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Abstract
Image captioning, which aims to automatically generate text description of given images, has received much attention from
researchers. Most existing approaches adopt a recurrent neural network (RNN) as a decoder to generate captions conditioned
on the input image information. However, traditional RNNs deal with the sequence in a recurrent way, squeezing the
information of all previous words into hidden cells and updating the context information by fusing the hidden states with the
current word information. This maymiss the rich knowledge too far in the past. In this paper, we propose a memory-enhanced
captioning model for image captioning. We firstly introduce an external memory to store the past knowledge, i.e., all the
information of generated words. When predicting the next word, the decoder can retrieve knowledge information about the
past by means of a selective reading mechanism. Furthermore, to better explore the knowledge stored in the memory, we
introduce several variants that consider different types of past knowledge. To verify the effectiveness of the proposed model,
we conduct extensive experiments and comparisons on the well-known image captioning dataset MS COCO. Compared with
the state-of-the-art captioning models, the proposed memory-enhanced captioning model shows a significant improvement
in terms of the performance (improving 3.5% in terms of CIDEr). The proposed memory-enhanced captioning model, as
demonstrated in the experiments, is more effective and superior to the state-of-the-art methods.

Keywords Image captioning · Attention · Memory · Encoder-decoder

Introduction

Vision and language are two advanced abilities of human
beings, which are related to the cognition model in the
human brain. However, it is hard to mimic such abilities
by machines, i.e., enabling machines to “see” the scene and
“describe” it with the natural language. Benefiting from the
development of cognition science, more advanced models
have been created, inspired by the human cognition system,

This work was supported by the National Key R&D Program of
China (Nos. 2018YFC0806900) and the National Natural Science
Foundation of China (Nos. 61571269).

� Guiguang Ding
dinggg@tsinghua.edu.cn

Hui Chen
jichenhui2012@gmail.com

1 School of Software, Tsinghua University, Beijing, China

2 Microsoft Research, Beijing, China

3 Philips Research, Eindhoven, Netherlands

4 WMG Data Science, University of Warwick, Coventry, UK

e.g., convolutional neural network (CNN) [36]. And many
cognition-related tasks have been better solved and obtained
significant breakthroughs, e.g., image classification [63],
machine translation [44], and image captioning [11].

To enable machines to understand the scene shown in the
image and describe it in human languages, many efforts
have been put into the image captioning field from both
academia and industry. Image captioning is a challenging
task for both understanding the visual contents and describ-
ing them in natural languages. In spite of the difficulties,
it has a promising value in a wide range of applications,
such as video tracking [32–35], childhood education [52],
cross-view retrieval [13, 41], visual impairment rehabilita-
tion [14], and sentiment analysis [38].

There are many pioneering works attempting to tackle
this challenge [7, 54]. The majority of the previous
works adopt the encoder-decoder framework, which has
been proved to be effective in dealing with sequence
generation tasks. Benefiting from the advancement in image
classification [63], a CNN [28, 36] is usually used as an
encoder to extract visual features for a given image, and
then a recurrent neural network (RNN), especially long-
short-term memory (LSTM), is used to generate sentences
conditioned on these visual features. Vinyals et al. [54]
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extracted a static vector to represent the image information
and then injected it into the decoder. They trained the whole
system in an end-to-end way and obtained a state-of-the-art
performance. And to mimic the visual system of humans,
visual attention mechanism [1, 6, 25, 45, 59] was introduced
into this field. Instead of squeezing all the visual content
into a vector, a feature map, which consists of a series of
visual features, was extracted by CNNs. Then, an attention
module was adopted to adaptively attend to different salient
visual features under the supervision of the current context
information.

Although impressive captioning performance has been
achieved, the quality of captions generated by existing
captioning models still remains unsatisfying. Generally, to
generate a word, existing captioning models simply store the
past information of all the generated words with the hidden
states, which are two vectors in LSTM. Then, the generation
process is performed in a recurrent way. However, due to
the difficulties of the RNNs in capturing the knowledge in
the long run, the previous knowledge will vanish gradually
along the generation process. Therefore, the hidden state
may not be adequate to represent past knowledge, resulting
in a loss of the past knowledge, especially the knowledge
of words far from the current word. Although LSTMs [22]
are more powerful in memorizing the past knowledge than
RNNs, they still struggle to remember words too far in the
past [56]. In fact, the past information of words that are
not close to the current word can be important for the word
prediction and can boost the caption generation, because
there may exist strong semantic dependencies between
previous words and the current one. For example, in the
sentence “a vase filled with red and green flowers”, “vase”
is more related to “flowers” than “red” or “green,” although
it is far from “flowers.”

In this paper, we propose a memory-enhanced captioning
model, which attempts to enhance the capability of
memorizing the past knowledge for the captioning model
via the memory mechanism. We name the proposed
captioning model as memory with selective reading
mechanism (MemSRM). Specifically, we incorporate an
external memory into the encoder-decoder framework
equipped with a visual attention module. The usage of
the memory can help preserve the past knowledge of all
previously generated words, and can selectively provide rich
knowledge about the past generated words, especially those
words not close to the current word. And in the proposed
selective reading mechanism, when the decoder is about
to make a prediction, the memory can perform a reading
operation to extract a related feature representing the past
knowledge by means of an attention module. With the aid of
such an attention module, the memory is able to selectively
retrieve the most relevant information to the input query
information and thus can provide rich knowledge about

the past. Such knowledge-related information will be
aggregated with the current word information via a gated
fusion unit further. And finally, the result of aggregation will
be leveraged to predict the subsequent word.

Besides, to further explore the impact of memory,
we enumerate different information of past knowledge,
including visual knowledge, semantic knowledge, and a
fusion of both kinds of knowledge. Similar to previous
works [45, 59], the attention module equipped in the
decoder can associate different words with different
saliency visual features. Such attention features can be
regarded as the visual knowledge corresponding the
generated words, and thus can be stored in the memory and
provide rich past visual information for the decoder. The
semantic knowledge is related to the representation of the
generated words directly. This kind of knowledge contains
the semantic dependencies among words in a sentence, and
can be used to provide rich knowledge about the semantic
dependencies among previously generated words. And the
fusion knowledge combines visual knowledge and semantic
knowledge, further improving the knowledge capacity.

To verify the effectiveness of the proposed approach,
we conduct extensive experiments and analyses on a
well-known image captioning benchmark dataset, i.e., MS
COCO. We also make comparisons to the state-of-the-art
approaches. The experimental results well demonstrate that
the proposed approach is more effective and superior to the
state-of-the-art approaches.

Overall, the main contributions of our work are three-
fold.

– We propose a memory-enhanced captioning model,
named MemSRM, attempting to strengthen the cap-
tioning model in memorizing the past knowledge,
especially about generated words far from the current
word. By incorporating a selective reading mechanism
(SRM), the introduced memory can provide the decoder
with informative knowledge about the previously gener-
ated words, and thus boost the captioning performance.

– We further explore different kinds of past knowledge to
be stored in the memory, including visual knowledge
semantic knowledge, and the fusion of both. The dif-
ferent kinds of knowledge can provide rich information
of past knowledge, and are proved to be effective to
improve the performance in our experiments.

– We validate the effectiveness of the proposed memory-
enhanced captioning model on the MS COCO image
captioning dataset by conducting extensive experiments
and analyses. Comparison experiments demonstrate
that the proposed approach is more effective and
superior to the state-of-the-art approaches.

The preliminary conference version of our work was
presented in [3]. Compared with the conference paper, we
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enhance our work from the following three aspects. First,
we provide a more comprehensive review of related work.
Second, we extend the ways of the interaction between the
memory and the decoder and adopt a gated fusion unit to
compose the context information for predicting the next
word using the knowledge information provided by the
memory and the information about the current word. Third,
we conduct more comparative experiments and enrich the
analysis and discussion of results.

The rest of this paper is structured as follows. The
“RelatedWork” section provides a comprehensive review of
related works on image captioning. The “Encoder-Decoder
Framework for Image Captioning” section gives an over-
view of the basic captioning model, i.e., the encoder-
decoder framework with an attention mechanism. Details
about the proposed memory-enhanced captioning model, in-
cluding writing/reading operations and three different kinds
of knowledge stored in the memory, are described in the
“Image Captioning withMemory” section. Experimental re-
sults and analyses are presented in the “Experiments” section,
followed by conclusions and potential future work in the
“Conclusion” section.

RelatedWork

Many methods have been proposed to improve the
performance of image captioning models. Generally, the
existing image captioning algorithms can be divided into
three categories, i.e., template-based approaches, transfer-
based approaches, and neural network-based approaches.

Template-Based Approaches This category of approaches
generally use templates or design a language model which
fills in slots of a template. Farhadi et al. [17] modeled the
co-occurrence relations among words to elaborately design
the templates. And in [29], a conditional random field
was utilized to capture the dependencies among different
templates. More complicated models have also been applied
in the image captioning task and shown to be effective
in generating relatively flexible sentences. Mitchell et
al. [48] exploited syntactic trees by leveraging syntactically
informed word co-occurrence statistics. Elliott et al. [15]
introduced a kind of visual dependency representation to
capture the relationships between objects in an image.
Despite being simple and intuitive, template-based methods
are heavily hand-designed and not expressive enough to
generate meaningful sentences.

Transfer-Based Approaches This category of approaches
adopts cross-modal retrieval technique based on an assump-
tion that a similar image could be described with similar or
even identical captions. Generally, descriptions of a retrieved

image are regarded as the reference caption directly for
a given to-be-captioned query image. Gong et al. [19]
and Micah et al. [23] aligned the visual information and
the semantic information in a joint latent space, and then
selected a description from the database which is close to the
query image as the reference. Kuznetsova et al. [30, 31] pro-
posed to retrieve related images as neighboring images, and
then extracted segments from their captions and arranged
a description as the final caption. Devlin et al. [10] simply
searched the top-k most similar sentence and selected the
best sentences by calculating the consensus score [9] of the
corresponding captions.

Neural Network-Based Approaches Inspired by recent
advances in machine translation [8, 44], most recent works
focus on the neural network-based approaches. This cate-
gory of approaches generally adopts the encoder-decoder [7,
54] framework, where a recurrent neural network (RNN) is
employed to generate a caption based on the information
of an image. The attention mechanism is often equipped in
the state-ot-the-art captioning performance due to its capa-
bility of attending to different salient aspects of information
related to input query information. Therefore, we here focus
on the related works about captioning models with the
attention mechanism.

– Visual attention. The visual attention model makes
the image feature adaptive to the sentence context
at hand [6]. Xu et al. [59] firstly introduced the
visual attention into image captioning. Chen et al. [6]
proposed spatial and channel-wise attention to attend
to both salient region features and salient channels of
features. Lu et al. [45] introduced a visual sentinel
allowing attending to regions adaptively. Anderson et
al. [1] combined both bottom-up attention and top-down
attention to generate more informative image features,
resulting in a better generation.

– Semantic attention. You et al. [62] firstly proposed
to selectively attend to semantic concepts instead
of visual regions. Jia et al. [24] used the global
semantic correlation between images and captions to
guide the decoder to generate better captions. Chen et
al. [4] extracted attribute-level features for images and
incorporated them into the decoder with the attention.

Recently, reinforcement learning has been introduced
to improve performance and shown a promising success.
Ranzato et al. [50] proposed Mixed Incremental Cross-
Entropy Reinforce (MIXER) to directly optimize the evalu-
ation metrics used at inference time. Self-critical sequence
training (SCST) [51] rewarded the whole sentence and
directly maximized the expected reward during training.
Chen et al. [5] used the temporal-difference learning method
to model the temporal information between consecutive
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actions. Liu et al. [42] used a monto rollout strategy to esti-
mate the expected reward for each word in a sentence and
directed the model to generate sentences with high rewards.

Our work is also related to [16, 26, 55]. Fakoor et al. [16]
adopted the memory network to solve the locality problem
for video captioning, where the memory network aims to
acquire the global information of the sequential frames in
videos. Kaiser et al. [26] employed the memory to capture
the information of rare words in the training dataset. Wang
et al. [55] proposed a memory-enhanced decoder for neural
machine translation with an external memory, which shared
the same idea as ours. Different from [55], we propose to
utilize the memory to remember the past knowledge for
image captioning task, which includes visual knowledge,
apart from the semantic knowledge.

Encoder-Decoder Framework for Image
Captioning

Most image captioning models follow the encoder-decoder
framework, which generally consists of two components:
a visual encoder and a sentence decoder. Given an RGB
image I , an encoder firstly encodes the image into the visual
representation, i.e., the feature map. Then the sentence
decoder will generate a sentence word by word on the
basis of the visual representation. In this section, we will
introduce these important components to give an overview
of the basic captioning model.

Visual Encoder The informativeness of the visual represen-
tations plays an important role in image captioning. Bene-
fiting from the significant advances in image classification
and object detection fields, convolutional neural networks
(CNNs) are widely used in image captioning as the visual
encoder. Generally, such CNNs are pre-trained on larger-
scale labeled datasets, such as ImageNet, and can extract

compact and representative features for images. Specifi-
cally, given a RGB image I , an encoder CNN will encode it
into a feature map, V = [v1, v2, ..., vn], vi ∈ R

D .

Sentence Decoder The goal of the sentence decoder is to
predict a series of consecutive words and compose them into
a sentence Y = {y0, y1, ..., yT }. It is crucial for the decoder
to be aware of the transition between two successive words
and the context information from previously generated
words. Recurrent neural networks (RNNs) have been proved
to be effective in modeling the context in a sentence, and
thus usually be adopted as the decoder. However, the issue
of exploding or vanishing gradient impedes the performance
of generic RNNs. In image captioning, a variant of
RNNs, i.e., long-short-term memory (LSTM), is usually
employed to substitute the generic RNN due to its strengths
in capturing long-term dependencies among words in a
sentence. Specifically, at each time step t , given the current
information xt , the previous hidden state ht−1, and context
vector ct−1, LSTM updates its parameters as follows:

it = σ(Wixxt + Wihht−1 + bi)

ft = σ(Wf xxt + Wf hht−1 + bf )

ot = σ(Woxxt + Wohht−1 + bo)

ct = it � φ(Wzxxt + Wzhht−1 + bc) + ft � ct−1

ht = ot � tanh(ct )

qt = Wqhht

(1)

where it , ft , and ot denote the input gate, the forget gate,
and the output gate, respectively. And � means the element-
wise multiplication. For the ease of the explanation, we use
ht = LSTM(xt , ht−1) to indicate the above process. In
Fig. 1, we show a LSTM cell on the right.

Top-Down Model In this paper, we adopt the top-down [1]
as our basic captioning model. Top-down adopts the
attention mechanism to adaptively attend to different parts
during decoding. As shown in Fig. 1, the word yt will be

Bo�om-LSTM

Top-LSTM

ATT

−1

−1

ℎ

ℎ

+1

ℎ tanh

−1

ℎ −1

ℎ

Fig. 1 Left: the top-down architecture. Right: a LSTM cell. In the green box, the input gate, the forget gate, and the output gate are colored by
blue, red, and orange, respectively. Best viewed in color
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fed into the bottom LSTM with the previous hidden states,
i.e., htop

t−1 and hbtm
t−1, and the global image feature, i.e., v̇. The

hidden state of the bottom LSTM, i.e., hbtm
t , is updated as

follows:

hbtm
t = LSTM([htop

t−1, v̇, Eeyt ], hbtm
t−1) (2)

where Ee is an embedding dictionary to be learned, and
yt represents a one-hot vector, where only the position
corresponding to the current word has the value, i.e., 1,
while others positions are all zeros.

The bottom LSTM can be regarded as a transformation
function for the embedding representations of words. Then,
the attention module performs a soft attention function over
the image’s feature map V with the current word’s represen-
tation hbtm

t . We first define a soft function denoted by att ()

which takes a matrix V = [v1, v2, ..., vn], vi ∈ R
D and a

query vector h as inputs, and outputs a context vector c:

c = att(V , h) =
k∑

i=1
αivi

s.t . α = softmax(Wa tanh(WavV + (Wahh)1T ))

(3)

where Wa , Wav , and Wah are parameters to be learned.
Then, the visual feature v̄t produced by the attention

module at the time step t can be written as follows:

v̄t = att(V , hbtm
t ) (4)

where V is the feature map of the image.
Finally, the top LSTM functions as a predictor which will

generate a distribution over the whole vocabulary:

h
top
t = LSTM([v̄t , h

btm
t ], htop

t−1)

p(yt |y0:t−1, I ) = softmax(Wph
top
t + bp)

(5)

where Wp and bp are parameters to be learned.

Image Captioning with Memory

In this section, we describe the proposed memory-enhanced
captioning model. Specifically, in order to preserve the
past knowledge, we use an external memory to store the
information of all words generated before. And when
decoding, an informative knowledge about the generated
words will be provided by the memory to improve
the prediction of the next word. An overview of the
proposed captioning model enhanced by a memory is
illustrated in Fig. 2. In the following sections, we first
introduce the memory in detail, including how to access
the memory (described in the “Memory Access” section)
and how to construct the memory (described in the
“Memory Construction” section). Then, a gated fusion
unit is proposed in the “Gated Fusion Unit” section to
incorporate the information of the past knowledge with the
current word information provided by the decoder. Finally,
the training and optimizing approaches are described in the
“Training and Optimization” section.

Memory Access

The past knowledge can provide rich context information
for the prediction. However, the current captioning model
may miss such rich knowledge, especially knowledge about
words far from the current word. We propose to enhance
the capacity of preserving the knowledge for the captioning
model by using an external memory. Specifically, we adopt
an external memory, denoted by M , to store the knowledge
about the image and the words that the model has learned.
Such memory is described as an array of objects denoted
by mt . And when interacting with other components in
the captioning model, i.e., the encoder, the decoder, and
the attention module, the memory performs two access
mechanisms depending on the direction of information
flows. One is the writing operation, which updates the

CNN

… ATT

ℎ

ℎ −1

Memory

LSTM LSTM
… …

LSTM
…

ℎ

()

…

()

()

SRM

Fig. 2 The framework of the proposed memory-enhanced captioning model. mem() is the reading operation, which adopts a selective reading
mechanism (SRM), and w() is the writing operation
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content of the memory to maintain the information of the
knowledge. The other is the reading operation, which reads
the most informative feature related to the query input from
the memory.

Writing The writing function brings in the knowledge
which is desired to be memorized in the generation process.
In the initial state, the memory M is empty. Along with
the decoding process, it is filled with the past knowledge
by extending its size. Specifically, we treat one position of
memory as an empty slot, and directly insert the knowledge
information into the slot one by one along the process:

mt = ft (6)

where ft is the knowledge at time step t , and mt is the slot
in the memory indexed by i.

We conduct different strategies to construct the knowledge
ft , which is described in the “Memory Construction”
section in detail. Note that the decoder will read from the
memory at every time step, which means that the size
of memory may cause a burden on the efficiency of the
decoding and training. However, in our experiment, we
do not restrict the capacity of the memory considering
that sentences in captioning dataset, e.g., MS COCO, are
tailored with a relatively decent length.

Reading The reading operation, namely mem() for simplic-
ity, selects the related knowledge for the prediction at the
current time step. Since not all knowledge is helpful for the
prediction, we need to filter the irrelevant information and

return the most related information to the current informa-
tion of knowledge at time step t , i.e., ft . Here, we propose
a selective reading mechanism (SRM) to achieve that goal.

It is intuitive that the relationship between two words
depends on the similarity between their corresponding
features in the latent space. The closer a word is to
the other word, the more likely a strong dependency
exists between them. Therefore, we propose the selective
reading mechanism to attend to the most related knowledge
adaptively when querying the memory. Specifically, by
leveraging the attention mechanism described in Eq. 3,
we first produce a relationship distribution of the past
knowledge conditioned on the current query information by
a softmax.

β = softmax(Wb tanh(WbmM + (Wbf ft )1T )) (7)

where M = {m0, m1, ..., mk} and Wb, Wbf and Wbh are
parameters to be learned.

Then, we obtain the knowledge feature m̄t via weighting
and summing all knowledge in the memory:

m̄ = mem(M, ft ) =
k∑

i=1
βimi (8)

where mi is the ith element in the memory. The
selective reading mechanism can choose the most related
past knowledge by assigning a larger weight to the
corresponding element, which can mine relationships
among words in the same sentence according to their
relative similarities in the embedding space.

The previous work [16] used a recurrent layer to model
the reading mechanism. However, as described in the

=
w()

= ℎ
w()

RNN

visual seman�cfuse

SRM RRM

Memory Construc�on

mem()

Fig. 3 Top: Three kinds of knowledge stored in the memory. Bottom: the proposed selective reading mechanism (SRM) and the compared
recurrent reading mechanism (RRM)

812 Cogn Comput (2021) 13:807–820



“Introduction” section, the recurrent layer can lead to a
loss of previous knowledge. On the contrary, the proposed
selective reading mechanism can attend to all the previous
knowledge selectively without regard to the distance.
Therefore, to see the superiority of the proposed SRM,
we regard the recurrent modeling strategy as one of the
baselines. And for the ease of the explanation, we name the
recurrent modeling strategy as recurrent reading mechanism
(RRM). Practically, we maintain a LSTM module and feed
the past knowledge into it step by step:

hmem
tm

= LSTM(mtm, hmem
tm−1)

m̄ = mem(M, ft ) = LSTM(ft , h
mem
t−1 )

(9)

where hmem
tm−1, hmem

tm
, and hmem

t−1 are the hidden state vectors
of the LSTM module. t is the index of the time step of
the decoder. Figure 3 shows the difference between the
proposed SRM and the compared RRM.

Memory Construction

Since the memory aims to provide informative knowledge
about the past generated words for the current decoder, it is
important to allocate appropriate knowledge information in
the memory. In this section, we will discuss how to construct
the proposed memory by means of different kinds of past
knowledge, which are the visual knowledge, the semantic
knowledge, and the fusion knowledge, as illustrated in
Fig. 3.

– Visual knowledge
In image captioning models, the decoder usually

adopts the visual attention model to attend to the visual
information, i.e., the given image, at every time step,
so as to generate captions that are consistent with
the image’s content. This visual attention mechanism
can enable the decoder to adaptively perceive different
visual aspects of an image related to the next word.
Generally, the attention mechanisms model the salience
of regions in a image with a posterior probability,
i.e., p(V |h) where V is the input region features of
the image, and h is the hidden state of the decoder
which can be also regarded to be related to the
current word. Then, a weighted summing function is
applied to aggregate the input region features, i.e.,
v̄t = ∑n

i=0 p(vi |h) ∗ vi, vi ∈ V . We can consider
the attention mechanism as a fuzzy function which
highlights the region we attend to and makes others
blurry. And thus, the feature vector, v̄t , produced by the
attention model at different time steps t can describe
different visual aspects of the image implicitly, e.g.,
objects, attributes, and other semantic features. Such

information can be considered as the visual knowledge
that has learned by the decoder. Therefore, we regard
the attention features, v̄t , as the visual knowledge and
we store them in the memory. The writing function and
reading function can be denoted as follows:

m̄vis
t = mem(Mvis, hbtm

t )

mvis
t = v̄t

(10)

where Mvis = {mvis
0 , mvis

1 , ..., mvis
t−1} and hbtm

t is the
hidden state of the bottom LSTM in the top-down
captioning model.

– Semantic knowledge
The context in semantic dependencies among words

in a sentence plays an important role in language
generation. Modeling such semantic context among
words has brought great performance improvement for
image captioning task, benefited from the usage of
recurrent neural networks, especially LSTMs. However,
due to the difficulties of the RNN in capturing the
long term dependencies, it will forget the semantic
information too far in the past gradually. Even though
LSTMs, benefited from the gating mechanism, are
more powerful in memorizing the past information
than vanilla RNNs, they still have trouble remembering
words too far in the past [56]. Note that the semantic
information at different time steps cannot well represent
words in a distance, but they can still adequately capture
the semantic dependencies near the current word.
Therefore, we store such local semantic information
in an external memory as the semantic knowledge
that the decoder has learned. In this way, we can
keep all the semantic dependencies information that
has learned before and conveniently access them along
the generation process, so that the decoder can well
perceive the past semantic knowledge and improve its
generation. The writing function and reading function
can be denoted as follows:

m̄sem
t = mem(Msem, hbtm

t )

msem
t = hbtm

t

(11)

where Msem = {msem
0 , msem

1 , ..., msem
t−1}.

– Fusion knowledge
We also adopt a fusion strategy to combine

both knowledges described above. Specifically, when
updating the memory, we firstly aggregate the visual
knowledge and the semantic knowledge with a non-
linear function, and the result is written into the memory
directly:

ut = σ(Wu[v̄t , h
btm
t ] + bu)

m
f use
t = ut

(12)
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where [., .] means concatenation. Wu and bu are
learnable parameters. σ is a non-linear function, which
is a relu function with dropout here.

The reading operation can be denoted as follows:

m̄
f use
t = mem(Mf use, hbtm

t ) (13)

where Mf use = {mf use

0 , m
f use

1 , ..., mf use

t−1 }

Gated Fusion Unit

After obtaining the knowledge feature m̄t , i.e., the output
of the memory, we further adopt a gated fusion unit to
aggregate the knowledge feature with the current feature
for prediction. Specifically, firstly, we concatenate the
knowledge feature, m̄t , and the current feature, h

top
t ,

followed by a non-linear transformation layer:

ot = φ(Wc[m̄t : h
top
t ] + bc) (14)

where [:] means the concatenating function and m̄t is the
knowledge representation, which can be either m̄vis

t , m̄sem
t ,

or their combination m̄
f use
t introduced above. φ is a non-

linear function, which is a tanh function here. Wc and bc

are learnable parameters. Then, we use a gate to decide how
much the prediction depends on the current feature, h

top
t ,

and the fused knowledge feature, ot , respectively:

gt = ϕ(Wg[m̄t : h
top
t ] + bg)

zt = gt � ot + (1 − gt ) � h
top
t

(15)

where ϕ is a non-linear function, which is a sigmoid

function here. � means the element-wise product. Wg and
bg are learnable parameters. gt is a gating feature with the
same dimension as h

top
t . Finally, zt is used to generate a

distribution over the whole vocabulary:

p(yt |y0:t−1, I ) = softmax(Wzzt + bz) (16)

where Wz and bz are parameters to be learned.

Training and Optimization

The captioning model is encouraged to directly maximize
the cross-entropy objective during training:

θ∗ = argmin
θ

T∑

t=1

logp(yt |I, θ, y0, y1, ..., yt−1) (17)

where T is the maximum length of sentences and θ denotes
the parameters of the proposed network.

As revealed in [50], the cross-entropy objective requires
the ground-truth sentence to be input into the captioning
model during training. However, in the inference procedure,
the sentence is generated by the model itself, dependent
on the information of previously generated words, which

causes an inconsistency between the training procedure
and the inference procedure. To address this issue,
reinforcement learning based objective is introduced into
image captioning, which directly optimizes the non-
differentiate NLP metrics and back-propagates the gradient
through REINFORCE algorithms. Similar to the previous
work [1], we also use the reinforcement learning strategy to
optimize the proposed memory-enhanced captioning model
during training. Specifically, after being pre-trained with
the cross-entropy loss, we minimize the negative expected
reward:

Lr(θ) = −EY�πθ r(Y ) (18)

where πθ denotes the distribution of sentences and Y =
{y0, y1, y2, ..., yT } is a sentence sampled according to the
distribution πθ via Monte-Carlo sampling method. r is a
metric evaluation (we use CIDEr as the optimized metric
here).

To reduce the gradient variance and stabilize the training
process, following [51], we introduce a baseline term and
the gradient of the reinforcement learning objective can be
approximated as:

∇θLr(θ) = −(r(Y ) − r(Y ′))∇θ logπθ(Y ) (19)

where Y ′ is a sentence generated by the greedy decoding
algorithm used in the inference time.

The reinforcement learning objective can capacitate the
captioning model automatically to explore the sentence
distribution space. While training, the model tends to
increase the probability of sentences with high scores and
reduce the likelihood of those with lower scores, which can
greatly improve the quality of the generated sentences.

Experiments

Dataset

To verify the effectiveness of the proposed memory-
enhanced captioning model (MemSRM), we conduct a
series of experiments on a popular image captioning dataset,
named MS COCO, which is the largest dataset for image
captioning. It consists of 82,783 training images and 40,504
validation images. And each image has at least 5 ground-
truth sentences. For offline evaluation, we follow previous
works [45, 59], and split the 123,287 images into three parts,
i.e., 5000 for validation, 5000 for test, and the remaining
for training. It also provides 40,775 images as the test set
for online evaluation. We will report the results of both
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Table 1 Performance on MS COCO. All models are trained with ResNet image feature

Model Knowledge BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Top-down [1] no 76.6 – – 34.0 26.5 54.9 111.1

Top-down (ours) no 80.2 62.8 47.8 35.6 27.0 56.6 113.6

MemRRM vis 80.1 63.0 48.1 35.9 27.5 57.1 117.3

sem 80.2 63.3 48.2 36.3 27.5 56.9 117.2

fuse 80.0 63.0 48.1 36.0 27.3 57.1 117.7

MemSRM vis 80.6 63.6 48.6 36.5 27.7 57.3 118.8

sem 80.3 63.1 48.1 35.8 27.7 57.1 117.8

fuse 80.1 63.4 48.2 36 27.5 57.1 118.6

online and offline evaluation, and make comparisons with
state-of-the-art approaches under these two settings, too.

Implementation Details

Following previous works [46], we filter out words that
occur less than 5 times and trim captions to a maximum of
16 words. Eventually, we set up a vocabulary of 9487 words.

Image Features We use two kinds of image features.

– ResNet features: We use the ResNet-101 [21] pre-
trained on ImageNet as the encoder CNN. We adopt the
feature map of the final convolutional layer as the visual
features. And we apply spatially average pooling so that
the feature map has a fixed size of 14 × 14 × 2048.

– Bottom-up features [1]: We use a Faster R-CNN pre-
trained on Visual Genome. To extract features, we
firstly detect all objects in the image, then extract top 36
features in each image with highest probabilities, which
ends up with a 36-by-2048 feature map for each image.

Training Details For all models, the hidden state size of the
decoder LSTM is 1300. The embedding dimension of each
word is fixed as 1000. We set the embedding dimension
of the image feature to 1000 using a linear layer. For
a fair comparison, when pre-trained under cross-entropy
loss, all models are trained in an end-to-end way using the
ADAM optimizer with a learning rate of 5 × 10−4 and
a learning rate decay factor of 0.8. Batch size is set to
100. We pre-trained the captioning model using the cross-
entropy objective function for 40 epochs and choose the
best model on the validation set as the initial model for
reinforcement learning. When trained using reinforcement
learning objective function, the ADAM optimizer is adopted
with an initial learning rate of 1 × 10−4 and a learning rate
decay factor of 0.8. The reinforcement learning process is
running for up to 60 epochs.

Test Strategy For test, we use the word sampled from the
prediction of the model at the last time step. We apply
beam search strategy to generate captions with higher
probabilities. By default, we set the beam size as 3, which
is commonly used in the previous works [45].

Evaluation Metrics To compared with other methods,
we use the same evaluation metrics, including BLEU
(B@1,B@2,B@3,B@4) [49], METEOR (MT) [2],
ROUGE-L (RG) [39], and CIDEr (CD) [53]. Meanwhile,
we use the MS COCO caption evaluation tool1 to compute
these metrics.

Quantitative Analysis

Evaluations of the Memory Tables 1 and 2 show the
performance comparisons among variants of the proposed
memory-enhanced captioning model and the baseline
models, using ResNet image features and bottom-up
image feature, respectively. Note that we re-implement
our baseline model, i.e., top-down [1], and our re-
implementation can achieve higher performance than that
reported in [1]. Therefore, here, we make comparisons
with both our re-implementation, i.e., top-down (ours)
and top-down [1]. To verify the superior of the proposed
selective reading mechanism, we report the performance
of the memory-enhanced model with the recurrent reading
mechanism, which is indicated by MemRRM in Tables 1
and 2.

As illustrated in Tables 1 and 2, for both kinds of image
features, our proposed MemSRM can achieve superior
performance than both baseline models.

Specifically, in Table 1, compared with top-down (ours),
the proposed MemSRM, which adopts the selective reading
mechanism to read from the memory, can obtain a
maximum improvement of 0.9% and 5.2% in BLEU-4 and

1https://github.com/tylin/coco-caption
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Table 2 Performance on MS COCO. All models are trained with bottom-up image feature

Model Knowledge BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Top-down [1] no 79.8 – – 36.3 27.7 56.9 120.1

Top-down (ours) no 81.2 64.3 49.3 37.0 27.9 58.0 121.4

MemRRM vis 81.4 64.7 49.9 37.7 28.4 58.2 122.8

sem 81.5 65.0 50.1 37.9 28.4 58.2 123.2

fuse 81.4 64.8 49.8 37.5 28.4 58.3 122.8

MemSRM vis 81.6 65.1 50.1 38.1 28.3 58.3 122.8

sem 81.2 64.6 49.8 37.6 28.4 58.3 123.5

fuse 81.4 64.8 49.9 37.7 28.5 58.4 123.4

CIDEr. And in Table 2, the maximum improvement is 1.1%
and 2.1%, in terms of BLEU-4 and CIDEr, respectively.
Better performance can be attributed to the introduced
memory, which can enhance the ability to memorize
past knowledge for the captioning model. Besides, if the
memory adopts the recurrent modeling strategy as [16], i.e.,

MemRM, it also can achieve a performance improvement
compared to top-down (ours), which further demonstrate
the importance of the past knowledge for the current
prediction. Besides, compared with MemRRM, for both
the ResNet image feature and bottom-up image feature,
MemSRM can obtain better performance than MemRRM

Table 3 Performance comparison of the proposed method with the state-of-the-art approaches on MS COCO

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC [54] 66.6 45.1 30.4 20.3 – – –

Deep VS [27] 62.5 45.0 32.1 23.0 19.5 – 66.0

R-LSTM [7] 76.1 59.6 45.0 33.7 25.7 55.0 102.9

R-LSTM [11] 76.5 60.3 45.8 34.4 26.4 55.7 106.4

m-RNN [47] 67.0 49.0 35.0 25.0 – – –

ERD [60] – – – 29.8 24.0 – 89.5

ATT [62] 70.9 53.7 40.2 30.4 24.3 – –

Hard-Attention [59] 71.8 50.4 35.7 25.0 23.4 – –

Soft attention [59] 70.7 49.2 34.4 24.3 23.9 – –

SCA-CNN [6] 71.9 54.8 41.1 31.1 25.0 53.1 95.2

Adaptive-Attention [45] 74.2 58.0 43.9 33.2 26.6 – 108.5

SCN-LSTM [18] 72.8 56.6 43.3 33.0 25.7 – 101.2

MSM [61] 73.0 56.5 42.9 32.5 25.1 53.8 98.6

RA+SF [25] 69.7 51.9 38.1 28.2 23.5 50.9 83.8

VS-LSTM [37] 78.9 63.4 48.1 36.3 27.3 – 120.8

Show and observe [4] 74.3 57.9 44.3 33.8 – 54.9 104.4

StackCap [20] 78.4 62.5 47.9 36.1 27.4 56.9 120.4

SCST [51] – – – 35.4 27.1 56.6 117.5

SR-PL [43] 80.1 63.1 48.0 35.8 27.4 57.0 117.1

MIXER [50] – – – 30.9 24.9 53.8 101.9

Top-down [1] 79.8 – – 36.3 27.7 56.9 120.1

memory-att [3] 75.7 59.5 45.7 35.0 - 55.7 109.2

Ours 81.6 65.1 50.1 38.1 28.3 58.3 122.8

Oursa 81.9 65.5 50.7 38.4 28.7 58.7 125.5

aThe results of ensemble models
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Table 4 Evaluation performance of the proposed method on the online MS COCO testing server

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC† [54] 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

m-RNN [47] 71.6 89.0 54.5 79.8 40.4 68.7 29.9 57.5 24.2 32.5 52.1 66.6 91.7 93.5

ERD [60] 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9

MSM† [61] 73.9 91.9 57.5 84.2 43.6 74.0 33.0 63.2 25.6 35.0 54.2 70.0 98.4 100.3

R-LSTM [7] 75.1 91.3 58.3 83.3 43.6 72.7 32.3 61.6 25.1 33.6 54.1 68.8 96.9 98.8

ATT-FCN† [62] 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8

Hard-Attention [62] 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3

Adaptive-Attention† [45] 74.6 91.8 58.2 84.2 44.3 74.0 33.5 63.3 26.4 35.9 55.0 70.6 103.7 105.1

SCA-CNN [6] 71.2 89.4 54.2 80.2 40.4 69.1 30.2 57.9 24.4 33.1 52.4 67.4 91.2 92.1

Top-down [1] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

memory-att [3] 75.5 92.7 59.2 85.2 45.5 75.4 34.8 64.8 27.2 36.7 55.8 71.4 106.9 106.7

Ours 80.8 95.3 64.3 89.0 49.5 79.8 37.5 69.7 28.0 36.9 57.9 73.0 118.8 121.5

Oursa 80.9 95.6 64.7 89.4 49.9 80.3 37.6 70.1 28.3 37.3 58.2 73.3 121.9 124.3

a The results of ensemble models

as a whole, which can reveal that the proposed selective
reading mechanism is superior to the recurrent reading
mechanism.

Considering three kinds of knowledge to be stored in the
memory, we can see that three kinds of knowledge can bring
performance improvement over the basic model. And as a
whole, the visual knowledge can boost the captioning model
more significantly than semantic knowledge and fusion
knowledge when both kinds of image features.

Compared with the State-of-the-art Method We further
compare our models with several state-of-the-art meth-
ods, as shown in Table 3. We divide the state-of-the-
art approaches into four categories. The first category of
approaches simply inject the visual feature, i.e., a static
vector, into the decoder. This category includes Google
NIC [54], Deep VS [27], R-LSTM [7, 11], m-RNN [47], and
ERD [60], as listed in the second block of Table 3. The sec-
ond category of approaches include ATT [62], Soft/Hard-
Attention [59], SCA-CNN [6], and Adaptive-Attention [45],
which leverages the visual attention mechanism to enable
the decoder to capture different aspects of visual infor-
mation. The third category involves SCN-LSTM [18],
MSM [61], RA+SF [25], and Show and Observe [4], which
boost the captioning model with semantic-level informa-
tion, such as attributes. The fifth block in Table 3 shows
the fourth category of approaches which enhance the cap-
tioning model with reinforcement learning, including VS-
LSTM [37], StackCap [20], SCST [51], SR-PL [43], and
MIXER [50]. We also list the performance of top-down

reported in [1] and memory-att of our previous conference
version [3]. We also compare our method with the state-of-
the-arts on the server of MS COCO.2 The comparison is
shown in Table 4.

From Tables 3 and 4, we can see that our single model
can obtain better results than all baseline models, and
our ensemble model can improve the performance further.
The results can well demonstrate the effectiveness and the
superiority of the proposed method, compared with the
state-of-the-art approaches.

Qualitative Analysis

Some examples of the generated captions are shown in
Fig. 4. For image 10, the top-down model correctly recog-
nizes the cat, but fails to recognize its position, i.e., “refrig-
erator” instead of “kitchen,” while the proposed memory-
captioning models can describe the scene successfully. As
for images 1, 2, 3, 8, and 9, the top-down captioning model
struggles to describe the objects relations, such as “stand-
ing” for “man” and “surfboard” in image 1, “in front of” for
“building” and “clock tower” in image 2, and “standing on
top of” for “cat” and “glass bottle” in image 8, while the
proposed models can generate accurate captions. Besides,
the proposed model can also be kind of superior to the
basic top-down model in terms of novelty and the precision
of descriptions, e.g., “overlooking” the ocean in image 3,

2https://competitions.codalab.org/competitions/3221#results
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Image Generated cap�on Ground truth

topdown: a man is standing on a sur�oard in the ocean
MemRRM: a man standing on the beach flying a kite
MemSRM: cap�on: a man is flying a kite on the beach

The kite surfer is walking on the beach holding the kite.
A man flying a kite over a sandy beach.
A man flying a kite while walking on the beach.
A man carrying something and flying a kite with his other hand.
A man holding kite down by the ocean.

topdown: a building with a clock tower in front of it
MemRRM: a building with a clock tower on the top of
MemSRM: a large building with a clock tower on the top'}

A concrete building with towers, a steep in the middle and a clock underneath.
A large gray building with a clock tower surrounded by some trees.
a big tower that is surrounded by trees
A large gray building with a clock tower.
A stone building that has a clock on the top.

topdown: a couple of people si�ng on a bench in the water
MemRRM: a man si�ng on a bench overlooking the ocean
MemSRM: a man si�ng on a bench next to the ocean

A man si�ng on a bench right on a bay of water.
A person si�ng down a bench in front of the ocean.
Man si�ng on bench on rocky shore watching ship in distance.
Man si�ng on a bench overlooking the ocean.
A man si�ng on top of a bench near the ocean.

topdown: a man is standing next to a cow
MemRRM: a man is milking a cow in a barn
MemSRM: a man is milking a cow in a fence

A man milking a cow during the day.
A man milking a brown and white cow in barn.
The guy with the white shirt and baseball cap is milking the cow.
A man on a stool milking a cow.
a man si�ng on a stool milking a cow

topdown: a cat si�ng in front of a mirror
MemRRM: a cat is looking at its reflec�on in a mirror
MemSRM: a cat is looking at its reflec�on in a mirror

A cat looking at his reflec�on in the mirror.
A cat that is looking in a mirror.
A cat looking at itself in a mirror.
A cat looking at itself adoringly in a mirror.
A cat stares at itself in a mirror.

463325 topdown: a stop sign in front of a building
MemRRM: a woman standing in front of a stop sign
MemSRM: a woman standing in front of a stop sign

A woman is standing beside a stop sign in a museum.
A woman standing next to a red stop sign with street signs.
A woman is standing next to a stop sign
A museum exhibit featuring a large stop sign.
A woman leans on a lit up stop sign at an art exhibit.

48924 topdown: a motorcycle parked in the grass of a field
MemRRM: a motorcycle parked in the grass with a tent
MemSRM: a motorcycle parked in the grass next to a tent

A dirt bike parked near a tent in the woods.
a green tent and a parked motorcycle and some trees
Motorcycle parked in front of a tent with the sun going down behind them.
a motorcycle parked next to a green tent in a field
A parked motorcycle next to a green tent.

topdown: a black cat standing on top of a glass bo�le
MemRRM: a black cat standing next to a bo�le of wine
MemSRM: a black cat standing on a table next to a bo�le of 
wine

A black cat rubbing up against a bo�le of wine.
A black cat and a bo�le of wine.
A cat is walking past a bo�le on a counter
close up of a black cat neat a bo�le of wine
A black cat walks gingerly around an empty wine bo�le.

topdown: a group of people standing around a birthday cake
MemRRM: a woman holding a birthday cake with candles on 
it
MemSRM: a woman holding a birthday cake with candles on 
it

A woman holding a birthday cake with lit candles.
a person holding a cake with lit candles
A woman in a floral blouse carrying a cake.
A woman is walking with a birthday cake at a party with people.
A woman carrying a birthday cake with several lit candles on it.

topdown: a cat si�ng on the door of a kitchen
MemRRM: a black and white cat si�ng on top of a 
refrigerator
MemSRM: a black and white cat si�ng on top of a 
refrigerator

A cat in a kitchen on top of a refrigerator.
A cat si�ng on the top of a refrigerator hiding.
A cat is standing on top of a fridge.
A cat tucked between the top of a refrigerator and some cabinets.
A cat that is si�ng on top of a fridge.
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Fig. 4 Examples of the proposed memory-enhanced models
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“milking a cow in a barn” in image 4, and “looking at its
reflection” in image 5.

Conclusion

Conventional captioning models usually adopt a recurrent
neural network (RNN) to capture the long-term dependen-
cies among words and generate the caption. However, it
has been shown that RNNs have difficulties in remem-
bering the knowledge too far in the past, even with some
advanced techniques, e.g., the gating mechanism. In this
paper, we propose a memory-enhanced captioning model
for image captioning, named MemSRM, which can enhance
the decoder’s capability of memorizing knowledge by intro-
ducing an extern memory. Specifically, different kinds of
knowledge, i.e., the visual knowledge, the semantic knowl-
edge, and the fusion of both, are stored in the external
memory. And for decoding, with the memory reading mech-
anism, i.e., the selective reading mechanism (SRM), the
external memory can provide a feature representation of the
past knowledge to help the prediction of the next words. To
verify the effectiveness of the proposed model, we conduct
extensive experiments and comparisons on a well-known
image captioning dataset, i.e., MS COCO. In comparison
with other state-of-the-art captioning models, the proposed
MemSRM shows a substantial advantage in terms of per-
formance improvement, which can well demonstrate that
the proposed captioning model is effective and superior.
For future studies, we plan to explore the writing mecha-
nisms and apply the proposed memory-enhanced approach
in other tasks, for example, image classification [12, 40],
visual retrieval [57, 58].

Compliance with Ethical Standards

Ethical Approval This article does not contain any studies with human
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