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Abstract

We propose a universal building block of Convolutional

Neural Network (ConvNet) to improve the performance

without any inference-time costs. The block is named Di-

verse Branch Block (DBB), which enhances the representa-

tional capacity of a single convolution by combining diverse

branches of different scales and complexities to enrich the

feature space, including sequences of convolutions, multi-

scale convolutions, and average pooling. After training, a

DBB can be equivalently converted into a single conv layer

for deployment. Unlike the advancements of novel Con-

vNet architectures, DBB complicates the training-time mi-

crostructure while maintaining the macro architecture, so

that it can be used as a drop-in replacement for regular

conv layers of any architecture. In this way, the model can

be trained to reach a higher level of performance and then

transformed into the original inference-time structure for

inference. DBB improves ConvNets on image classification

(up to 1.9% higher top-1 accuracy on ImageNet), object

detection and semantic segmentation. The PyTorch code

and models are released at https://github.com/

DingXiaoH/DiverseBranchBlock.

1. Introduction

Improving the performance of Convolutional Neural

Network (ConvNet) has always been a heated research

topic. On one hand, the advancements in architecture de-

sign, e.g., the Inception models [27, 28, 26, 15], have re-
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vealed that the multi-branch topology and combination of

various paths with different scales and complexities can en-

rich the feature space and improve the performance. How-

ever, the complicated structure usually slows down the in-

ference, as a combination of small operators (e.g., concate-

nation of 1 × 1 conv and pooling) is not friendly to the de-

vices with strong parallel computing powers like GPU [21].

On the other hand, more parameters and connections

usually lead to higher performance, but the size of ConvNet

we deploy cannot increase arbitrarily due to the business

requirements and hardware constraints. Considering this,

we usually judge the quality of a ConvNet by the trade-off

between performance and inference-time costs such as the

latency, memory footprint and number of parameters. In

the common cases, we train the models on powerful GPU

workstations and deploy them onto efficiency-sensitive de-

vices, so we consider it acceptable to improve the perfor-

mance with the costs of more training resources, as long as

the deployed model keeps the same size.

In this paper, we seek to insert complicated structures

into numerous ConvNet architectures to improve the perfor-

mance while keeping the original inference-time costs. To

this end, we decouple the training-time and inference-time

network structure by complicating the model only during

training and converting it back into the original structure

for inference. Naturally, we require such extra training-time

structures to be 1) effective in improving the training-time

model’s performance and 2) able to transform into the orig-

inal inference-time structure.

For the usability and universality, we upgrade the basic

ConvNet component, K × K conv, into a powerful block

named Diverse Branch Block (DBB) (Fig. 1). As a build-

ing block, DBB is complementary to the other efforts to im-

prove ConvNet, e.g., architecture design [12, 24, 13, 21, 23,

35], neural architecture search [2, 39, 22, 20, 19], data aug-

mentation and training methods [25, 5, 33] and fulfills the

above two requirements by the following two properties:
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Figure 1: A representative design of Diverse Branch Block (DBB). The block can be equivalently transformed into a regular

conv layer for deployment, so that we can complicate the training-time microstructures of ConvNet without affecting the

macro architecture (e.g., ResNet) or the inference-time structure. Note that it is only an instance we used, and one may utilize

the six transformations summarized in this paper (Sect. 3.2) to customize a DBB with more complicated structures.

• A DBB adopts a multi-branch topology with multi-

scale convolutions, sequential 1 × 1 - K × K con-

volutions, average pooling and branch addition. Such

operations with various receptive fields and paths with

different complexities can enrich the feature space, just

like the Inception architectures.

• A DBB can be equivalently transformed into a sin-

gle conv for inference. Given an architecture, we can

replace some regular conv layers with DBB to build

more complicated miscrostructures for training, and

convert it back into the original structure so that there

will be no extra inference-time costs.

More precisely, we do not derive the parameters for in-

ference before each forwarding. Instead, we convert the

model after training once for all, then we only save and

use the resultant model, and the trained model can be dis-

carded. The idea of converting a DBB into a conv can

be categorized into structural re-parameterization, which

means parameterizing a structure with the parameters trans-

formed from another structure, together with a concurrent

work [9]. Though a DBB and a regular conv layer have the

same inference-time structure, the former has higher rep-

resentational capacity. Through a series of ablation experi-

ments, we attribute such effectiveness to the diverse connec-

tions (paths with different scales and complexities) which

resembles Inception units, and the training-time nonlinear-

ity brought by batch normalization [15]. Compared to some

counterparts with duplicate paths or purely linear branches

(Fig. 6), DBB shows better performance (Table. 4).

We summarize our contributions as follows.

• We propose to incorporate abundant microstructures

into various ConvNet architectures to improve the per-

formance but keep the original macro architecture.

• We propose DBB, a universal building block, and sum-

marize six transformations (Fig. 2) to convert a DBB

into a single convolution, so it is cost-free for the users.

• We present a representative Inception-like DBB in-

stance and show that it improves the performance on

ImageNet [7] (e.g., up to 1.9% higher top-1 accuracy),

COCO detection [18] and Cityscapes [4].

2. Related Work

2.1. Multi­branch Architectures

Inception [15, 26, 27, 28] architectures employed multi-

branch structures to enrich the feature space, which proved

the significance of diverse connections, various receptive

fields and the combination of multiple branches. DBB bor-

rows the idea of using multi-branch topology, but the dif-

ference lies in that 1) DBB is a building block that can

be used on numerous architectures, and 2) each branch of

DBB can be converted into a conv, so that the combination

of such branches can be merged into a single conv, which

is much faster than a real Inception unit. We will show

the superiority of diverse branches over duplicate ones (Ta-

ble. 4), and the most interesting discovery is that combining

two branches with different representational capacity (e.g.,

a 1 × 1 conv and a 3 × 3 conv) is better than two strong-

capacity branches (e.g., two 3×3 convolutions), which may

in turn shed light on ConvNet architecture design.

2.2. ConvNet Components for Better Performance

There have been some novel components to improve

ConvNets. For examples, Squeeze-and-Excitation (SE)
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block [14] and Efficient Convolutional Attention (ECA)

block [29] utilizes the attention mechanism to recalibrate

the features, Octave Convolution [3] reduces the spatial re-

dundancy of regular convolution, Deformable Convolution

[6] augments the spatial sampling locations with learnable

offsets, dilated convolution expands the receptive field [32],

BlurPool [34] brings back the shift-invariance, etc. DBB

is complementary to these components because it only up-

grades a fundamental building block: the conv layer.

2.3. Structural Re­parameterization

This paper and a concurrent work, RepVGG [9], are

the first to use structural re-parameterization to term the

methodology that parameterizes a structure with the param-

eters transformed from another structure. ExpandNet [10],

DO-Conv [1] and ACNet [8] can also be categorized into

structural re-parameterization in the sense that they con-

vert a block into a conv. For example, ACNet uses Asym-

metric Convolution Block (ACB, as shown in Fig. 6d) to

strengthen the skeleton of conv kernel (i.e., the crisscross

part). Compared to DBB, it is also designed for improving

ConvNet without extra inference-time costs. However, the

difference is that ACNet was motivated by an observation

that the parameters of the skeleton were larger in magni-

tude and thus sought to make them even larger, whereas we

focus on a different perspective. We found out that aver-

age pooling, 1 × 1 conv, and 1 × 1 - K × K sequential

conv are more effective, as they provide paths with differ-

ent complexities, and allow the usage of more training-time

nonlinearity. Besides, ACB can be viewed as a special case

of DBB, since the 1 × K and K × 1 conv layers can be

augmented to K×K via Transform VI (Fig. 2) and merged

into the square kernel via Transform II.

2.4. Other ConvNet Re­parameterization Methods

Some works can be referred to as re-parameterization,

but not structural re-parameterization. For examples, a

recent NAS [20, 39] method [2] used meta-kernels to re-

parameterize a kernel and supplemented the widths and

heights of such meta-kernels into the search space. Soft

Conditional Computation (SCC) [31] or CondConv [30] can

be viewed as data-dependent kernel re-parameterization, as

it generated the weights for multiple kernels of the same

shape, then derived a kernel as the weighted sum of all such

kernels to participate in the convolution. Note that SCC

introduced a significant number of parameters into the de-

ployed model. These re-parameterization methods differ

from ACB and DBB in that the former “re-param” means

deriving a set of new parameters with some meta parame-

ters (e.g., the meta kernels [2]) then using the new parame-

ters for the other computations, while the latter means con-

verting the parameters of a trained model to parameterize

another one.

3. Diverse Branch Block

3.1. The Linearity of Convolution

The parameters of a conv layer with C input channels,

D output channels and kernel size K × K reside in the

conv kernel, which is a 4th-order tensor F ∈ R
D×C×K×K ,

and an optional bias b ∈ R
D. It takes a C-channel fea-

ture map I ∈ R
C×H×W as input and outputs a D-channel

feature map O ∈ R
D×H′

×W ′

, where H ′ and W ′ are deter-

mined by K, padding and stride configurations. We use ⊛

to denote the convolution operator, and formulate the bias-

adding as replicating the bias b into REP(b) ∈ R
D×H′

×W ′

and adding it onto the results of convolution. Formally,

O = I ⊛ F + REP(b) . (1)

The value at (h,w) on the j-th output channel is given by

Oj,h,w =

C
∑

c=1

K
∑

u=1

K
∑

v=1

Fj,c,u,vX(c, h, w)u,v + bj , (2)

where X(c, h, w) ∈ R
K×K is the sliding window on the

c-th channel of I corresponding to the position (h,w) on

O. Such a correspondence is determined by the padding

and stride. The linearity of conv can be easily derived from

Eq. 2, which includes the homogeneity and additivity,

I ⊛ (pF ) = p(I ⊛ F ) , ∀p ∈ R , (3)

I ⊛ F (1) + I ⊛ F (2) = I ⊛ (F (1) + F (2)) . (4)

Note that the additivity holds only if the two convolutions

have the same configurations (e.g., number of channels, ker-

nel size, stride, padding, etc.), so that they share the same

sliding window correspondence X .

3.2. A Convolution for Diverse Branches

In this subsection, we summarize six transformations

(Fig. 2) to transform a DBB with batch normalization (BN),

branch addition, depth concatenation, multi-scale opera-

tions, average pooling and sequences of convolutions.

Transform I: a conv for conv-BN We usually equip a

conv with a BN layer, which performs channel-wise nor-

malization and linear scaling. Let j be the channel index,

µj and σj be the accumulated channel-wise mean and stan-

dard deviation, γj and βj be the learned scaling factor and

bias term, respectively, the output channel j becomes

Oj,:,: = ((I ⊛ F )j,:,: − µj)
γj

σj

+ βj . (5)

The homogeneity of conv enables to fuse BN into the

preceding conv for inference. In practice, we simply build

a single conv with kernel F ′ and bias b′, assign the values
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Figure 2: Six transformations we use to implement an inference-time DBB by a regular convolutional layer.

transformed from the parameters of the original conv-BN

sequence, then save the model for inference. By Eq. 1, 5,

we construct F ′ and b′ for every output channel j as

F ′

j,:,:,: ←
γj

σj

Fj,:,:,: , b′j ← −
µjγj

σj

+ βj . (6)

Transform II: a conv for branch addition The additiv-

ity ensures that if the outputs of two or more conv layers

with the same configurations are added up, we can merge

them into a single conv. For a conv-BN, we should perform

Transform I first. Obviously, we merge two convolutions by

F ′ ← F (1) + F (2) , b′ ← b(1) + b(2) . (7)

The above formulas only apply to conv layers with the

same configurations. Though merging such branches can

strengthen the model to some extent (Table. 4), we wish

to combine diverse branches to further improve the per-

formance. In the following, we introduce some forms of

branches that can be equivalently transformed into a single

conv. After constructing K × K conv for each branch via

multiple transformations, we use Transform II to merge all

such branches into one single conv.

Transform III: a conv for sequential convolutions We

can merge a sequence of 1 × 1 conv - BN - K ×K conv -

BN into one single K×K conv. We temporarily assume the

conv is dense (i.e., number of groups g = 1). The group-

wise case with g > 1 will be realized by Transform IV. We

assume the kernel shapes of the 1×1 and K×K layers are

D × C × 1× 1 and E ×D ×K ×K, respectively, where

D can be arbitrary. We first fuse the two BN layers into the

two conv layers to obtain F (1) ∈ R
D×C×1×1, b(1) ∈ R

D,

F (2) ∈ R
E×D×K×K , and b(2) ∈ R

E . The output is

O′ = (I ⊛ F (1) + REP(b(1)))⊛ F (2) + REP(b(2)) . (8)

We desire the expressions of the kernel and bias of a single

conv, F ′ and b′, which satisfies

O′ = I ⊛ F ′ + REP(b′) . (9)

Applying the additivity of conv to Eq. 8, we have

O′ = I ⊛ F (1)
⊛ F (2) + REP(b(1))⊛ F (2) + REP(b(2)) .

(10)

As I⊛F (1) is 1×1 conv, which performs only channel-

wise linear combination but no spatial aggregation, we can

merge it into the K ×K conv by linearly recombining the

parameters in K ×K kernel. It is easy to verify that such a

transformation can be accomplished by transpose conv,

F ′ ← F (2)
⊛ TRANS(F (1)) , (11)

where TRANS(F (1)) ∈ R
C×D×1×1 is the tensor trans-

posed from F (1). The second term of Eq. 10 is convolu-

tions on constant matrices, so the outputs are also constant

matrices. Formally, let P ∈ R
H×W be a constant matrix

where every entry equals p, ∗ be the 2D conv operator, W

be a 2D conv kernel, the result is a constant matrix propor-

tional to p and the sum of all the kernel elements, i.e.,

(P ∗W ):,: = pSUM(W ) . (12)

Based on this observation, we construct b̂ as

b̂j ←

D
∑

d=1

K
∑

u=1

K
∑

v=1

b
(1)
d F

(2)
j,d,u,v , 1 ≤ j ≤ E . (13)

Then it is easy to verify

REP(b(1))⊛ F (2) = REP(b̂) . (14)

Then we have

b′ ← b̂+ b(2) . (15)

Notably, for a K×K conv that zero-pads the input, Eq. 8

does not hold because F (2) does not convolve on the result

of I ⊛ F (1) + REP(b(1)) (but an additional circle of zero

pixels). The solution is to either A) configure the first conv

with padding and the second without, or B) pad by b(1). An

efficient implementation of the latter is customizing the first

BN to 1) batch-normalize the input as usual, 2) calculate

b(1) (Eq. 6), 3) pad the batch-normalized result with b(1),

i.e., pad every channel j with a circle of b
(1)
j instead of 0.
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Figure 3: An example of converting 1×1 - K×K sequence

with the number of groups g > 1. Assume the input and

output are 4-channel feature maps and g = 2, the 1× 1 and

K×K layers should be configured with g = 2, too. For the

transformation, we split the layers into g groups, perform

Transform III separately, and Transform IV to concatenate

the resultant kernels and biases.

Transform IV: a conv for depth concatenation Incep-

tion units use depth concatenation to combine branches.

But when such branches each contain only one conv with

the same configurations, the depth concatenation is equiv-

alent to a conv with a kernel concatenated along the axis

differentiating the output channels (e.g., the first axis in our

formulation). Given F (1) ∈ R
D1×C×K×K , b(1) ∈ R

D1 ,

F (2) ∈ R
D2×C×K×K , b(2) ∈ R

D2 , we concatenate them

into F ′ ∈ R
(D1+D2)×C×K×K , b′ ∈ R

D1+D2 . Obviously,

CONCAT(I ⊛ F (1) + REP(b(1)), I ⊛ F (2) + REP(b(2)))

= I ⊛ F ′ + REP(b′) .
(16)

Transform IV is especially useful for generalizing Trans-

form III to the groupwise case. Intuitively, a groupwise

conv splits the input into g parallel groups, convolves sepa-

rately, then concatenates the outputs. To replace a g-group

conv, we build a DBB where all the conv layers have the

same groups g. For converting the 1×1 - K×K sequence,

we equivalently split it into g groups, perform Transform III

separately, and concatenate the outputs (Fig. 3).

Transform V: a conv for average pooling An average

pooling with kernel size K and stride s applied to C chan-

nels is equivalent to a conv with the same K and s. Such a

kernel F ′ ∈ R
C×C×K×K is constructed by

F ′

d,c,:,: =







1

K2
if d = c ,

0 elsewise .

(17)

conv with 

conv with 

=

pad

Figure 4: An example of converting a 1 × 1 layer to 3 × 3
via Transform VI. To align the starting and ending points

of sliding windows (shown at the top-left and bottom-right

corners), the 3× 3 layer should pad the input by one pixel.

Just like a common average pooling, it performs downsam-

pling when s > 1 but is actually smoothing when s = 1.

Transform VI: a conv for multi-scale convolutions

Considering a kh × kw (kh ≤ K, kw ≤ K) kernel is equiv-

alent to a K × K kernel with some zero entries, we can

transform a kh × kw kernel into K ×K via zero-padding.

Specifically, 1× 1, 1×K and K × 1 conv are particularly

practical as they can be efficiently implemented. The input

should be padded to align the sliding windows (Fig. 4).

3.3. An Inception­like DBB Instance

We present a representative instance of DBB (Fig. 1),

while its universality and flexibility enable numerous feasi-

ble instances. Like Inception, we use 1× 1, 1× 1 - K ×K,

1 × 1 - AVG to enhance the original K ×K layer. For the

1 × 1 - K × K branch, we set the internal channels equal

to the input and initialize the 1× 1 kernel as an identity ma-

trix. The other conv kernels are initialized regularly [11].

A BN follows every conv or AVG layer, which provides

training-time nonlinearity. Without such nonlinearity, the

performance gain will be marginal (Table. 4). Notably, for

a depthwise DBB, every conv shall have the same number

of groups, and we remove the 1× 1 path and the 1× 1 conv

in the 1 × 1 - AVG path because 1 × 1 depthwise conv is

just a linear scaling.

4. Experiments

We use several benchmark architectures on CIFAR [16],

ImageNet [7], Cityscapes [4] and COCO detection [18] to

evaluate the capability of DBB for improving ConvNet per-

formance, and then investigate the significance of diverse

connections and training-time nonlinearity.

4.1. Datasets, Architectures and Configurations

We first summarize the experimental configurations (Ta-

ble. 1). On CIFAR-10/100, we adopt the standard data

augmentation techniques [12]: padding to 40× 40, random

cropping and left-right flipping. We use VGG-16 [24] for

a quick sanity check. Following ACNet [8], we replace the

two hidden fully-connected (FC) layers by global average
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Table 1: Experimental configurations.

Dataset Architecture GPUs Epochs / iterations
Batch

size

Init

learn rate

Weight

decay
Data augmentation

CIFAR-10/100 VGG-16 1 600 epochs 128 0.1 1× 10
−4 crop + flip

ImageNet AlexNet 4 90 epochs 512 0.1 5× 10
−4 crop + flip

ImageNet MobileNet 8 90 epochs 256 0.1 4× 10
−5 crop + flip

ImageNet ResNet-18/50 8 120 epochs 256 0.1 1× 10
−4 + color jitter + PCA lighting [17]

COCO detection CenterNet [38] 8 126k iters 128 0.02 1× 10
−4 + color jitter + PCA lighting [17]

Cityscapes PSPNet [37] 8 200 epochs 16 0.01 1× 10
−4 same as [36]

Table 2: Top-1 accuracy of the original model, ACNet [8] and DBB-Net. The results on CIFAR are average of 5 runs

Dataset Architecture Original ACNet DBB-Net Accuracy ↑

CIFAR-10 VGG-16 93.95±0.03 94.43±0.03 94.62±0.02 0.67

CIFAR-100 VGG-16 74.05±0.10 75.30±0.04 75.72±0.07 1.67

ImageNet AlexNet 57.23 58.43 59.19 1.96

ImageNet MobileNet 71.89 72.14 72.88 0.99

ImageNet ResNet-18 69.54 70.53 70.99 1.45

ImageNet ResNet-50 76.14 76.46 76.71 0.57

pooling followed by one FC of 512 neurons. For the fair

comparison, we equip each conv layer in the original mod-

els of VGG with BN. Then we use ImageNet-1K, which

comprises 1.28M images for training and 50K for valida-

tion. For the data augmentation, we employ the standard

pipeline including random cropping, left-right flipping for

small models like AlexNet [17] and MobileNet [13], and

additional color jitter and a PCA-based lighting for ResNet-

18/50 [12]. Specifically, we use the same AlexNet as ACNet

[8], which is composed of five stacked conv layers followed

by three FC layers with no local response normalizations.

We insert BN after each conv layer as well. For the simplic-

ity, we use cosine learning rate decay on CIFAR and Ima-

geNet with an initial value of 0.1. On COCO detection, we

train CenterNet [38] in 126k iterations with a learning rate

initialized as 0.02 and multiplied by 0.1 at the 81k and 108k

iterations respectively. On Cityscapes, we simply adopt the

official implementation and default configurations [36] of

PSPNet [37] for the better reproducibility: poly learning

rate with base of 0.01 and power of 0.9 for 200 epochs.

For each architecture, we replace every K × K (1 <

K < 7) conv and its following BN by a DBB to construct a

DBB-Net. We do not experiment with larger kernels (e.g.,

the first 7 × 7 and 11 × 11 conv of ResNet and AlexNet)

because they are less favored in model architectures. All

the models are trained with identical configurations. After

training, the DBB-Nets are converted into the same struc-

ture as the original model and tested. All the experiments

are accomplished with PyTorch.

4.2. DBB for Free Improvements

Table. 2 shows that the DBB-Nets exhibit a clear and

consistent boost of performance on CIFAR and ImageNet:

DBB improves VGG-16 on CIFAR-10 and CIFAR-100 by

0.67% and 1.67%, AlexNet on ImageNet by 1.96%, Mo-

bileNet by 0.99%, and ResNet-18/50 by 1.45%/0.57%, re-

spectively. Even though ACB [8] (Fig. 6d) is a special

case of DBB, we still choose it as a competitor to compare

with. Concretely, we add K × 1 and 1 × K branches to

construct ACBs, and train with the same settings. The su-

periority of DBB-Net over ACNet suggests that combining

paths with Inception-like different complexities may bene-

fit the model more than aggregating features generated by

multi-scale convolutions. Notably, the comparisons are bi-

ased towards the original models, as we adopt the hyper-

parameters reported in the original papers (e.g., weight de-

cay of 10−4 on ResNets), which have been tuned on the

original models but may be less suitable for the DBB-Nets.

We continue to verify the significance of every branch by

showing the scaling factors γ of the four BN layers before

the addition. Specifically, for each of the 16 3× 3 DBBs of

ResNet-18 (because it originally has 16 3× 3 conv layers),

we compute the average of absolute value of the four scaling

vectors. Table. 5a shows that the K × K, 1 × 1 and 1 ×
1−K×K branches have comparable magnitude of scaling

factors, suggesting that the three branches are important.

An interesting discovery is that the 1 × 1 - AVG branch is

more important for a stride-2 DBB, suggesting the average

pooling is more useful as downsampling than smoothing.

Fig. 5b shows the absolute values of scaling factors of the

9th block with the four γ vectors respectively sorted for the

better readability. It is observed that the K × K branch

have a larger minimum scale, and the scales of the other

three branches have a wide range. The phenomenon is quite

different for the 10th block (Fig. 5c), which has stride=1:

the scales of 1× 1 - AVG branch are close to zero for more
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Figure 5: Left: the average magnitude of scaling factors of BN in every DBB across different layers. Vertical dashed lines

indicate the stage transition with stride-2 DBB. Middle and right: the magnitude of scaling factors sorted in ascending order

of the 9th DBB (stride-2) and the 10th DBB (stride-1).

Table 3: Object detection and semantic segmentation.

Backbone ImageNet top-1 COCO AP Cityscapes mIoU

Original Res18 69.54 29.83 70.18

DBB-Res18 70.99 30.68 71.35

than 160 channels but relatively large for the others, and the

scales of 1 × 1 branch are larger than the 9th block, which

suggests that 1× 1 conv is more useful with stride=1. Such

a diversity of distributions of scaling factors suggest that

the DBB-Net learns a diverse combination of the diverse

branches for each block, and the discoveries may shed light

on other research areas like architecture design.

4.3. Object Detection and Semantic Segmentation

We use the ImageNet-pretrained ResNet-18 models to

verify the generalization performance on object detection

and semantic segmentation. Specifically, we build two

CenterNets/PSPNets where the only difference is the back-

bone (the original ResNet-18 or DBB-ResNet-18), load the

ImageNet-pretrained (not yet transformed) weights, train on

COCO/Cityscapes, perform the transformations and test.

4.4. Ablation Studies

We conduct a series of ablation studies on ResNet-

18 to verify the significance of diverse connections and

training-time nonlinearity. Specifically, we first ablate some

branches from DBB and observe the change in perfor-

mance, then compare DBB to some counterparts with du-

plicate branches or purely linear combination of branches,

as shown in Fig. 6. For the purely linear counterpart, we

use no BN before the branch addition, but the sum passes

through BN. Again, all the models are trained from scratch

with the same settings as before and converted into the same

original structure for testing. We present in Table. 4 the fi-

nal accuracy and the training costs.

Table. 4 shows that removing any branch degrades the

performance, suggesting that every branch matters. It is

also observed that using any of the three branches can lift

the accuracy to above 70%. Seen from the training-time pa-

rameters vs. accuracy, one may use a lightweight DBB with

only the 1 × 1 and 1 × 1 - AVG branches for lower accu-

racy but more efficient training, if the training resources are

limited. The Double/Triple Duplicate blocks also improve

the accuracy, but not as much as diverse branches do. We

have two especially interesting discoveries when comparing

DBB to duplicate blocks with the same number of branches:

• A 1× 1 conv can be viewed as a degraded 3× 3 conv

with many zero entries, which has weaker represen-

tational capacity than the latter, but the accuracy is

70.15% for (K × K + 1 × 1) and 69.81% for dou-

ble K × K. In other words, a weak-capacity com-

ponent plus a strong-capacity one is better than two

strong components.

• Similarly, the DBB with (K × K + 1 × 1 + (1 × 1 -

AVG)) outperforms triple K ×K (70.40% >70.29%),

though the latter has 2.3× training-time parameters as

the former, suggesting that the representational capac-

ity of ConvNet is determined by not only the amount

of parameters but also the diversity of connections.

To verify if the improvements are due to the different ini-

tialization, we construct a baseline (denoted by “baseline +

init”) by transforming the full-featured DBB-Net right after

random initialization, using the resultant weights to initial-

ize a regular ResNet-18, and then training it with the same

settings. The final accuracy is 69.67%, which is hardly

higher than the baseline with regular initialization, suggest-

ing that initialization is not the key.

We continue to validate the training-time nonlinearity

brought by the BN in branches. In the above discussions,

we have noticed that even duplicate branches with BN can

improve the performance, as such training-time nonlinear-

ity makes the block more powerful than a single conv.

When the BN layers are moved from pre- to post-addition,

the block (from the input to the branch addition) becomes
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Table 4: Top-1 accuracy of ResNet-18 on ImageNet with different blocks. The training speed (batches/second) is recorded on

the same machine with eight 1080Ti GPUs. The training-time eval speed (batches/s) is tested with the original (i.e., not yet

transformed) model on a single GPU with a batch size of 128. For reference, the parameters and speed of every inference-time

model (because all the models end up with the same inference-time structure) are 11.68M and 19.95 batches/s.

Block
Original

K ×K
1× 1

1× 1 -

K ×K

1× 1 -

AVG
Accuracy

Training

param (M)

Training

speed

Training-time

eval speed

With BN

DBB 1 X X X 70.99 26.33 4.06 4.11

DBB 1 X X 70.36 25.09 4.16 4.30

DBB 1 X X 70.40 14.18 4.31 6.64

DBB 1 X X 70.74 25.08 4.21 6.33

DBB 1 X 70.15 12.93 4.38 14.2

DBB 1 X 70.20 23.84 4.22 7.31

DBB 1 X 70.02 12.95 4.33 7.59

Baseline 1 69.54 11.69 4.44 19.24

Baseline + init 1 69.67 11.69 4.44 19.24

Double Duplicate 2 69.81 22.69 4.36 11.04

Triple Duplicate 3 70.29 33.70 4.20 7.75

Purely Linear

DBB 1 X X X 70.12 26.20 - -

DBB 1 X 69.83 12.91 - -

Double Duplicate 2 69.59 22.68 - -

conv batch norm

+

(a) Purely Linear DBB

1×1

K×K

1×1

AVG

1×1 K×K

nonlinearityAVG average pooling

+

(b) Double Duplicate

K×K K×K

+

(c) Triple Duplicate

K×K K×KK×K

+

(d) Asym Conv Block

1×K K×1K×K

Figure 6: Counterparts to compare against DBB.

purely linear during training. In this case, the Double Du-

plicate block hardly improves the performance (69.54%→

69.59%), and the DBB of (K × K + 1 × 1) improves

not as much as the comparable DBB with BN (69.83% <

70.15%), suggesting that diverse connections can improve

the model even without training-time nonlinearity.

We also present the training speed and the inference

speed of the training-time models in Table. 4, which shows

that increasing the training-time parameters does not sig-

nificantly slow down the training speed. Notably, the ac-

tual training speed is influenced by the data preprocessing,

cross-GPU communication, implementation of backpropa-

gation, etc., hence such data are for reference only. In in-

dustry, the researchers and engineers usually have abundant

training resources but strict restrictions on the inference-

time costs, so they may intend to train the models for tens

of extra days for very minor performance improvements. In

these application scenarios, one may find DBB particularly

useful for building powerful ConvNets with only reasonable

extra training costs.

5. Conclusions

We proposed a ConvNet building block named DBB,

which implements the combination of diverse branches via

a single convolution. DBB allows us to improve the per-

formance of off-the-shelf ConvNet architectures with ab-

solutely no extra inference-time costs. Through controlled

experiments, we demonstrated the significance of diverse

connections and training-time nonlinearity, which make a

DBB more powerful than a regular conv layer, though they

end up with the same inference-time structure.
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