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Abstract
Domain adaptation aims to learn a transferablemodel to bridge the domain shift betweenone labeled source domain and another
sparsely labeled or unlabeled target domain. Since the labeled data may be collected from multiple sources, multi-source
domain adaptation (MDA) has attracted increasing attention. Recent MDAmethods do not consider the pixel-level alignment
between sources and target or the misalignment across different sources. In this paper, we propose a novel MDA framework to
address these challenges. Specifically, we design a novel Multi-source Adversarial Domain Aggregation Network (MADAN).
First, an adapted domain is generated for each source with dynamic semantic consistency while aligning towards the target at
the pixel-level cycle-consistently. Second, sub-domain aggregation discriminator and cross-domain cycle discriminator are
proposed to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between
the aggregated domain and the target domain while training the task network. For the segmentation adaptation, we further
enforce category-level alignment and incorporate multi-scale image generation, which constitutes MADAN+. We conduct
extensive MDA experiments on digit recognition, object classification, and simulation-to-real semantic segmentation tasks.
The results demonstrate that the proposed MADAN and MADAN+ models outperform state-of-the-art approaches by a large
margin.

Keywords Domain adaptation (DA) · Multi-source DA · Simulation-to-real · Domain aggregation · Generative adversarial
network
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1 Introduction

Together with increased computation capacity and deep
complex models, large-scale labeled data attributes to the
significant success of deep learning algorithms as one key
element. Consequently, promising performance has been
obtained via deep neural networks in various computer vision
tasks, such as image classification (Krizhevsky et al. 2012;
Simonyan and Zisserman 2014; He et al. 2016; Huang et al.
2017), object detection (Girshick 2015; Ren et al. 2015; Red-
mon et al. 2016), and semantic segmentation (Long et al.
2015a; Badrinarayanan et al. 2017; Chen et al. 2017a). How-
ever, in many real-world applications, there are only limited
or even no labeled training data, as labeling is expensive,
time-consuming, and even difficult. For example, only the
labels provided by experts are reliable in fine-grained recog-
nition (Gebru et al. 2017); labeling each Cityscapes image
takes about 90 minutes in semantic segmentation (Cordts
et al. 2016); point-wise 3D LiDAR point clouds are diffi-
cult to label in autonomous driving (Wu et al. 2019; Yue
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et al. 2018). One direct way is to transfer the learned knowl-
edge from one labeled source domain to another different but
related target domain. However, because of the presence of
domain shift or dataset bias (Torralba and Efros 2011), i.e.
the joint probability distributions of observed data and labels
are different in the two domains, direct transfer may not per-
form well, as shown in Fig. 1. This observation motivates the
research on domain adaptation (DA) (Bousmalis et al. 2016;
Tzeng et al. 2017; Zhao et al. 2020c).

Without requiring any labeled data from the target domain,
unsupervised domain adaptation (UDA) is the most widely
studied pipeline. Both theoretical analysis (Ben-David et al.
2010; Gopalan et al. 2014; Louizos et al. 2015; Tzeng et al.
2017) and algorithm design (Pan andYang 2010; Glorot et al.
2011; Jhuo et al. 2012; Becker et al. 2013;Ghifary et al. 2015;
Long et al. 2015b; Hoffman et al. 2018b; Zhao et al. 2019b)
for UDA have been proposed recently. Conventional UDA
methods mainly focus on the single-source scenario based
on the assumption that the labeled source data is sampled
from the same distribution. However, in practice, the labeled
data may be collected from multiple sources with different
distributions (Sun et al. 2015; Zhao et al. 2020a). Simply
combining different sources into one source and directly
employing single-source UDA may lead to suboptimal solu-
tions, since the data from different sourcesmay interferewith
each other during the learning process (Riemer et al. 2019),
as shown in Fig. 1b. In this case, theDAmethod trained on the
combined sources withmore labeled training samples cannot
guarantee to perform better than the best model trained on
one source. Therefore, effective multi-source domain adap-
tation (MDA) algorithms are required (Sun et al. 2015; Zhao
et al. 2020a).

Early efforts on MDA mainly used shallow models (Sun
et al. 2015), either learning a latent feature space for differ-
ent domains (Duan et al. 2009; Sun et al. 2011; Duan et al.
2012a; Chattopadhyay et al. 2012; Duan et al. 2012b) or
combining pre-learned source classifiers (Yang et al. 2007;
Schweikert et al. 2009; Xu and Sun 2012; Sun and Shi
2013). Recently, some deep MDA methods that only focus
on image classification have been proposed by learning a
common feature space and aligning each source and target
pair (Xu et al. 2018; Zhao et al. 2018; Peng et al. 2019;
Zhao et al. 2020b). There are some limitations of these
methods. (1) Theymainly focus on global feature-level align-
ment,which only aligns high-level information globally. This
might be sufficient for coarse-grained classification tasks,
but it is obviously insufficient for fine-grained semantic seg-
mentation, which performs pixel-wise prediction. On the
one hand, these feature-level alignment methods do not con-
sider pixel-level information, which is proved to be important
for pixel-wise prediction tasks (Hoffman et al. 2018b). One
may argue we can add a generator and a discriminator to
conduct pixel-level alignment, such as CyCADA (Hoffman

et al. 2018b). However, existing pixel-level alignment meth-
ods only work in the single-source scenario with one crop
scale, which cannot well preserve the global semantics or
the local details. On the other hand, different categories in
segmentation tasks (e.g. car and sky) are not uniformly dis-
tributed across domains, which results in class-wise domain
shift (Chen et al. 2017b). (2) They only align each source and
target pair. Although different sources are matched towards
the target, there may exist significant misalignment across
different sources. (3) They only focus on image classification
where one label is assigned to each image. Directly extend-
ing them from classification to segmentation, which assigns a
semantic label (e.g. car, cyclist, pedestrian, road) to eachpixel
in an image, may not perform well. This is because segmen-
tation is a structured prediction task, i.e. it has to resolve the
predictions in an exponentially large label space and thus the
decision function is more involved than classification (Zhang
et al. 2017; Tsai et al. 2018). (4) Further, they have low inter-
pretability, which cannot well explain why these methods
work.

To address the above challenges, in this paper we propose
a novel MDA framework, termed Multi-source Adversarial
Domain Aggregation Network (MADAN), which consists
of Dynamic Adversarial Image Generation, Adversarial
Domain Aggregation, and Feature-aligned task learning.
First, for each source, we generate an adapted domain using a
Generative Adversarial Network (GAN) (Goodfellow et al.
2014) with cycle-consistency constraint (Zhu et al. 2017),
which enforces pixel-level alignment between source images
and target images. To preserve the semantics before and after
image translation, we propose a novel semantic consistency
loss by minimizing the Kullback-Leibler (KL) divergence
between the source predictions of a pretrained task model
(e.g. classification and segmentation) and the adapted pre-
dictions of a dynamic task model. Second, instead of training
a classifier for each source domain (Xu et al. 2018; Peng
et al. 2019; Zhao et al. 2020b), we propose sub-domain
aggregation discriminator to directly make different adapted
domains indistinguishable, and cross-domain cycle discrim-
inator to discriminate between the images from each source
and the images transferred from other sources. In this way,
different adapted domains can be better aggregated into a
more unified domain. Finally, the taskmodel is trained on the
aggregated domain, while enforcing feature-level alignment
between the aggregated domain and the target domain. For
segmentation adaptation,we enhanceMADAN toMADAN+
with two improvements: category-level alignment to ensure
class-wise domain alignment, and multi-scale image gen-
eration to enable adapted images to better preserve both
global semantics and local details. Further, in the experiment,
we visualize the results of both feature-level alignment and
pixel-level alignment to show the interpretability on why the
proposed method works.
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Fig. 1 An example of domain shift. Labeled source 1: GTA, Labeled
source 2: SYNTHIA, Unlabeed target: Cityscapes. a Single-source
domain adaptation (DA). The overall mIoU result of the FCN semantic
segmentation mode (Long et al. 2015a) drops from 62.6% (trained on
the target Cityscapes, unavailable in unsupervised DA and simply used
for comparison here) to 21.7% and 18.5% (trained only on the source
GTA and SYNTHIA). b Multi-source domain adaptation. Although
CyCADA (Hoffman et al. 2018b), one state-of-the-art single-sourceDA

method, improves the mIoU results to 38.7% and 29.2%, simply com-
biningmultiple sources and performing single-source DA (37.3%) does
not outperform the best single-source DA (38.7%). We propose Multi-
source Adversarial Domain Aggregation Network (MADAN), a novel
adversarial model, to perform multi-source DA. Our method achieves
significant performance improvements (42.8%) over source-combined
DA and single-source DA

In summary, our contributions are three-fold:

– We design a novel framework termed MADAN to do
multi-source domain adaptation. (i) Sub-domain aggre-
gation discriminator and cross-domain cycle discrimina-
tor are proposed to better align different adapted domains.
(ii) Besides feature-level alignment, pixel-level align-
ment is further considered by generating an adapted
domain for each source cycle-consistently with a novel
dynamic semantic consistency loss.

– We propose to perform domain adaptation for seman-
tic segmentation from multiple sources. To our best
knowledge, this is the first work on multi-source struc-
tured domain adaptation. For segmentation, MADAN is
enhanced to MADAN+ with category-level alignment
and multi-scale image generation.

– Weconduct extensive experiments on severalMDAbech-
mark datasets for digit recognition, object classification,
and simulation-to-real semantic segmentation, and the
results demonstrate the effectiveness of the proposed
MADAN and MADAN+ models. We also demonstrate
the models’ interpretability from different aspects, such
as feature transferability, style translation, and attention
visualization.

One preliminary version on MADAN was previously
introduced in our NeurIPS paper (Zhao et al. 2019a). As
compared to the conference version, this journal paper has the

following five aspects of enhancements. First, we perform a
more comprehensive review to compare the proposedmethod
with existing methods. Second, we elaborate the motivations
and insights in more details on the specific designs of the
proposed method. Third, we conduct MDA experiments on
digit recognition and object classification,which also achieve
state-of-the-art performances. Fourth, we extend the orig-
inal MADAN to MADAN+ with category-level alignment
andmulti-scale image generation for semantic segmentation,
conduct more comparative experiments, and achieve better
performances. Finally, we enhance themodels’ interpretabil-
ity to better understand the superiority of the proposed
method.

The rest of this paper is organized as follows. Section 2
reviews related work on single-source UDA and MDA. Sec-
tion 3 gives the definition of the MDA problem. Section 4
describes the proposed MADAN and extended MADAN+
models in detail. Experimental settings, results, and analysis
are presented in Sect. 5. We conclude this paper in Sect. 6.

2 RelatedWork

In this section, we introduce related work on single-source
unsupervised domain adaptation (UDA) and multi-source
domain adaptation, and compare the proposedMADANwith
these methods.

123



2402 International Journal of Computer Vision (2021) 129:2399–2424

2.1 Single-source UDA

While the early single-source UDA (SUDA) methods are
mainly non-deep ones (Patel et al. 2015), either re-weighting
samples or transforming intermediate subspaces, the empha-
sis of recent SUDA methods has shifted to deep learning
architectures in an end-to-end fashion. Typically, a conjoined
architecture with two streams is employed in deep SUDA
(Zhuo et al. 2017). One stream is used to represent the task
model for the source domain, and the other is used to align
the target and source domains. Correspondingly, a traditional
task loss based on the labeled source data and another align-
ment loss to tackle the domain shift problem are jointly
optimized during the training of deep SUDA. Typically, the
task loss is the same among different methods, while the dif-
ference is focused on the alignment loss (Zhao et al. 2020c),
such as discrepancy loss, adversarial loss, self-supervision
loss, etc.

Discrepancy-based methods explicitly measure the dis-
crepancy between the target domain and the source domain,
such as the multiple kernel variant of maximum mean
discrepancies (Long et al. 2015b), correlation alignment
(CORAL) (Sun et al. 2016; Zhuo et al. 2017), geodesic dis-
tance (Wu et al. 2019), and contrastive domain discrepancy
(Kang et al. 2019). Adversarial discriminative methods usu-
ally employ an adversarial objective with respect to a domain
discriminator to encourage domain confusion (Ganin et al.
2016; Tzeng et al. 2017; Chen et al. 2017b; Shen et al. 2017;
Tsai et al. 2018; Huang et al. 2018). Adversarial generative
methods combine the domain discriminative model with a
generative component to generate fake source or target data
generally based on GAN (Goodfellow et al. 2014; Bousmalis
et al. 2017) and its variants, such as CoGAN (Liu and Tuzel
2016), SimGAN (Shrivastava et al. 2017), CycleGAN (Zhu
et al. 2017; Zhao et al. 2019b; Yue et al. 2019), and CyCADA
(Hoffman et al. 2018b). Self-supervision based methods
incorporate auxiliary self-supervised learning tasks into the
original task network to bring the source and target domains
closer. The commonly used self-supervision tasks include
reconstruction (Ghifary et al. 2015, 2016; Chen et al. 2020),
image rotationprediction (Sunet al. 2019;Xuet al. 2019), jig-
saw prediction (Carlucci et al. 2019), and masking (Vu et al.
2020). While the adversarial generative methods consider
the pixel-level alignment, the others mainly employ feature-
level alignment. Although these methods make remarkable
progress to SUDA, they suffer from large performance decay
when directly applied to the MDA problem.

2.2 Multi-source Domain Adaptation

Multi-source domain adaptation (MDA) considers a more
practical scenario, where the training data are collected from
multiple sources (Sun et al. 2015; Zhao et al. 2019a). Some

theoretical analysis (Ben-David et al. 2010; Hoffman et al.
2018a) is developed to support existing MDA algorithms.
The early MDA methods mainly focus on shallow models,
including two categories (Sun et al. 2015): feature represen-
tation approaches (Duan et al. 2009; Sun et al. 2011; Duan
et al. 2012a; Chattopadhyay et al. 2012; Duan et al. 2012b)
and combination of pre-learned classifiers (Yang et al. 2007;
Schweikert et al. 2009; Xu and Sun 2012; Sun and Shi 2013).
Some recent shallowMDAmethods mainly aim to deal with
special cases, such as incomplete MDA (Ding et al. 2018)
and target shift (Redko et al. 2019).

Recently, some representative deep learning based MDA
methods are proposed, such as multisource domain adver-
sarial network (MDAN) (Zhao et al. 2018), deep cocktail
network (DCTN) (Xu et al. 2018), moment matching net-
work (MMN) (Peng et al. 2019), and multi-source distilling
domain adaptation (MDDA) (Zhao et al. 2020b). All these
MDA methods only consider the feature-level alignment for
image classification tasks. The former three methods employ
a shared feature extractor to symmetrically map the multiple
sources and target into the same space. For each source-
target pair in MDAN and DCTN, a discriminator is trained
to distinguish the source and target features. MDAN directly
concatenates all extracted source features and labels into one
domain and train a single task model, while a task model is
trained for each source domain in DCTN, which combines
the predictions of different models for a target image using
perplexity scores as weights. MMN transfers the learned
knowledge from multiple sources to the target by dynam-
ically aligning moments of their feature distributions. The
final prediction of a target image is averaged uniformly based
on the classifiers from different source domains. MDDA first
pre-trains a feature extractor for each source and match the
target feature to each source feature space asymmetrically.
After distilling the pre-trained classifiers with selected rep-
resentative samples in each source, the predictions of the
matched target features using corresponding source clas-
sifiers are combined based on the weights obtained from
the Wasserstein distance. Differently, we also consider the
pixel-level alignment. Based on the aggregated intermediate
domain obtained by sub-domain aggregation discriminator
and cross-domain cycle discriminator, only one task model
needs to be trained. Besides the image classification tasks,
we also perform semantic segmentation task, which is the
first work on MDA for semantic segmentation. Table 1 com-
pares MADAN and MADAN+ with several state-of-the-art
DA methods.

3 Problem Setup

We consider the unsupervised MDA scenario with multiple
labeled source domains S1, S2, · · · , SM , where M is num-
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Table 1 Comparison of the proposed MADAN and MADAN+ mod-
els with several state-of-the-art domain adaptation methods. The full
names of each property from the third to the last columns are pixel-
level alignment, multi-scale image generation, feature-level alignment,

category-level alignment, semantic consistency, cycle-consistency,
multiple sources, domain aggregation, one task network, fine-grained
prediction, and end-to-end trainable, respectively

DA setting method pixel scale feat cat sem cycle multi aggr one fine end

single-source ADDA Tzeng et al. (2017) ✗ ✗ ✓ ✗ – – ✗ – ✓ ✓ ✗

CycleGAN Zhu et al. (2017) ✓ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ ✗ ✗

PixelDA Bousmalis et al. (2017) ✓ ✗ ✗ ✗ ✗ ✗ ✗ – ✓ ✓ ✓

NMD Chen et al. (2017b) ✗ ✗ ✓ ✓ - - ✗ – ✓ ✓ ✓

SBADA Russo et al. (2018) ✓ ✗ ✗ ✗ ✓ ✓ ✗ – ✓ ✗ ✓

GTA-GAN Sankaranarayanan et al. (2018) ✓ ✗ ✓ ✗ ✗ ✗ ✗ – ✓ ✗ ✓

DupGAN Hu et al. (2018) ✓ ✗ ✓ ✗ ✓ ✗ ✗ – ✓ ✗ ✓

CyCADA Hoffman et al. (2018b) ✓ ✗ ✓ ✗ ✓ ✓ ✗ – ✓ ✓ ✓

multi-source DCTN Xu et al. (2018) ✗ ✗ ✓ ✗ – – ✓ ✗ ✗ ✗ ✓

MDAN Zhao et al. (2018) ✗ ✗ ✓ ✗ – – ✓ ✗ ✓ ✗ ✓

MMN Peng et al. (2019) ✗ ✗ ✓ ✗ – – ✓ ✗ ✗ ✗ ✓

MDDA Zhao et al. (2020b) ✗ ✗ ✓ ✗ – – ✓ ✗ ✗ ✗ ✗

MADAN (ours) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MADAN+ (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ber of sources, and one unlabeled target domain T . In the i th
source domain Si , suppose Xi = {x j

i }Ni
j=1 and Yi = {y j

i }Ni
j=1

are the observed data and corresponding labels drawn from
the source distribution pi (x, y), where Ni is the number of
samples in Si . For different tasks, the format of labels y j

i
varies. For example, in classification, each imagehas a unique
y j
i ; in segmentation, y j

i is pixel-wise. In the target domain

T , let XT = {x j
T }NT

j=1 denote the target data drawn from
the target distribution pT (x, y) without label observation,
where NT is the number of target samples. Unless otherwise
specified, we have two assumptions: (1) homogeneity, i.e.
x j
i ∈ R

d , x j
T ∈ R

d , indicating that the data from different
domains are observed in the same image space but with dif-
ferent distributions; (2) closed set, i.e. y j

i ∈ Y , y j
T ∈ Y ,

where Y is the label set, which means that all the domains
share the same space of classes. Based on covariate shift and
concept drift (Patel et al. 2015), we aim to learn an adaptation
model that can correctly predict the labels of a sample from
the target domain trained on {(Xi ,Yi )}Mi=1 and {XT }. How to
extend the unsupervised, homogeneous, and closed setMDA
method to other settings, such as heterogeneous DA, open set
DA, and category-shift DA remains our future work.

4 Multi-source Adversarial Domain
Aggregation Network

In this section, we introduce the proposed Multi-source
Adversarial Domain Aggregation Network (MADAN) for
image classification and semantic segmentation adaptation

in detail. The overall pipeline is shown in Fig. 2, and the
detailed framework is illustrated in Fig. 3. MADAN consists
of three components: Dynamic Adversarial Image Genera-
tion (DAIG), Adversarial Domain Aggregation (ADA), and
Feature-aligned Task Learning (FTL). DAIG aims to gener-
ate adapted images from source domains to the target domain
from the perspective of visual appearance while preserving
the semantic information dynamically. In order to reduce
the distances among the adapted domains and thus gener-
ate a more aggregated unified domain, ADA is proposed,
including Cross-domain Cycle Discriminator (CCD) and
Sub-domainAggregationDiscriminator (SAD). Finally, FTL
learns the domain-invariant representations at the feature-
level in an adversarial manner. The frameworks of different
components are shown in Fig 4. For each component, we first
introduce the motivations of our designs and then describe
the detailed method.

4.1 Dynamic Adversarial Image Generation

Motivation. The goal of DAIG is to translate images
from different source domains to an intermediate domain
with adapted images that are visually similar to the target
images, as if they are drawn from the same target distribu-
tion. This part corresponds to pixel-level alignment, which
has been demonstrated to be effective in single-source DA
(Bousmalis et al. 2017; Russo et al. 2018; Hu et al. 2018;
Hoffman et al. 2018b) but has not been explored in MDA.
One intuitive method is to employ a GAN (Goodfellow et al.
2014) for each source to translate source images with target
styles. However, such standard adversarial procedure often
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Generator

Source 1
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Feature-level 
alignment
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Adapted 1

Adapted M

…… Domain 
aggregation

Dynamic 
semantic 

consistency

Task classifier

Source labels

Category-level 
alignment

Pseudo labels

Adversarial Domain Aggregation

Dynamic Adversarial Image Generation

Feature-aligned Task Learning

Input

Fig. 2 Overall pipeline of the proposed Multi-source Adversarial
Domain Aggregation Network (MADAN). MADAN performs pixel-
level alignment, feature-level alignment, and category-level alignment
between different source domains and the target domain. Further, it

preserves the semantic consistency dynamically between the adapted
images and the source images and aggregates different adapted domains

Fig. 3 Detailed framework of the proposedMulti-source Adversarial Domain Aggregation Network (MADAN). The colored solid arrows represent
generators, while the black and grey solid arrows indicate the task network F . The dashed arrows correspond to different losses (Color figure online)

leads to the mode collapse problem (Zhu et al. 2017; Zhao
et al. 2021), where all source images are mapped to the same
output image and the optimization fails to make progress.
Following CylceGAN (Zhu et al. 2017), we add a cycle-
consistency loss to enforce that the adapted images can be
reconstructed back to the original source images.

Besideswith target styles, the adapted images are expected
to preserve the semantic information of original source
images so that we can train the task model based on the
adapted images and corresponding source labels, but the
semantic consistency cannot be guaranteed by the cycle-

consistency loss. CyCADA consists of a semantic consis-
tency loss to better preserve the semantic information by
feeding both the source images and adapted images into the
same task model pretrained on the source domain (Hoffman
et al. 2018b). However, since the source images and adapted
images are from different domains, employing the same task
model to obtain the predicted results and then computing
the semantic consistency loss may be detrimental to image
generation. We propose to employ the pretrained task model
only for the source images and a novel dynamically updated
network for the adapted images so that the optimal input
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Fig. 4 The frameworks of different components in the proposed
MADAN

domain of the dynamic network can gradually change from
the source domain to the target domain.

Method. For each source domain Si , we introduce a gen-
erator GSi→T mapping to the target T in order to generate
adapted images that fool DT , which is a pixel-level adver-
sarial discriminator. DT is trained simultaneously with each
GSi→T to classify real target images XT fromadapted images

GSi→T (Xi ). The corresponding GAN loss is:

L Si→T
GAN (GSi→T , DT , Xi , XT )

=Exi∼Xi log DT (GSi→T (xi ))+ExT ∼XT log[1−DT (xT )].
(1)

Further, we employ an inverse mapping GT→Si as well
as a cycle-consistency loss (Zhu et al. 2017) to enforce
GT→Si (GSi→T (xi )) ≈ x and vice versa. Similarly, we intro-
duce Di to classify Xi from GT→Si (XT ), with the following
GAN loss:

L T→Si
GAN (GT→Si , Di , XT , Xi )

= Exi∼Xi log[1 − Di (xi )] + ExT ∼XT log Di (GT→Si (xT )).

(2)

The cycle-consistency loss (Zhu et al. 2017) ensures that the
learned mappings GSi→T and GT→Si are cycle-consistent,
thereby preventing them from contradicting each other, is
defined as:

L Si↔T
cyc (GSi→T ,GT→Si , Xi , XT )

= Exi∼Xi ‖ GT→Si (GSi→T (xi )) − xi ‖1
+ ExT ∼XT ‖ GSi→T (GT→Si (xT )) − xT ‖1 .

(3)

To ideally preserve the semantic information, the adapted
images GSi→T (xi ) should be fed into a network FT trained
on the target domain, which is infeasible since target domain
labels are not available in UDA. Instead of employing Fi on
GSi→T (xi ), we propose to dynamically update the network
FA, which takesGSi→T (xi ) as input, so that its optimal input
domain (the domain that the network performs best on) grad-
ually changes from that of Fi to FT . We employ the task
model F trained on the adapted domain as FA, i.e. FA = F ,
which has two advantages: (1) GSi→T (xi ) becomes the opti-
mal input domain of FA, and as F is trained to have better
performance on the target domain, the semantic loss after
FA would promote GSi→T to generate images that are closer
to target domain at the pixel-level; (2) since FA and F can
share the parameters, no additional training or memory space
is introduced, which is quite efficient. Let K L(·||·) denote
the KL divergence between two distributions, and then the
proposed dynamic semantic consistency (DSC) loss is:

L Si
DSC (GSi→T , Xi , Fi , FA)

= Exi∼Xi K L(FA(GSi→T (xi ))||Fi (xi )).
(4)

4.2 Adversarial Domain Aggregation

Motivation.After DAIG, each source domain is translated to
an adapted domain with target style and the semantic infor-
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Target Domain

Source Domain #1

Source Domain #2

(a)Before domain aggregation

Target Domain

Source Domain #1

Source Domain #2

(b)After domain aggregation

Fig. 5 Illustration of the necessity of domain aggregation

(a) Before domain aggregation (b) After domain aggregation

Fig. 6 One detailed example of domain aggregation on the
Office+Caltech-10 dataset (Gong et al. 2013). The employed baseline
model for image translation is based on CycleGAN (Zhu et al. 2017).
The learned features are visualized by t-SNE (Maaten andHinton 2008)

mation is well preserved. Previous methods mainly employ
two strategies to learn from different adapted domains: train-
ing different task models for each adapted domain and
combining different predictions with specific weights for tar-
get images (Xu et al. 2018; Peng et al. 2019), and simply
combining all adapted domains together and training one task
model (Zhao et al. 2018). In the first strategy, it is challenging
to determine how to select the weights for different adapted
domains. Moreover, each target image needs to be fed into
all task models at inference time, which is rather inefficient.
For the second strategy, since the alignment space is high-
dimensional, although the adapted domains are relatively
aligned with the target, they may be significantly misaligned
with eachother, as illustrated inFig. 5a.Adetailed exampleof
such misalignment across different adapted domains is given
in Fig. 6a. As emphasized by the blue circle, the Amazon
source and Caltech source are both aligned with theWebcam
target, but they are obviously not aligned. In order to miti-
gate this issue, we propose adversarial domain aggregation
to make different adapted domains more closely aggregated
with two kinds of discriminators: sub-domain aggregation
discriminator (SAD) and cross-domain cycle discriminator
(CCD).

Method. SAD is designed to directly make the different
adapted domains indistinguishable. For Si , a discriminator

Di
A is introduced with the following loss function:

L Si
SAD(GS1→T , . . .GSi→T , . . . ,GSM→T , Di

A)

= Exi∼Xi log D
i
A(GSi→T (xi ))

+ 1

M − 1

∑
j �=i

Ex j∼X j log[1 − Di
A(GSj→T (x j ))].

(5)

CCD is designed to discriminate between the images from
each source and the images transferred from other sources.
For each source domain Si , we transfer the images from the
adapted domains GSj→T (X j ), j = 1, · · · , M, j �= i back
to Si using GT→Si and employ the discriminator Di to clas-
sify Xi fromGT→Si (GSj→T (X j )), which corresponds to the
following loss function:

L Si
CCD(GT→S1 , . . .GT→Si−1 ,GT→Si+1 , . . . ,GT→SM ,GSi→T , Di )

= Exi∼Xi log Di (xi )

+ 1

M − 1

∑
j �=i

Ex j∼X j log[1 − Di (GT→Si ((GSj→T (x j )))].
(6)

As shown in Figs. 5b and 6b, different sources are much
better aligned after the proposed domain aggregation. Please
note that using a more sophisticated combination of differ-
ent discriminators’ losses to better aggregate the domains
with larger distances might improve the performance. We
leave this as future work and would explore this direction by
dynamic weighting of the loss terms and incorporating some
prior domain knowledge of the sources.

4.3 Feature-Aligned Task Learning

Motivation.After adversarial domain aggregation, the adapted
images of different domains X ′

i (i = 1, . . . , M) are more
closely aggregated and aligned. Meanwhile, the semantic
consistency loss in dynamic adversarial image generation
ensures that the semantic information, i.e. the labels, is pre-
served before and after image translation. Therefore, we can
train the task model that is transferable to the target domain
based on the aggregated adapted images and corresponding
source labels. Similar to mostMDAmethods (Xu et al. 2018;
Zhao et al. 2018; Peng et al. 2019; Zhao et al. 2020b), we also
impose a feature-level alignment between adapted images
and target images, which can improve the task performance
during inference of the target images.

Method. Suppose the images of the unified aggregated

domain are X ′ =
M⋃
i=1

X ′
i and corresponding labels are

Y =
M⋃
i=1

Yi . We can then train a task learning model F

based on X ′ and Y . For classification and segmentation, F
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aims to respectively minimize the following cross-entropy
lossLtask(F, X ′,Y ):

Lcla(F, X ′,Y )

= −E
(x′,y)∼(X ′

,Y )

∑L

l=1
1[l=y] log(σ (F(x′))), (7)

Lseg(F, X ′,Y ) = −E
(x′,y)∼(X ′

,Y )

∑L

l=1

∑H

h=1

∑W

w=1

1[l=yh,w] log(σ (Fl,h,w(x′))), (8)

where L is the number of classes, H ,W are the height and
width of the adapted images, σ is the softmax function, 1 is
an indicator function, and Fl,h,w(x′) is the value of F(x′) at
index (l, h, w).

We introduce a discriminator DF to conduct feature-level
alignment (FLA) between X ′ and XT . The GAN loss of FLA
is defined as:

LFLA(Ff , DFf , X
′, XT )

= Ex′∼X ′ log DFf (Ff (x′))
+ ExT ∼XT log[1 − DFf (Ff (xT ))],

(9)

where Ff (·) is the output of the last convolution layer (i.e. a
feature map) of the encoder in F .

4.4 MADAN Learning

The proposed MADAN learning framework utilizes adap-
tation techniques including pixel-level alignment, cycle-
consistency, dynamic semantic consistency, domain aggre-
gation, and feature-level alignment. Combining all these
components, the overall objective loss function of MADAN
is:

LMADAN (GS1→T · · ·GSM→T ,

GT→S1 · · ·GT→SM , D1 · · · DM ,

DT , D1
A · · · DM

A , DFf , F)

=
M∑

i=1

[
L Si→T

GAN (GSi→T , DT , Xi , XT )

+ L T→Si
GAN (GT→Si , Di , XT , Xi )

+ L Si↔T
cyc (GSi→T ,GT→Si , Xi , XT )

+ L Si
DSC (GSi→T , Xi , Fi , F)

+ L Si
SAD(GS1→T , . . .GSi→T , . . . ,GSM→T , Di

A)

+ L Si
CCD(GT→S1, . . .GT→Si−1 ,GT→Si+1 , . . . ,

GT→SM ,GSi→T , Di )
]

+ Ltask(F, X ′,Y ) + LFLA(Ff , DFf , X
′, XT ).

(10)

The training process corresponds to solving for a targetmodel
F according to the optimization:

F∗ = argmin
F

min
D

max
G

LMADAN (G, D, F), (11)

where G and D represent all the generators and discrimina-
tors in Eq. (10), respectively.

4.5 MADAN+ for Segmentation Adaptation

Motivation. There might be some problems when apply-
ing the aforementionedMADAN to pixel-wise segmentation
adaptation. First, the feature-level alignment in Sect. 4.3
aims to align the features of the adapted images and the
target images globally based on the assumption that each
category’s appearance frequency is identical in the adapted
and target domains. This is obviously unreasonable since
different categories (e.g., car and sky) are not uniformly dis-
tributed. Second, the image generation based on CycleGAN
in Sect. 4.1 only considers one crop scale. When the scale is
large, local details might be missing. When it is small, the
global semantics cannot be well represented. Moreover, dur-
ing CycleGAN’s training, a batch is composed of randomly
cropped images from both the adapted and target domains
at different locations. This is problematic since spatial mis-
alignment might be caused. For example, a batch contains
the upper part (e.g. sky) in an adapted image and the lower
part (e.g. road) in a target image.

To address the above challenges, we propose (1) category-
level alignment (CLA) to balance the appearance frequency
of different classes, and (2) multi-scale image generation
(MIG) with spatial alignment to generate adapted images
that well preserve both global semantics and local details.

4.5.1 Category-level Alignment

Different from the global alignment in FLA, CLA considers
the alignment of local regions in different classes between
the adapted and target images. Based on FLA, we can obtain
the grid-wise (pseudo) labels ℵl

n(x) for class l of the nth
grid in image x. Here l = 1, · · · , L, n = 1, · · · , N . Fol-
lowing (Chen et al. 2017b), we employ one discriminator
Dl
C to differentiate class l between the adapted and target

domains1. Let Y (xd) denote the labeling function for image
xd in domain d, and we have:

Y (xd) =
{
yd , if d ∈ {1, · · · , M},
F(xd), if d = T .

(12)

1 Please note that we do not require labels from the target domain. The
grid-wise (pseudo) labels of the target images are obtained from the
learned task model F in Section 4.3. Therefore, our method is still an
unsupervised setting and the comparison with the baselines is fair.
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Suppose R(n) is the group of pixels in grid n, and then we
can obtain the grid-wise (pseudo) labels ℵl

n(xd) as:

ℵl
n(xd) =

∑

r∈R(n)

|Y (xrd) == l|
|R(n)| . (13)

In order to balance the appearance frequency of the adapted
and target (pseudo) labels, we normalize ℵl

n(xd) as:

ℵ̃l
n(xd) = ℵl

n(xd)∑N
n=1 ℵl

n(xd)
. (14)

And then the GAN loss of CLA can be obtained as:

LCLA(Ff , D
1
C , · · · , DL

C , X ′, XT )

= Ex′∼X ′
L∑

l=1

N∑

n=1

ℵ̃l
n(x

′) log Dl
C (Ff (x′)n)

+ ExT ∼XT

L∑

l=1

N∑

n=1

ℵ̃l
n(xT ) log[1 − Dl

C (Ff (xT )n)].

(15)

4.5.2 Multi-scale Image Generation

Besides global semantics, the local details of the intermediate
adapted domain aremore important for segmentation adapta-
tion as compared to classification adaptation. For example, a
clear boundary between the foreground and the background
can contribute to the segmentation. Therefore, it is crucial to
generate high-quality images during image generation pro-
cess. To address this issue, we propose multi-scale image
generation (MIG) with spatial alignment.

First, we resize the images from both the adapted and
target domains to make the resolution aligned. Second, we
randomly select a point as the center to uniformly crop
both the adapted and target images into multiple sizes
{C1, . . . ,CK }.We observe that the spatial distributions of the
classes between the adapted and target domains are roughly
the same (e.g. class sky is basically on the top of an image
in both domains). Therefore, uniform cropping is crucial to
ensure spatial alignment. Finally, we resize the pyramid sam-
ples into a fixed resolution. In thisway, the adapted images by
multi-scale image generation can well preserve both global
semantics and local details. During inference, the full-size
target image can be directly fed into the image generator to
generate high-quality intermediate images.

Following previous steps, we can form a mini-batch X̃ k
i

and X̃ k
T , k = 1, · · · , K for each scale k during the training

of CycleGAN. The MIG loss is defined as:

LMIG(GS1→T · · ·GSM→T ,GT→S1 · · ·GT→SM , D1 · · · DM , DT )

=
M∑

i=1

K∑

k=1

[
L Si→T

GAN (GSi→T , DT , X̃ k
i , X̃

k
T )

+ L T→Si
GAN (GT→Si , Di , X̃

k
T , X̃ k

i )

+ L Si↔T
cyc (GSi→T ,GT→Si , X̃

k
i , X̃

k
T )

+ L Si
DSC (GSi→T , X̃ k

i , Fi , F)
]
.

(16)

4.5.3 MADAN+ Learning

Combining MADAN with CLA and MIG, we can obtain the
overall objective loss function of MADAN+ as:

LMADAN+(GS1→T · · ·GSM→T ,

GT→S1 · · ·GT→SM , D1 · · · DM ,

DT , D1
A · · · DM

A , DFf , F, D1
C , · · · , DL

C )

= LMIG(GS1→T · · ·GSM→T ,

GT→S1 · · ·GT→SM , D1 · · · DM , DT )

+
M∑

i=1

[
L Si

SAD(GS1→T , . . .GSi→T , . . . ,GSM→T , Di
A)

+ L Si
CCD(GT→S1, . . .GT→Si−1 ,

GT→Si+1 , . . . ,GT→SM ,GSi→T , Di )
]

+ Ltask(F, X ′,Y ) + LFLA(Ff , DFf , X
′, XT )

+ LCLA(Ff , D
1
C , · · · , DL

C , X ′, XT ).

(17)

The training process of MADAN+ is similar to MADAN.

5 Experiments

In this section, we first introduce the experimental settings
and then compare the DA results of the proposed MADAN
with several state-of-the-art approaches both quantitatively
and qualitatively, followed by some empirical analysis on
ablation study, feature visualization, andmodel interpretabil-
ity. Our source code is released at: https://github.com/
Luodian/MADAN.

5.1 Experimental Settings

In this section, the datasets, baselines, evaluation metrics,
and implementation details are described.
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5.1.1 Datasets

DigitRecognition.Digits-five includes 5digit imagedatasets
sampled from different domains, including handwritten mt
(MNIST) (LeCun et al. 1998), combined mm (MNIST-M)
(Ganin and Lempitsky 2015), street image sv (SVHN) (Net-
zer et al. 2011), synthetic sy (Synthetic Digits) (Ganin and
Lempitsky 2015), and handwritten up (USPS) (Hull 1994).
Following (Xu et al. 2018; Peng et al. 2019), we sample
25,000 images for training and 9,000 for testing in mt,mm,
sv, sy, and select the entire 9,298 images in up as a domain.

Object Classification. Office-31 (Saenko et al. 2010)
contains 4,110 images within 31 categories, which are col-
lected from office environment in three image domains: A
(Amazon) downloaded from amazon.com,W (Webcam) and
D (DSLR) taken by web camera and digital SLR camera,
respectively.

Office+Caltech-10 (Gong et al. 2013) consists of the 10
overlapping categories shared by Office-31 (Saenko et al.
2010) andC (Caltech-256) (Griffin et al. 2007). Totally there
are 2,533 images.

Office-Home (Venkateswara et al. 2017) is a larger object
dataset with 30,475 images within 65 categories. There are
4 different domains: Artistic images (Ar), Clip-Art images
(Cl), Product images (Pr) and Real-World images (Rw).

Semantic Segmentation. Cityscapes (Cordts et al. 2016
contains vehicle-centric urban street images collected from a
moving vehicle in 50 cities from Germany and neighboring
countries. There are 5,000 images with pixel-wise annota-
tions. The images have resolution of 2048 × 1024 and are
labeled into 19 classes.

BDDS (Yu et al. 2018 contains 10,000 real-world dash
cam video frames with accurate pixel-wise annotations. It
has a compatible label space with Cityscapes and the image
resolution is 1280 × 720..

GTA (Richter et al. 2016 is a vehicle-egocentric image
dataset collected in the high-fidelity rendered computer game
GTA-V. It contains 24,966 images (video frames) with the
resolution 1914×1052. There are 19 classes compatible with
Cityscapes.

SYNTHIA (Ros et al. 2016 is a large synthetic dataset. A
subset, namedSYNTHIA-RANDCITYSCAPES, is designed
to pair with Cityscapes with 9,400 images with resolution
960× 720 which are automatically annotated with 16 object
classes, one void class, and some unnamed classes.

5.1.2 Baselines

We compare MADAN with the following methods. (1)
Source-only, i.e. train on the source domains and directly
test on the target domain. We can view this as a lower bound
of DA. (2) Single-source DA, perform multi-source DA via

single-sourceDA. (3)Multi-sourceDA, extend some single-
source DA method to multi-source settings.

For digit recognition and object classification, we employ
two strategies to implement the source-only and single-
source DA standards: (1) single-best, i.e. performing adapta-
tion on each single source and selecting the best adaptation
result in the target test set; (2) source-combined, i.e. all source
domains are combined into a traditional single source. The
compared single-source DA includes TCA (Pan et al. 2010),
GFK (Gong et al. 2012), DDC (Tzeng et al. 2015), DRCN
(Ghifary et al. 2016), RevGrad (Ganin and Lempitsky 2015),
DAN (Long et al. 2015b), RTN (Long et al. 2016), CORAL
(Sun et al. 2016), DANN (Ganin et al. 2016), ADDA (Tzeng
et al. 2017), JAN (Long et al. 2017), and CyCADA (Hoff-
man et al. 2018b). The compared multi-source DA includes
DCTN (Xu et al. 2018), MDAN (Zhao et al. 2018), MMN
(Peng et al. 2019), and MDDA (Zhao et al. 2020b). Please
note that we only compare the methods that report the results
on corresponding tasks.

For semantic segmentation, besides source combined, we
also implement the source-only and single-source DA stan-
dards on each source, i.e. performing adaptation on each
single source. The compared single-source DA includes
FCNs Wld (Hoffman et al. 2016), CDA (Zhang et al. 2017),
ROAD (Chen et al. 2018), AdaptSeg (Tsai et al. 2018),
CyCADA (Hoffman et al. 2018b), and DCAN (Wu et al.
2018). Since MADAN is the first work on MDA for seg-
mentation, we extend the original classification network in
MDAN (Zhao et al. 2018) to our segmentation task for com-
parison. We also report the results of an oracle setting, where
the segmentation model is both trained and tested on the tar-
get domain.

5.1.3 Evaluation Metrics

For digit recognition and object classification adaptation, we
employ the average classification accuracy of all categories to
evaluate the results following (Ganin et al. 2016; Tzeng et al.
2017; Hoffman et al. 2018b). The larger the classification
accuracy is, the better the result is.

For pixel-wise segmentation adaptation, we employ class-
wise intersection-over-union (cwIoU) and mean IoU (mIoU)
to evaluate the results of each class and all classes as in (Hoff-
man et al. 2016; Zhang et al. 2017;Hoffman et al. 2018b). Let
Pl andGl respectively denote the predicted and ground-truth

pixels that belong to class l, and then cw I oUl = |Pl ∩ Gl |
|Pl ∪ Gl | ,

mIoU = 1

L

∑L

l=1
cw I oUl , where | · | denotes the cardinal-

ity of a set. Larger cwIoU and mIoU values represent better
performances.
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5.1.4 Implementation Details

Although MADAN can be trained in an end-to-end man-
ner, due to constrained hardware resources, we train it in
three stages. First, we train several CycleGANs (9 residual
blocks for generator and 4 convolution layers for discrimi-
nator) (Zhu et al. 2017) without semantic consistency loss
for each source and target pair, and then train a task model
F on the adapted images with corresponding labels from the
source domains. Second, after updating FA with F trained
above, we generate adapted images using CycleGAN with
the proposed DSC loss in Eq. (4) and aggregate different
adapted domains using SAD and CCD. Finally, we train the
task model F on the newly adapted images in the aggregated
domain with feature-level alignment. The above stages are
trained iteratively. We leave the end-to-end training as future
work by deploying model parallelism or experimenting with
larger GPU memory.

In Digits-five, Office-31 and Office+Caltech-10 exper-
iments, we use AlexNet Krizhevsky et al. (2012) as our
backbone. In Office-Home experiments, we adopt ResNet-
50 He et al. (2016) as our backbone. In the training stage, we
use an Adam optimizer with a batch size of 32 and a learning
rate of 1e-3 and 1e-4 respectively for the classification model
and feature-level alignment.

In segmentation adaptation experiments, we choose to use
FCN Long et al. (2015a) as our semantic segmentation net-
work, and, as the VGG family of networks is commonly
used in reporting DA results, we use VGG-16 Simonyan
and Zisserman (2015) as the FCN backbone. The weights
of the feature extraction layers in the networks are initial-
ized from models trained on ImageNet Deng et al. (2009).
The network is implemented in PyTorch and trained with
Adam optimizer Kingma and Ba (2015) using a batch size of
8 with initial learning rate 1e-4. We keep the image size the
same before and after image translation, and crop the adapted
images to 400×400 during the segmentation model training
with 40 epochs. We take the 16 intersection classes of GTA
and SYNTHIA, compatible with Cityscapes and BDDS, for
all mIoU evaluations. To better illustrate the effectiveness
of our proposed model, we also employ DeepLabV2 Chen
et al. (2017a) with ResNet-101 He et al. (2016) pretrained on
ImageNet as the semantic segmentation model.

For digit recognition and object classification, one domain
is selected as the target domain and the rest are considered
as source domains. For semantic segmentation, we choose
synthetic GTA and SYNTHIA as source domains and real
Cityscapes and BDDS as target domains.

5.2 Comparison with State-of-the-art

Table 2, Table 3, Table 4, and Table 5 show the performance
comparisons between the proposed MADAN model and the

other baselines, including source-only, single-source DA,
source-combined DA, and multi-source DA, on Digits-five,
Office-31, Office+Caltech-10, and Office-Home datasets,
respectively. The simulation-to-real semantic segmentation
adaptation from synthetic GTA and SYNTHIA to real
Cityscapes and BDDS are shown in Table 6 and Table 7
for FCN-VGG16 backbone, and Table 8 and Table 9 for
DeepLabV2-ResNet101 backbone, respectively. From the
results, we have the following similar observations among
different adaptation tasks:

(1) The source-only method that directly transfers the task
models trained on the source domains to the target domain
obtains the worst performance in most adaptation settings.
This is obvious, because the joint probability distributions of
observed images and labels are significantly different among
the sources and the target, due to the presence of domain
shift. Without domain adaptation, the direct transfer cannot
well handle this domain gap.

(2) Comparing source-only with corresponding single-
best DA and source-combined DA for digit recognition and
object classification, and comparing source-only with single-
source DA for semantic segmentation, it is clear that almost
all adaptation methods perform better than source-only,
which demonstrates the effectiveness of domain adaptation.
For example, in Table 3, the average accuracy of source-only
combined method is 80.2%, while the accuracy of source-
combined ADDA is 83.7%.

(3)Generally, multi-source DA outperforms other adapta-
tion standards by exploring the complementarity of different
sources. This is more obvious when comparing the DAmeth-
ods that employ similar architectures, such as our MADAN
vs. CyCADA (Hoffman et al. 2018b), MDDA (Zhao et al.
2020b) vs. ADDA (Tzeng et al. 2017), and MDAN (Zhao
et al. 2018) vs. DANN (Ganin et al. 2016). Besides the
domain gap between the sources and the target, multi-source
DA also tries to bridge the domain gap across different
sources. This demonstrates the necessity and superiority of
multi-source DA over single-source DA.

(4) MADAN achieves the best average results among
all adaptation methods, benefiting from the joint consid-
eration of pixel-level and feature-level alignments, cycle-
consistency, dynamic semantic consistency, domain aggre-
gation, and multiple sources. MADAN also significantly
outperforms source-combined DA, in which domain shift
also exists among different sources. By bridging this gap,
multi-source DA can boost the adaptation performance. On
the one hand, compared to single-source DA like CyCADA
(Hoffman et al. 2018b), MADAN utilizes more useful infor-
mation from multiple sources. On the other hand, other
multi-source DA methods (Xu et al. 2018; Zhao et al. 2018;
Peng et al. 2019; Zhao et al. 2020b) only consider feature-
level alignment,which is obviously insufficient especially for
fine-grained tasks, e.g. semantic segmentation, a pixel-wise

123



International Journal of Computer Vision (2021) 129:2399–2424 2411

Table 2 Comparison with the
state-of-the-art DA methods for
digit recognition on Digits-five
dataset measured by
classification accuracy (%). The
best method is emphasized in
bold

Standard Method mm mt up sv sy Avg

Source-only Combined 63.7 92.3 87.2 66.3 84.8 78.9

Single-best 59.2 97.2 84.7 77.7 85.2 80.8

Single-best DA DAN Long et al. (2015b) 63.8 96.3 94.2 62.5 85.4 80.4

CORAL Sun et al. (2016) 62.5 97.2 93.5 64.4 82.8 80.1

DANN Ganin et al. (2016) 71.3 97.6 92.3 63.5 85.3 82.0

ADDA Tzeng et al. (2017) 71.6 97.9 92.8 75.5 86.5 84.9

CyCADA Hoffman et al. (2018b) 72.4 98.0 92.4 76.7 87.4 85.4

Source-combined DA DAN Long et al. (2015b) 67.9 97.5 93.5 67.8 86.9 82.7

DANN Ganin et al. (2016) 70.8 97.9 93.5 68.5 87.4 83.6

ADDA Tzeng et al. (2017) 72.3 97.9 93.1 75.0 86.7 85.0

CyCADA Hoffman et al. (2018b) 72.4 98.1 93.1 75.2 86.9 85.1

Multi-source DA DCTN Xu et al. (2018) 70.5 96.2 92.8 77.6 86.8 84.8

MDAN Zhao et al. (2018) 69.5 98.0 92.5 69.2 87.4 83.3

MMN Peng et al. (2019) 72.8 98.6 96.1 81.3 89.6 87.7

MDDA Zhao et al. (2020b) 78.6 98.8 93.9 79.3 89.7 88.1

MADAN (ours) 82.9 99.7 96.7 80.2 95.2 90.9

Table 3 Comparison with the
state-of-the-art DA methods for
object classification on Office31
dataset measured by
classification accuracy (%). The
best method is emphasized in
bold

Standard Method D W A Avg

Source-only Combined 97.1 92.0 51.6 80.2

Single-best 99.0 95.3 50.2 81.5

Single-best DA TCA Pan et al. (2010) 95.2 93.2 51.6 80.0

GFK Gong et al. (2012) 95.0 95.6 52.4 81.0

DDC Tzeng et al. (2015) 98.5 95.0 52.2 81.9

DRCN Ghifary et al. (2016) 99.0 96.4 56.0 83.8

RevGrad Ganin and Lempitsky (2015) 99.2 96.4 53.4 83.0

DAN Long et al. (2015b) 99.0 96.0 54.0 83.0

RTN Long et al. (2016) 99.6 96.8 51.0 82.5

ADDA Tzeng et al. (2017) 99.4 95.3 54.6 83.1

CyCADA Hoffman et al. (2018b) 98.9 94.8 53.2 82.3

Source-combined DA RevGrad Ganin and Lempitsky (2015) 98.8 96.2 54.6 83.2

DAN Long et al. (2015b) 98.8 96.2 54.9 83.3

ADDA Tzeng et al. (2017) 99.2 96.0 55.9 83.7

CyCADA Hoffman et al. (2018b) 99.0 96.2 54.2 83.1

Multi-source DA DCTN Xu et al. (2018) 99.6 96.9 54.9 83.8

MDAN Zhao et al. (2018) 99.2 95.4 55.2 83.3

MDDA Zhao et al. (2020b) 99.2 97.1 56.2 84.2

MADAN (ours) 99.4 98.4 63.9 87.2

prediction task. In addition, we consider pixel-level align-
ment with a dynamic semantic consistency loss and further
aggregate different adapted domains.

(5) Take segmentation segmentation for example, the ora-
cle method that is trained on the target domain performs
significantly better than the others. However, to train this
model, the ground truth labels from the target domain are
required, which are actually unavailable in UDA settings.
We can deem this performance as an upper bound of UDA.

Obviously, there is still a large performance gap between all
adaptation algorithms and the oracle method, requiring fur-
ther efforts on DA.

There are also some task-specific observations:
(1) Simply combining different source domains into one

source and performing source-only or single-source DA does
not guarantee better performance than corresponding single-
best method. For example, for the source-only standard,
the single-best method outperforms the combined method
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Table 4 Comparison with the
state-of-the-art DA methods for
object classification on
Office+Caltech-10 dataset
measured by classification
accuracy (%). The best method
is emphasized in bold

Standard Method W D C A Avg

Source-only Combined 93.1 98.4 81.9 93.1 91.6

Single-best 98.9 99.2 82.5 91.2 93.0

Single-best DA ADDA Tzeng et al. (2017) 99.1 98.0 88.8 94.5 95.1

CyCADA Hoffman et al. (2018b) 98.9 97.3 89.7 96.2 95.5

Source-combined DA DAN Long et al. (2015b) 99.3 98.2 89.7 94.8 95.5

ADDA Tzeng et al. (2017) 99.4 98.2 90.2 95.0 95.7

CyCADA Hoffman et al. (2018b) 99.0 97.8 91.0 95.9 95.9

Multi-source DA DCTN Xu et al. (2018) 99.4 99.0 90.2 92.7 95.3

MDAN Zhao et al. (2018) 98.1 98.2 89.5 92.2 94.5

MMN Peng et al. (2019) 99.5 99.2 92.2 94.5 96.4

MADAN (ours) 99.2 100.0 97.2 97.9 98.6

Table 5 Comparison with the
state-of-the-art DA methods for
object classification on
Office-Home dataset measured
by classification accuracy (%).
The best method is emphasized
in bold

Standard Method Rw Pr Cl Ar Avg

Source-only Combined 68.1 76.9 48.9 65.4 64.8

Single-best 60.4 59.9 41.2 53.9 53.9

Single-best DA DAN Long et al. (2015b) 67.9 74.3 51.5 63.1 64.2

DANN Ganin et al. (2016) 70.1 76.8 51.8 63.2 65.5

JAN Long et al. (2017) 68.9 76.8 52.4 63.9 65.5

CyCADA Hoffman et al. (2018b) 77.4 75.3 51.9 68.7 68.3

ource-combined DA CyCADA Hoffman et al. (2018b) 79.4 72.9 50.4 62.6 66.3

Multi-source DA MDAN Zhao et al. (2018) 76.3 69.2 49.7 64.9 65.0

MADAN (ours) 81.5 78.2 54.9 66.8 70.4

on Digits-five, Office-31, Office+Caltech-10 datasets, while
the combined method performs better on Office-Home,
Cityscapes, and BDDS datasets. For the single-source DA,
we usually have opposite observations. For example, in
Table 6, themIoUs of CyCADA fromGTA to Cityscapes and
from SYNTHIA to Cityscapes are 38.7% and 29.2%, while
the mIoU of source-combined DA is 37.3%. Currently, there
is no accurate explanation on this observation. On the one
hand, combining multiple sources into one source results in
more training data, which can intuitively boost the perfor-
mance. On the other hand, the data from different sources
are collected from different distributions, which may inter-
fere with each other. Therefore, the comparison between the
single-best method and the combined method depends on
which aspect is stronger.

(2) For semantic segmentation adaptation, MADAN+
outperforms MADAN with a remarkable margin. For exam-
ple, the average performance gains of MADAN+ over
MADAN using DeepLabV2 backbone are 3.1% and 2.3%
on Cityscapges and BDDS, respectively. Further, MADAN+
achieves the best cwIoU scores of 6 to 9 out of 16 categories.
These results demonstrate the superiority of MDAN+ over
MADAN for pixel-wise segmentation adaptation with the

help of category-level alignment and multi-scale image gen-
eration.
Segmentation Visualization. The qualitative semantic seg-
mentation results are shown in Fig. 7. We can clearly see that
after adaptation by the proposed method, the visual segmen-
tation results are improved notably, which look more similar
to the ground truth (b). Take the second row for example,
the contours of pedestrians and cyclists by MADAN+ (i) are
more clear than those by the methods of source only (c) and
CycleGAN (d).

5.3 Ablation Study

To demonstrate the effectiveness of different components in
the proposed MADAN and MADAN+ models, we conduct
ablation studies on the segmentation adaptation tasks.

First, we compare the proposed dynamic semantic con-
sistency (DSC) loss with the original semantic consistency
(SC) loss (Hoffman et al. 2018b) using the DA methods of
CycleGAN (Zhu et al. 2017) and CyCADA (Hoffman et al.
2018b). The results on Cityscapes and BDDS are shown in
Tables 10 and 11, respectively.We can see that for all adapta-
tion settings, DSC achieves better mIoU results than SC. For
example, the mIoU improvements of DSC over SC in Cycle-
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.6 GAN and CyCADA from GTA to Cityscapes are 5.4% and

1.3%, respectively, while the corresponding improvements
are 3.2% and 2.6% from SYNTHIA to Cityscapes. These
results demonstrate the effectiveness of our proposed DSC
loss.

Second, we incrementally evaluate the influence of differ-
ent components in MADAN+. The results on Cityscapes and
BDDS using FCN-VGG16 backbone are shown in Tables 12
and 13, respectively. We have several observations. (1) Both
domain aggregation methods, i.e. SAD and CCD, obtain
larger mIoU scores than baseline with SAD performing bet-
ter. The performance gains are obtained by making different
adapted domains more closely aggregated. (2) Adding the
DSC loss could further improve the segmentation perfor-
mance, again demonstrating the effectiveness of DSC. (3)
Feature-level alignment is also helpful with 1.2% and 1.0%
improvements on Cityscapes and BDDS, respectively, obvi-
ously contributing to the adaptation task. (4) Category-level
alignment (CLA) is complementary to the feature-level align-
ment (FLA). While FLA aims to align the target and source
features globally, CLA makes the features in local regions
indistinguishable. (5) Multi-scale image generation (MIG)
significantly contributes to the adaptation task. (6) The mod-
ules are orthogonal to each other to some extent, since adding
each one of them does not introduce performance degra-
dation. (7) As compared to MADAN, MADAN+ achieves
better results with 1.4% and 5.3% performance gains on
Cityscapes and BDDS, respectively. Moreover, by adding
CLA and MIG, the cwIoU of most categories are increased.
These results demonstrate the superiority of MADAN+ over
MADAN for pixel-wise adaptation.

5.4 Model Interpretability

In this section, we show the models’ interpretability by
feature transferability, style translation, and attention visu-
alization.
Feature Transferability. First, we visualize the features
before and after adaptation with t-SNE embedding (Maaten
and Hinton 2008) in two tasks: (a) Digits-five: mm, up,
sv, sy→mt and (b) Office-31: D, W→A. As illustrated in
Fig. 8, we can observe that after adaptation, the target domain
is more indistinguishable from the source domains, which
demonstrates that the proposedMADANmodel can align the
distributions between the source and target domains. Based
on the more transferable features after adaptation, the task
classifier learned on the source domains can work well on
the target domain, leading high task performance on the tar-
get domain.
Style Translation. Second, we visualize the results of
pixel-level alignment (PLA) before and after adaptation.
Specifically, we show the comparison among source images,
adapted images, and target images for classification and seg-
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Fig. 7 Qualitative semantic segmentation result from GTA and SYN-
THIA to Cityscapes. From left to right are: a original image,
b ground truth annotation, c source only from GTA, d Cycle-

GANs on GTA and SYNTHIA, e +CCD+DSC, f +SAD+DSC,
g +CCD+SAD+DSC, h +CCD+SAD+DSC+FLA (MADAN), and i
+CCD+SAD+DSC+FLA+CLA+MIG (MADAN+)

(a) mm, up, sv, sy→mt

Before adaptation After adaptation

(b) D, W → A

Before adaptation After adaptation

Fig. 8 The t-SNE (Maaten and Hinton 2008) visualization of the
learned features for task aDigits-five: mm, up, sv, sy→mt and bOffice-
31: D,W→A. In each pair, the features are extracted using the last layer
of source domain encoder from the samples of source and target domain

in the first image, and the target domain features are extracted using the
the last layer of adapted encoder in the second one. Red: source, blue:
target (Color figure online)

Source 
images

Adapted 
images

Target 
images

emoH-eciffO(d)13-eciffO(b)evif-stigiD(a) (c) Office-Caltech

Fig. 9 Visualization of image translation for classification adaptation. From left to right are: a Digits-five: mt, mm, sv, sy → up, b Office-31: W,
D → A, c, Office+Caltech-10: D, C, A → W d Office-Home: Ar, Rw, Pr → Cl. Red: source, blue: target (Color figure online)

mentation adaptation in Figs. 9 and 10, respectively. We
can see that the styles of the adapted images by our PLA
method are closer to the target than the source to the tar-
get. Meanwhile, the semantic information is well preserved.
For classification in Fig. 9: (a) although styles of the source
images are different, the corresponding adapted images are
uniformly changed to the handwritten brush style of the tar-
get images; (b) the background is removed in the adapted
images; (c) a desktop background is added to the adapted

images; (d) the adapted images are cartooned to have simi-
lar styles to the target images. For segmentation in Fig. 10,
comparing the columns from (a) to (g) with the column (h)
especially (a) vs. (h) and (g) vs. (h), we can observe that with
our final FLA method (g), the styles (e.g. overall hue and
brightness) of the adapted images are much more similar to
the target Cityscapes.
Attention Visualization. Finally, we visualize the attention
before and after the proposed domain adaptation method
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Fig. 10 Visualization of image translation for segmentation adap-
tation from GTA and SYNTHIA to Cityscapes. From left to
right are: a original source image, b CycleGAN, c Cycle-
GAN+DSC, d CycleGAN+CCD+DSC, e CycleGAN+SAD+DSC, f

CycleGAN+CCD+SAD+DSC, gCycleGAN+CCD+SAD+MIG, and h
target Cityscapes image. The top two rows and bottom rows are GTA
→ Cityscapes and SYNTHIA → Cityscapes, respectively

Fig. 11 Comparison of the attention maps before and after adaptation
on a Office-31 and b Office-Home datasets. For each group, the five
columns from left to right are: the original target image, attention map

before adaptation, image with attention map before adaptation, atten-
tionmap after adaptation, and imagewith attentionmap after adaptation.
Red regions indicate more attention

using the heat map generated by the Grad-Cam algorithm
(Selvaraju et al. 2017). The comparisonbefore and after adap-
tation on Office-31 and Office-Home datasets are illustrated
in Fig. 11. It is clear that different regions in the images
have different attentions but the attentions generated by our
domain adaptation method can focus more on the desirable
and discriminative regions. For example, on the Office-31
dataset, for the image in the top right group, the calcula-
tor is highlighted with more attention after adaptation, while
more attention is focused on a region in the background
before adaptation; for the image in the bottom right group,

after adaptation more attention is paid to the helmet and the
attention diminishes for the complex backgroundwithmessy
objects. On the Office-Home dataset, for the image in the
top left group, the attention before adaptation focuses on the
background and the edge of the speaker, while the more dis-
criminative and transferable trumpets are emphasized after
adaptation; for the image in the bottom right group, only the
lens of the Webcam is highlighted after adaptation since it is
more transferable than the base of the camera. These obser-
vations intuitively demonstrate that the attended regions by
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Fig. 12 The distribution of different categories in the four domains for
semantic segmentation

our adaptation model are invariant across different domains
and discriminative for the learning task.

5.5 Discussions

Computation Cost. Since the proposed framework deals
with a harder problem, i.e. multi-source domain adaptation,
more modules are used to align different sources, which
results in a larger model. In our segmentation adaptation
experiments, MADAN is trained on 4 NVIDIA Tesla P40
GPUs for 40 hours using two source domains which is about
twice the training time as on a single source. However,
MADANdoes not introduce any additional computation dur-
ing inference, which is the biggest concern in real industrial
applications, e.g. autonomous driving.

ApplicationandGeneralization.TheproposedMADAN
and MADAN+ models work under multi-source, unsuper-
vised, homogeneous, and closed set settings. There exists
obvious domain gap between different domains in the
employed datasets. For example, in Digits-five, there are
handwritten digits, street digits, and synthetic digits; in
Office-Home, the objects range from artistic images, clip-
art images to product images and real-world images.We give
detailed comparisons of different domains for the simulation-
to-real segmentation adaptation. The distribution of different
categories in the four domains are shown in Fig. 12. We can
see clear distribution difference across domains. Specifically,
GTA (Richter et al. 2016) is collected from a simulation envi-
ronment. The driving conditions are pretty diverse, including
both city and countryside. The images in GTA are of very
high fidelity graphics and are all collected from front dash
cameras. SYNTHIA (Ros et al. 2016) is collected from a
simulation environment. The driving conditions are mostly
in cities. The images in SYNTHIA do not have very high
fidelity and are taken from cameras of various angles and
heights. Cityscapes (Cordts et al. 2016) is collected in real-

world environments. All images are collected from the front
cameras of vehicles driving in European cities. BDDS (Yu
et al. 2018) is collected in populous areas in the USwith front
cameras in driving vehicles. The Driving environments are
more diverse than Cityscapes, e.g.more diverse weather and
times of day. The experiments onMDA for digit recognition,
object classification, and semantic segmentation demonstrate
the effectiveness and superiority of the proposed models in
various practical applications.

We admit that to achieve good performances, we employ
different alignment strategies, which result in complicated
models with multiple losses to optimize. The training is also
computationally expensive. These are the weaknesses of the
proposed method. We leave improving the computational
efficiency as our future work. To generalize the proposed
models to new real-world applications, we release the source
codes with step-by-step instructions.

On Different Implementations of DSC. The effective-
ness of the proposedDSChas been demonstrated in Sect. 5.3.
The motivation of the DSC design, i.e. minimizing the KL
divergence between the outputs of FA and Fi , is described in
Sect. 4.1. Another intuitive implementation ofDSC is tomin-
imize the mismatch between the ground truth Yi of domain
i and FA (e.g., with cross-entropy loss). To compare these
two implementations, we take the adaptation from GTA and
SYNTHIA to Cityscapes using FCN-VGG16 backbone as
an example. The class-wise IoU and mIoU of MADAN+
in Table 6 using KL divergence-based DSC are 87.9, 41.0,
76.4, 21.4, 1.3, 28.4, 20.3, 22.3, 77.3, 80.0, 54.9, 21.5, 80.1,
29.7, 15.1, 26.5, 42.8 (mIoU). The results ofMADAN+using
cross-entropy loss-based DSC are 88.9, 39.0, 75.9, 19.7, 0.7,
24.4, 22.5, 25.7, 70.5, 69.4, 52.7, 20.6, 78.9, 30.2, 17.4, 28.9,
41.6 (mIoU). It is clear that our KL divergence-based DSC
outperforms cross-entropy loss-based DSC.We have the fol-
lowing observations. In the beginning, the effect of image
generation is not excellent, and the generated images will be
biased towards the source domain. Therefore, if the learning
target of FA is Yi , the gradient will make the model more
difficult to translate from the source domain to the target
domain. Using the hard-coding label Yi makes it harder to
learn well, while using a soft-coding label Fi (xi ) makes the
training easier to converge since it tries tomimic the behavior
of Fi . So we prefer to use Fi (xi ) to generate a reference tag
rather than relying entirely on Yi .

On theEnd-to-endTraining.Similar toCyCADA (Hoff-
man et al. 2018b), the proposed MADAN and MADAN+
are end-to-end trainable based on Eqs. (10) and (17). Due
to constrained hardware resources in practice, such as GPU
memory, we train the models in three stages as described
in Sect. 5.1.4. We need to mention that end-to-end train-
ing can obtain similar results as multi-stage training. For
example, onOffice-Homedataset (Venkateswara et al. 2017),
the classification accuracy on Rw, Pr, Cl, Ar, and the aver-
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age accuracy are 81.5, 78.2, 54.9, 66.8, 70.4 for multi-stage
training and 79.4, 80.6, 53.1, 67.2, 70.1 for end-to-end train-
ing. Such slight fluctuation is normal and acceptable in deep
learning-based model training. Besides the hardware con-
straints, there are some other concerns that motivate us to
employ multi-stage training. First, parameter tuning is dif-
ficult for end-to-end training which has to optimize more
parameters simultaneously. Second, at the beginning of end-
to-end training, the generated images are of low quality,
leading to a poor task model, which in turn affects the image
generation. The final convergence depends heavily on the
model’s initialization.

On the Poorly Performing Classes in Segmentation.
There are two main reasons for the poor performance on
certain classes (e.g. fence and pole): 1) lack of images con-
taining these classes and 2) structural differences of objects
between simulation images and real images (e.g. the trees in
simulation images are much taller than those in real images).
Generating more images for different classes and improving
the diversity of objects in the simulation environment are two
promising directions for us to explore in futurework thatmay
help with these problems.

6 Conclusion

In this paper, we proposed a novel framework, termed
Multi-source Adversarial Domain Aggregation Network
(MADAN), for multi-source domain adaptation (MDA). For
each source domain, based on cycle-consistent GAN at
pixel-level alignment, we first generated adapted images
with a novel dynamic semantic consistency loss. Further,
we proposed a sub-domain aggregation discriminator and
cross-domain cycle discriminator to better aggregate differ-
ent adapted domains. Finally, we trained the task model
using the adapted images in the aggregated domain and
corresponding labels in the source domains. The experi-
ments showed thatMADAN achieves 2.8%, 3.0%, 2.2%, and
4.6% classification accuracy improvements compared with
the existing best MDA methods, respectively on Digits-five,
Office-31, Office+Caltech-10, and Office-Home datasets.
We also studied MDA for semantic segmentation, which is
the first work on adapting pixel-wise prediction task with
multiple sources. To better deal with the pixel-wise adapta-
tion, we extended MDAN to MADAN+ with category-level
alignment and multi-scale image generation. For the FCN-
VGG16 backbone, MADAN+ achieves 17.0%, 3.0%, 5.5%,
and 13.4% mIoU improvements compared with best source-
only, best single-source DA, source-combined DA, and other
multi-source DA, respectively on Cityscapes from GTA and
SYNTHIA, and 17.0%, 5.9%, 7.9%, 16.6% on BDDS.

For future studies, we plan to investigate multi-modal DA,
such as using both image and LiDAR data, to further boost

the adaptation performance. Improving the computational
efficiency of MADAN, with techniques such as neural archi-
tecture search, is another direction worth investigating. In
addition, we will study how to automatically weigh the rela-
tive importance of different sources and the samples in each
source to further improve the performance of MADAN.
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