, k-
means outperforms the other two clustering methods by a narrow
margin on ImageNet and wins 4 out of 5 cases on CIFAR-10, due
to the lower intra-cluster distance in the parameter hyperspace.
Interestingly, our experiments indicate that the effectiveness of C-
SGD-based pruning does not significantly depend on the quality
of filter clusters C, since reasonable performance can be achieved
with arbitrarily generated clusters.

4.5 Making Filters Identical vs. Zeroing Filters Out

As making filters identical and zeroing filters out [11], [20],
[21], [22], [23], [25] are two means of producing redundancy
patterns for filter pruning, we perform controlled experiments on
ResNet-56 to investigate the difference. For the fair comparison,
we aim to produce the same number of redundant filters in both
the network trained with C-SGD and the one with group-Lasso
Regularization [26]. For C-SGD, the number of clusters at each

11

2 C-SGD e
< 9 Lasso >,0'B [WS A A A A At
S g [
8., 50.6 | Y
5 g [l
x-4 : 0.4 WV C-SGD before pruning
;D?, 6 g- ‘MN; Lasso before pruning
= = 02 s / C-SGD after pruning
-8 - : v —— Lasso after pruning
0 50 100 150 200 0 50 100 150 200

epochs

(a) Values of x or ¢.

epochs

(b) Validation accuracy.

Fig. 9: Training process with C-SGD or group-Lasso on ResNet-
56. Note the logarithmic scale of the upper figure.

layer is 5/8 of the number of filters. For Lasso, 3/8 of the original
filters in the pacesetters and the internal layers are regularized by
group-Lasso, and the followers are handled in the same pattern.
We use the aforementioned sum of squared kernel deviation Y
(Eq. 7) and the sum of squared kernel residuals ¢ as follows to
measure the redundancy, respectively. Let £ be the layer index set
and P; be the to-be-pruned filter set of layer i, i.e., the set of the
3/8 filters with group-Lasso regularization,

o= ST IKY 3.

€L jEP;

(22)

We present in Fig. 9 the curves of x, ¢ as well as the
validation accuracy both before and after pruning. The learning
rate 7 is initially set to 3 x 1072 and decayed by 0.1 at epoch
100 and 200, respectively. It can be observed that: 1) Group Lasso
cannot literally zero out filters, but can decrease their magnitude
to some extent, as ¢ plateaus when the gradients derived from
the regularization term become close to those derived from the
original objective function. We empirically find out that even when
¢ reaches around 4 x 10™4, which is nearly 2 x 10° times smaller
than the initial value, pruning still causes obvious damage (around
10% accuracy drop). When the learning rate is decayed and ¢ is
reduced at epoch 200, we observe no improvement in the pruned
accuracy, therefore no more experiments with smaller learning
rate or stronger group-Lasso Regularization are conducted. We
reckon this is due to the error propagation and accumulation in
very deep CNNs [12]. 2) By C-SGD, Y is reduced monotonically
and perfectly exponentially, which suggests faster convergence.
In other words, the filters in each cluster can become infinitely
close to each other at a constant rate with a constant learning rate.
In the early stage of training, the filters have not become close
enough such that pruning degrades the performance (seen from the
difference between “C-SGD before pruning” and “C-SGD after
pruning” during the beginning 100 epochs). But after 100 epochs,
the pruning causes absolutely no damage. 3) Training with group-
Lasso is 2 slower than C-SGD due to its computational intensity,
as implemented using Tensorflow [59] on GTX 1080Ti GPUs.

4.6 C-SGD vs. Other Filter Pruning Methods

In this subsection, we compare C-SGD with other filter pruning
methods through a series of controlled experiments on DenseNet-
40 [19]. We slim every incremental convolutional layer of a
well-trained DenseNet-40 to 3 and 6 filters, respectively. The
experiments are repeated 3 times, and the mean = std curves are
presented in Fig. 10. The training setting is kept the same for every
model: learning rate 7 = 3 x 1072,3x 1074,3x 107°,3x 1076
for 200, 200, 100 and 100 epochs, respectively, to guarantee the

WORK IN PROGRESS 12
TABLE 6: Pruning DenseNet-121 on ImageNet.
Topl Error TopS Error FLOPs Params
Result Base Topl Base TopS Pruned Topl Pruned Top5 Abs/Rel 1% Abs/Rel 1% 1% 1%
C-SGD-Densel121-A 74.47 92.14 74.25 91.76 0.22/0.86 0.38/4.83 34.65 21.53
C-SGD-Densel21-B 74.47 92.14 73.73 91.55 0.74 /2.89 0.59/7.50 42.28 29.89

TABLE 7: Semantic segmentation results on VOC2012 and object
detection results on COCO with the original and pruned ResNet-
50B backbones.

Backb Top-1 accon mloUon AP on
ackbone ImageNet VOC COCO
Original ResNet-50B 76.15 76.29 33.2
C-SGD-Res50B-70 75.94 76.36 32.8
C-SGD-Res50B-60 75.80 75.78 33.1

0.925

0.900

0.875

o
©
vl
=}

0.825

val accuracy

0.800 —— APoZ-
Lasso-
0.775 —*— Magnitude-
—e— C-SGD-
0.750 —— Taylor-
0 100 200 300 400 500 600

epochs

(a) Three filters per layer.

o
©
=

o
©
o

val accuracy

o
©
©

—+— APoZ-
Lasso-
—v— Magnitude-

—e— C-SGD-
Taylor-

o
©
@©

o
)
N

0 100 200 300 400 500 600
epochs

(b) Six filters per layer.

Fig. 10: Controlled pruning experiments on DenseNet-40.

complete convergence of every competitor to ensure the fairness
of comparison. For our method, the models are trained with C-
SGD and trimmed. For Magnitude- [3], APoZ- [14] and Taylor-
expansion-based [15], the models are pruned by the different cri-
teria and finetuned. The models labeled as Lasso are trained with
group-Lasso Regularization for 600 epochs in advance, pruned,
then finetuned for another 600 epochs with the same learning rate
schedule, such that the comparison is actually biased towards the
Lasso method. The models are tested on the validation set every

10,000 iterations (12.8 epochs), and the collected results reveal
the superiority of C-SGD in terms of the higher accuracy and also
the better stability. Especially, though group-Lasso Regularization
can indeed reduce the performance drop caused by pruning, it is
outperformed by C-SGD by a large margin. Another interesting
observation is that the models pruned by the importance metrics
are unstable and trapped into a bad local minimum, which is
consistent with [36], as the accuracy curves increase steeply in
the beginning but slightly decline afterwards.

The above observations suggest it is better to train a redundant
network and equivalently transform it into a narrower one than to
finetune it after pruning. This is consistent with prior works [5],
[27] which pointed out that the redundancy in neural networks was
necessary to overcome a highly non-convex optimization.

4.7 Redundant Training vs. Normal Training

In this subsection, we continue to verify the significance of
training with manipulated redundant filters. However, we need
to eliminate the effects of the well-trained base model, or we
cannot tell whether the difference in the final accuracy is due
to the redundancy during the training process or the powerful
weights of the well-trained big model. Concretely, we train a
narrow CNN with normal SGD and compare it with another model
trained using C-SGD with the equivalent width from scratch. To
be specific, after random initialization, the latter produces some
identical filters during C-SGD training, and when such filters are
trimmed afterwards, it will have the same width as the former.
For example, if a model has 2X number of filters as the normal
counterpart but every two filters are identical, they will end up with
the same structure. In this way, if the redundant one outperforms
the normal one, we can conclude that C-SGD can yield more
powerful networks by exploiting the redundant filters.

On DenseNet-40, we evenly divide the 12 filters at each incre-
mental convolutional layer into 3 clusters, use C-SGD to train the
network from scratch, then trim it to obtain a model with 3 filters
per incremental layer. Le., every 4 filters are growing centripetally.
As a contrast, we train a DenseNet-40 with originally 3 filters per
layer by normal SGD. Another group of experiments where each
layer ends up with 6 filters are carried out similarly. After that,
we experiment on VGG, slimming each layer to 1/4 and 1/2 of
the original width, respectively. We also conduct experiments on
ResNet-56 with target structure 10-20-40 and on ResNet-50 where
every internal layer is reduced to 30% of the original width.

It can be concluded from Table. 9 that the redundant filters
do help, compared to a normally trained counterpart with the
equivalent width. This observation supports our intuition and
assumption that the centripetally growing filters can enhance the
model’s representational capacity because though these filters are
constrained, their corresponding input channels of the succeeding
layers are still in full use and can grow without constraints in the
parameter hyperspace (Fig. 1).

WORK IN PROGRESS 13
TABLE 8: Pruning results with k-means, even, or imbalanced clustering.
Pruned Topl Pruned Topl Pruned Topl
Dataset Model Result Base Topl K-means Clustering Even Clustering Imbalanced Clustering
CIFAR-10 VGG C-SGD-VGG-C 93.53 93.59 93.25 93.19
CIFAR-10 ResNet-56 C-SGD-Res56-10-20-40 93.39 93.62 93.44 93.45
CIFAR-10 ResNet-110 C-SGD-Res110-10-20-40 94.38 94.41 94.54 94.11
CIFAR-10 ResNet-164 C-SGD-Res164-10-20-40 94.83 94.81 94.80 94.70
CIFAR-10 DenseNet-40 C-SGD-Dense40-5-8-10 93.81 94.56 94.37 93.94
ImageNet ResNet-50 C-SGD-Res50-70 75.33 75.27 75.14 74.93

TABLE 9: Topl accuracy of scratch-trained DenseNet-40, VGG
and ResNets using normal SGD or C-SGD with identical filters.

Dataset Model Normal SGD C-SGD
CIFAR-10 DenseNet-3 88.60 89.96
CIFAR-10 DenseNet-6 89.96 90.89
CIFAR-10 VGG-1/4 90.16 90.64
CIFAR-10 VGG-1/2 92.49 93.22
CIFAR-10 ResNet-56-10-20-40 91.78 92.81
ImageNet ResNet-50-30 69.67 72.54

TABLE 10: Topl accuracy of ResNet-56 pruned by global slim-
ming or clipping the internal layers.

Resulting width Topl acc FLOPs |
Global slimming [10,10]-[20,20]-[40,40] 93.62 60.85
Clipping [6,16]-[12,32]-[24,64] 91.77 61.76

In other words, though C-SGD is originally designed for filter
pruning on an off-the-shelf model, in some cases when a well-
trained model is unavailable, we can still use C-SGD to train a
wide redundant model from scratch and trim it into the desired
structure. Though doing so delivers a lower accuracy than pruning
a well-trained model (e.g., 92.81 vs. 93.62 on ResNet-56-10-20-
40, as reported in Table. 9 and 1), we can still obtain a more
powerful model than training from scratch using normal SGD.

4.8 Global Slimming vs. Clipping Some Layers

In this subsection, we show that with the same target FLOPs,
global “slimming” yields better results than simply “clipping”
some of the layers. Concretely, we prune a ResNet-56 on CIFAR-
10 to reach a comparable level of FLOPs as C-SGD-Res56-10-
20-40 (Table. 1). Instead of slimming every layer to 5/8 of the
original width, we use C-SGD to prune the internal layers only,
i.e., the first layers in each residual block. To realize 60% FLOPs
reduction, we slim such layers to 3/8 of the original width. We
use [z, y] to denote the structure of a ResNet stage where the first
layer in every residual block has x filters and the second has y.

As shown in Table. 10, clipping the internal layers delivers a
significantly lower accuracy, which demonstrates the superiority of
global slimming over simply clipping some layers in maintaining
the accuracy, given a specific overall pruning ratio.

4.9 Scaling and Squeezing for More Powerful CNNs

Scaling and Squeezing is a novel methodology to improve the
performance of CNN based on C-SGD. The resulting model will

deliver a higher level of accuracy with the same computational
budgets as a normally trained counterpart. Concretely, we choose
a mature CNN as the baseline, train a network with the same
architecture but wider layers from scratch using regular SGD, and
then use C-SGD to squeeze it into the original width.

On CIFAR-10, a 2x scaled VGG is trained from scratch with
normal SGD, i.e., every layer of the model is 2x as wide as the
normal VGG architecture. We then slim it down to the original
structure by pruning half of the filters at each layer. On ImageNet,
we train a 1.25 X scaled ResNet-50 from scratch, and slim it down
to the original structure. Note that every convolutional layer is
widened to 1.25X of its original width, including the pacesetters
and followers, which are considered troublesome by the prior
works. We then use C-SGD to prune every layer simultaneously.
We also experiment with another model scaled differently, where
only the bottleneck layers (i.e., the internal 3 X 3 convolutional
layers in the residual blocks) are scaled by 2.

As shown in Table. 11, the pruned models consistently beat
the counterparts trained with regular SGD by a clear margin.
Intuitively, when the filters in each cluster are constrained to grow
closer, the learned knowledge is gradually “squeezed” into the
cluster center, i.e., the merged filters, such that the resulting model
becomes more powerful than the normal counterpart. Interestingly,
Global 1.25x pruned outperforms Bottleneck 2x pruned (76.25
vs. 75.88 Topl accuracy, 0.74 vs. 0.94 error increase), though Bot-
tleneck 2X requires more computations. It suggests that scaling
and pruning globally, including those troublesome layers, yields
better performance than only scaling and pruning the easy-to-
prune layers. This observation again highlights the significance of
C-SGD in solving the constrained filter pruning problem together
with the results shown in Sect. 4.8.

5 DISCUSSIONS
5.1 C-SGD is Efficient

The total time required for pruning is determined by the training
(plus finetuning, if any) epochs, the training speed, the time
consumed by the other algorithms (for those non-end-to-end meth-
ods), and the pruning granularity (i.e., the number of layers/filters
to prune at a time). C-SGD is efficient because it is end-to-end,
requires no finetuning, runs as fast as regular SGD and prune all
the layers simultaneously.

C-SGD requires no finetuning after pruning. As shown
in Sect. 4.5, during C-SGD training, the filters in each cluster
can become infinitely close to each other at a constant rate with
a constant learning rate. This property shows the superiority of
identical-filter redundancy pattern over the small-norm pattern, as
the latter cannot zero out the filters, but only reduce the magnitude
of their parameters. As trimming the identical filters causes no

WORK IN PROGRESS

14

TABLE 11: Scaling and Squeezing on VGG and ResNet-50. Of note is that we calculate the required FLOPs of every model in the
same manner as Luo et al. [34], [81], such that the FLOPs are 2 as those reported in other papers [3], [18].

Dataset Model Result Topl FLOPs Layer Width

CIFAR-10 VGG Baseline 93.53 626M 64-128-256-512

CIFAR-10 VGG 2x scaled 93.69 2499M 128-256-512-1024

CIFAR-10 VGG 2x pruned 93.97 626M 64-128-256-512

ImageNet ResNet-50 Baseline 75.33 7.71B 64-[64-64-256]-[128-128-512]-[256-256-1024]-[512,512,2048)]
ImageNet ResNet-50 Global 1.25x 7697 11.98B 80-[80-80-320]-[160-160-640]1-[320-320-1280]-[640,640,2560]
ImageNet ResNet-50 Global 1.25x pruned 76.23 7.71B 64-[64-64-256]-[128-128-512]-[256-256-1024]-[512,512,2048]
ImageNet ResNet-50 Bottleneck 2x 76.82 13.05B 64-[64-128-256]-[128-256-512]-[256-512-1024]-[512,1024,2048]
ImageNet ResNet-50 Bottleneck 2x pruned ~ 75.88 7.71B 64-[64-64-256]-[128-128-512]-[256-256-10241-[512,512,2048]

performance drop, there is no need for a finetuning process, which
is essential in many prior works [3], [6], [7], [12], [13], [14], [15],
[16], [17], [21], [22], [34], [35].

C-SGD allows one-step pruning on very deep CNNs.
The effectiveness and efficiency of C-SGD on very deep CNNs
distinguish C-SGD from the layer-by-layer [6], [13], [14], [21],
[34], [35] or filter-by-filter [15], [16] pruning methods. Many
prior works choose to prune layer by layer because pruning too
many layers at once may damage the network so severely that
it cannot be finetuned to reach a satisfactory level of accuracy.
In addition, the relative importance of filters is usually affected by
the subsequent layers [12], such that pruning several layers stacked
together at once may lead to poor estimation of the importance of
filters. In contrast, C-SGD can produce the desired redundancy
patterns on all the layers simultaneously to prune them all at once.
In practice, we observe no accuracy drop caused by the trimming
step, even in very deep CNNs like ResNet-164 and DenseNet-121.

C-SGD introduces negligible extra computational burdens.
We construct the averaging matrix I' and decaying matrix A
according to the clustering results C as two constants, and store
them in the GPU memory. Compared to normal SGD, for each
kernel tensor at each training iteration, the only extra computa-
tions introduced are two matrix multiplications (Eq. 18), which
consume minimal extra time and energy. In practice, the difference
in the training speed between C-SGD and normal SGD is not
observed. As a contrast, group-Lasso slows down the training
significantly, as it requires costly square root operations.

5.2 C-SGD is Robust to the Centripetal Strength

We perform a set of controlled experiments on ResNet-56 to study
the effects of the centripetal strength € by setting € to 1 x 1073,
2 x 1073 and 1 x 1072, respectively. Fig. 11 shows that C-
SGD is robust to €, as the three models converge in a similar
way. Intuitively, when we use C-SGD to produce the redundancy
patterns on every layer simultaneously, the network undergoes a
period of progressive change, which leads to an increasing loss.
When this kind of change becomes stable, i.e., when the filters
in each cluster have become close enough, the loss starts to
decrease. Obviously, with a larger €, the filters in each cluster grow
centripetally at a faster rate, thus the change is finished earlier.

6 CONCLUSION

We proposed to manipulate redundancy patterns by making some
filters identical for pruning. By C-SGD, we have 1) partly solved
an open problem of constrained filter pruning on very deep CNNs

0121 —— £=1x1073
0 #0.10{ | \\ i £=2x10"
> Y — £= -2
3 20.08 J ¥ \‘“‘\(£=1x10
s g | A h,
& £0.06 A \
S -6 3 ‘ PARUA WY\
£0.04 ! hAVA
_ o \
’ o002 } /H Nx“@«vﬁﬂﬁ\tﬁr“3\‘
J
-12 0.00 7~ T
0 100 200 300 400 0 100 200 300 400

epochs

(a) Value of x.

epochs

(b) Training loss.

Fig. 11: Curves of the sum of squared kernel deviation Y (Eq.
7, note the logarithmic scale) and the training loss with different
centripetal strength e. The learning rate is decayed at epoch 200
and 300, respectively.

with complicated architectures and shown the significance of
such a success, 2) beaten many recent competitors on several
common benchmarks, 3) presented empirical evidence for the
assumption that redundancy can help the convergence of neural
network training, which may encourage future studies, and 4)
proposed Scaling and Squeezing, a training methodology to boost
the performance of CNNss.

REFERENCES
[1] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision
Conference, 2014.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, 2015, pp. 1135-1143.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in 5th International Conference on Learning
Representations, 2017.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th International Conference on Learning Representations, 2016.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in International Conference on Computer Vision
(ICCV), vol. 2, 2017, p. 6.

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in 2017
IEEE International Conference on Computer Vision (ICCV). IEEE,
2017, pp. 2755-2763.

M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148-2156.

M. D. Collins and P. Kohli, “Memory bounded deep convolutional
networks,” arXiv preprint arXiv:1412.1442, 2014.

[2]

[3]

[4]

[3]
(6]

(71

(8]

(9]

WORK IN PROGRESS

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang,
“An exploration of parameter redundancy in deep networks with circulant
projections,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2857-2865.

H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
cnns,” in European Conference on Computer Vision. Springer, 2016,
pp. 662-677.

R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194-9203.

A. Polyak and L. Wolf, “Channel-level acceleration of deep face repre-
sentations,” IEEE Access, vol. 3, pp. 2163-2175, 2015.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in 5th
International Conference on Learning Representations, 2017.

R. Abbasi-Asl and B. Yu, “Structural compression of convolutional
neural networks based on greedy filter pruning,” arXiv preprint
arXiv:1705.07356, 2017.

S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep con-
volutional neural networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 2261-2269.
B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 806-814.

J. M. Alvarez and M. Salzmann, “Learning the number of neurons in
deep networks,” in Advances in Neural Information Processing Systems,
2016, pp. 2270-2278.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 2074-2082.

X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018, pp. 6797-6804.

H. Wang, Q. Zhang, Y. Wang, L. Yu, and H. Hu, “Structured pruning for
efficient convnets via incremental regularization,” in International Joint
Conference on Neural Networks, 2019, pp. 1-8.

S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, “Towards compact con-
vnets via structure-sparsity regularized filter pruning,” arXiv preprint
arXiv:1901.07827, 2019.

V. Roth and B. Fischer, “The group-lasso for generalized linear models:
uniqueness of solutions and efficient algorithms,” in Proceedings of the
25th international conference on Machine learning. ACM, 2008, pp.
848-855.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems, 2014,
pp. 1269-1277.

Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598-605.
B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164-171.

G. Castellano, A. M. Fanelli, and M. Pelillo, “An iterative pruning al-
gorithm for feedforward neural networks,” IEEE transactions on Neural
networks, vol. 8, no. 3, pp. 519-531, 1997.

S. W. Stepniewski and A. J. Keane, “Pruning backpropagation neural
networks using modern stochastic optimisation techniques,” Neural Com-
puting & Applications, vol. 5, no. 2, pp. 76-98, 1997.

Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances In Neural Information Processing Systems, 2016, pp.
1379-1387.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 184-199.

[34]

(35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(511

[52]

(53]

[54]1

[55]

[56]

[571

15

J. H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in /EEE International Conference on
Computer Vision, 2017, pp. 5068-5076.

Y. He and S. Han, “Adc: Automated deep compression and acceleration
with reinforcement learning,” arXiv preprint arXiv:1802.03494, 2018.
Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in 7th International Conference on Learning
Representations, 2019.

X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning
very deep convolutional networks with complicated structure,” in 2079
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4938-4948.

PyTorch, Torchvision Official Models, 2020. [Online].
https://pytorch.org/docs/stable/torchvision/models.html

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. 1EEE,
2013, pp. 6655-6659.

J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition.” in Interspeech,
2013, pp. 2365-2369.

Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of
deep convolutional neural networks for fast and low power mobile appli-
cations,” in 4th International Conference on Learning Representations,
2016.

V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for
small-footprint deep learning,” in Advances in Neural Information Pro-
cessing Systems, 2015, pp. 3088-3096.

X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolu-
tional networks for classification and detection,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 10, pp. 1943—
1955, 2016.

J. M. Alvarez and M. Salzmann, “Compression-aware training of deep
networks,” in Advances in Neural Information Processing Systems, 2017,
pp. 856-867.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737-1746.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525-542.
J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 4820—4828.
M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

J. Baand R. Caruana, “Do deep nets really need to be deep?” in Advances
in neural information processing systems, 2014, pp. 2654-2662.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” in 3rd International Conference
on Learning Representations, 2015.

M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “Perforated-
cnns: Acceleration through elimination of redundant convolutions,” in
Advances in Neural Information Processing Systems, 2016, pp. 947-955.
M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” in 2nd International Conference on Learning
Representations, 2014.

N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance eval-
uation,” in 3rd International Conference on Learning Representations,
2015.

Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “Cnnpack: Packing
convolutional neural networks in the frequency domain,” in Advances
in neural information processing systems, 2016, pp. 253-261.

Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond filters: Compact feature
map for portable deep model,” in International Conference on Machine
Learning, 2017, pp. 3703-3711.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448-456.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100108, 1979.

Available:

https://pytorch.org/docs/stable/torchvision/models.html

WORK IN PROGRESS

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

A. Krogh and J. A. Hertz, “A simple weight decay can improve gener-
alization,” in Advances in neural information processing systems, 1992,
pp- 950-957.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265-283.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. 1EEE, 2009, pp.
248-255.

Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu, “A novel channel prun-
ing method for deep neural network compression,” arXiv preprint
arXiv:1805.11394, 2018.

K. Xu, X. Wang, Q. Jia, J. An, and D. Wang, “Globally soft filter pruning
for efficient convolutional neural networks,” Tech. Rep., 2018.

C. Jiang, G. Li, C. Qian, and K. Tang, “Efficient dnn neuron pruning by
minimizing layer-wise nonlinear reconstruction error,” in Proceedings of
the 27th International Joint Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 2298-2304.

X. Zhu, W. Zhou, and H. Li, “Improving deep neural network sparsity
through decorrelation regularization,” in Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence. AAAI Press, 2018,
pp. 3264-3270.

Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian, “Network compression via
recursive bayesian pruning,” arXiv preprint arXiv:1812.00353, 2018.

C. Min, A. Wang, Y. Chen, W. Xu, and X. Chen, “2pfpce: Two-
phase filter pruning based on conditional entropy,” arXiv preprint
arXiv:1809.02220, 2018.

Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning to prune filters
in convolutional neural networks,” in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). 1EEE, 2018, pp. 709-718.
P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri, “Stability based
filter pruning for accelerating deep cnns,” in IEEE Winter Conference on
Applications of Computer Vision, 2019, pp. 1166-1174.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning
via geometric median for deep convolutional neural networks
acceleration,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 2019, pp. 4340-4349. [Online].
Available: http://openaccess.thecvf.com/content_CVPR_2019/html/
He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional _
Neural_Networks_CVPR_2019_paper.html

Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, “Learning filter
pruning criteria for deep convolutional neural networks acceleration,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. S.
Doermann, “Towards optimal structured CNN pruning via generative
adversarial learning,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pp. 2790-2799.
[Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/
html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_
Adversarial_Learning_CVPR_2019_paper.html

M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, “Hrank:
Filter pruning using high-rank feature map,” CoRR, vol. abs/2002.10179,
2020. [Online]. Available: https://arxiv.org/abs/2002.10179

P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Leverag-
ing filter correlations for deep model compression,” arXiv preprint
arXiv:1811.10559, 2018.

H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic prun-
ing for convolutional neural network acceleration,” in British Machine
Vision Conference 2018, 2018, p. 149.

X. Xu, M. S. Park, and C. Brick, “Hybrid pruning: Thinner
sparse networks for fast inference on edge devices,” arXiv preprint
arXiv:1811.00482, 2018.

D. Wang, L. Zhou, X. Zhang, X. Bai, and J. Zhou, “Exploring linear
relationship in feature map subspace for convnets compression,” arXiv
preprint arXiv:1803.05729, 2018.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

16

S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning.” in IJCAI,
2018, pp. 2425-2432.

J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, and W. Lin, “Thinet:
Pruning CNN filters for a thinner net,” [EEE Trans. Pattern Anal.
Mach. Intell., vol. 41, no. 10, pp. 2525-2538, 2019. [Online]. Available:
https://doi.org/10.1109/TPAMI.2018.2858232

Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
2018, pp. 2234-2240.

J-H. Luo and J. Wu, “Autopruner: An end-to-end trainable filter
pruning method for efficient deep model inference,” arXiv preprint
arXiv:1805.08941, 2018.

PyTorch, PyTorch Official Example, 2020. [Online]. Available:
https://github.com/pytorch/examples/blob/master/imagenet/main.py

B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in IEEE International
Conference on Computer Vision, ICCV 2011, Barcelona, Spain,
November 6-13, 2011, D. N. Metaxas, L. Quan, A. Sanfeliu, and L. V.
Gool, Eds. IEEE Computer Society, 2011, pp. 991-998. [Online].
Available: https://doi.org/10.1109/ICCV.2011.6126343

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, 2018. [Online]. Available:
https://doi.org/10.1109/TPAMI.2017.2699184

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, pp. 6230-6239. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.660

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117-2125.

http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
https://arxiv.org/abs/2002.10179
https://doi.org/10.1109/TPAMI.2018.2858232
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://doi.org/10.1109/ICCV.2011.6126343
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/CVPR.2017.660

	1 Introduction
	2 Related Work
	2.1 Filter Pruning
	2.2 Other Methods

	3 Filter Pruning via Centripetal SGD
	3.1 Formulation
	3.2 Centripetal SGD
	3.3 An Intuitive Illustration of C-SGD
	3.4 Efficient Implementation of C-SGD
	3.5 Filter Trimming after C-SGD Training
	3.6 C-SGD for Constrained Filter Pruning
	3.7 C-SGD for Scaling and Squeezing: a New Training Methodology

	4 Experiments
	4.1 Pruning Results on CIFAR-10
	4.2 Pruning Results on ImageNet
	4.3 Semantic Segmentation and Object Detection
	4.4 Studies on the Clustering Methods
	4.5 Making Filters Identical vs@let@token . Zeroing Filters Out
	4.6 C-SGD vs@let@token . Other Filter Pruning Methods
	4.7 Redundant Training vs@let@token . Normal Training
	4.8 Global Slimming vs@let@token . Clipping Some Layers
	4.9 Scaling and Squeezing for More Powerful CNNs

	5 Discussions
	5.1 C-SGD is Efficient
	5.2 C-SGD is Robust to the Centripetal Strength

	6 Conclusion
	References

