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Abstract—Computationally modelling the affective content of images has been extensively studied recently because of its wide

applications in entertainment, advertisement, and education. Significant progress has been made on designing discriminative features

to bridge the affective gap. Assuming that viewers can reach a consensus on the emotion of images, most existing works focused on

assigning the dominant emotion category or the average dimension values to an image. However, the image emotions perceived by

viewers are subjective by nature with the influence of personal and situational factors. In this paper, we propose a novel machine

learning approach that characterizes the categorical image emotions as a discrete probability distribution (DPD). To associate emotion

with the visual features extracted from images, we present shared sparse learning to learn the combination coefficients, with which the

DPD of an unseen image is predicted by linearly combining the DPDs of the training images. Furthermore, we extend our method to the

setup where multi-features are available and learn the optimal weights for each feature to reflect the importance of different features.

Extensive experiments are carried out on Abstract, Emotion6 and IESN datasets and the results demonstrate the superiority of the

proposed method, as compared to the state-of-the-art approaches.

Index Terms—Emotion distribution, image emotions, shared sparse learning, multi-feature fusion

Ç

1 INTRODUCTION

IMAGES play an important role in people’s daily lives,
which are widely used together with text and videos to

share their activities and express their opinions. As the emo-
tions that people perceive from images can usually influ-
ence their visual preference and determine their decision
making, analyzing images at the emotional level is consid-
ered promising for facilitating image understanding (e.g.,
sentiment concept classification [1]) and human behavior
estimation (e.g., stress detection [2]). Driven by such a broad
application prospect, scientists have tried to develop
computational models to analyze the affective content of
images [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. This task is often referred to as
image emotion recognition (IER) [6], [10], [14], which can be
deemed as a machine learning problem. Typically, IER
includes three steps: collecting human annotations of image

emotions, extracting visual features from images and
employing machine learning techniques to learn the map-
ping between features and emotions.

Similar to other visual recognition problems, one main
challenge for IER is affective gap, which is defined as “the
lack of coincidence between the measurable signal proper-
ties, commonly referred to as features, and the expected
affective state in which the user is brought by perceiving the
signal” [19]. In order to bridge the affective gap, effective
hand-crafted or learning-based features are designed to
express emotions better. Existing IER methods mainly
focused on assigning the dominant emotion category or the
average dimension values to an image, based on the assump-
tion that viewers can reach a consensus on the emotion
of images.

However, labeling the emotions in images is in fact
highly inconsistent, which causes the so-called subjective
evaluation. That is, viewers might perceive different emo-
tions from the same image due to the influence of various
personal and situational factors, such as the cultural back-
ground, personality and social context [6], [10], [11], [12],
[13], [16], [17]. Fig. 1 illustrates the subjectivity issue for cat-
egorical emotions. To train an IER model, the emotion anno-
tations have to be solicited from viewers. The ground-truth
annotation of an image is usually obtained using the domi-
nant emotion category, like Contentment and Sadness in
Fig. 1, where the pie chart on the right of each image shows
the corresponding emotion distributions. We can see that
the two images of each group have the same dominant emo-
tion category but differ a lot in their emotion variances.
Therefore, the dominant emotion category does not pre-
cisely reflect the affective content of these images.
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As noted in [20], to tackle the subjectivity challenge, two
kinds of IER tasks can be performed: user-centric personal-
ized emotion perception prediction for each viewer [13],
[18] and image-centric emotion probability distribution pre-
diction for each image [11], [12], [15]. In this paper, we pro-
pose a novel method to predict the DPD of image emotions
from visual features, based on the following hypotheses:

� Hypothesis 1: The images, which are close to one
another in the visual feature space, would have simi-
lar DPDs in the categorical emotion space.

� Hypothesis 2: The DPD of a test image can be
approximately modeled as a linear combination of
the DPDs of the training images.

Our method mainly involves two processes, as illustrated
in Fig. 2. First, it learns a set of combination coefficients
(called shared factors) to reconstruct the visual features of a
test image with the visual features of the training images.
Second, it linearly combines the DPDs of the training
images using the learned shared factors to compute the
DPD of the test image. The two processes are referred to
shared factors learning and emotion distribution mapping,
respectively. The shared factors can be learned using vari-
ous optimization methods with different constraints.
Besides four simple baselines, in this paper we formalize
the factors learning task as a shared sparse learning (SSL)
problem. To fully explore the representation ability of dif-
ferent features, we further present weighted multi-feature
shared sparse learning (WMFSSL), which can automatically
learn the optimal weights for each feature to reflect their
importance. The SSL series problems are optimized by itera-
tively reweighted least squares (IRLS) [21], [22]. We validate
the effectiveness of the proposed method for discrete emo-
tion distribution prediction on Abstract [5], Emotion6 [11]
and Image-Emotion-Social-Net (IESN) [13], [18] datasets.

The contributions of this paper are two-fold. First, we
present a novel learning model, named shared sparse learn-
ing under both uni-feature and multi-feature settings for
DPD prediction of image emotions, and optimize it by itera-
tively reweighted least squares. Second, we provide a sys-
tematic summarization on predicting the DPD of image
emotions for further research, including the datasets, base-
lines, and evaluations. To the best of our knowledge, we are
the first to employmulti-feature fusion for DPD prediction.

One preliminary conference version on DPD prediction
of image emotions was first introduced in our previous
work [12], [23]. Our new improvement compared with the
conference version lies in the following three aspects: (1) we
perform a more comprehensive survey of related works; (2)
we provide a more systematic summarization for DPD pre-
diction of image emotions; and (3) we conduct more com-
parative experiments and enrich the analysis of the results.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 provides an overview
of the proposed method. Section 4 presents the emotion dis-
tribution prediction algorithms, including the proposed
(WMF)SSL and four baseline methods. Section 5 describes
the experimental setup, including the datasets, extracted
features, evaluation metrics and implementation details.
Experimental results and analysis are reported in Section 6,
followed by the conclusion in Section 7.

2 RELATED WORKS

In this section, we review related works on image emotion
recognition, probability distribution prediction, sparse
learning and multi-model learning.

Image Emotion Recognition. As an active research topic for
several years, IER has attracted some attention from both
the academic and industrial communities. Based on the
emotion representation models, recognition tasks, extracted
features and machine learning methods, we can classify
related works into different categories.

There are two typical kinds of emotion representation
models: categorical emotion states (CES) and dimensional
emotion space (DES). CES methods directly map emotions
to one of a few basic categories1 [3], [4], [5], [7], [8], [14],
[26], [27], [28], [29], [30], [31], [32], such as surprise and fear.
DES methods employ 3-D or 2-D space to represent
emotions, such as valence-arousal-dominance [33], natural-
temporal-energetic [34] and valence-arousal [7], [10], [19].

Fig. 1. The differences between affective image classification and emo-
tion distribution prediction. The words (a) Contentment and (b) Sadness
are the target emotion categories to related images by affective image
classification, while the pie chart on the right of each image is the target
distribution by emotion distribution prediction on 8 emotion categories.

Fig. 2. Diagram of the emotion distribution prediction process. Given the
visual feature of a test image, we use a dictionary of visual features of the
training images to learn the shared factors, and then use the same shared
factors to predict the DPD of the test image by linearly combining the
DPDs of the training images. Thewhite and gray boxes are used to denote
the observed variables and the variables to be estimated, respectively.

1. Specifically, image emotion is often called image sentiment for
binary positive or negative classification [1], [9], [24], [25].
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The former one is straightforward for users to understand
and label, while the latter one is more descriptive. Accord-
ingly, different tasks have been performed, including affec-
tive image classification [4], [5], [7], [8], [9], [10], [13], [14],
[18], [28], [29], [30], [31], [32], [35], regression [7], [10], [13],
[18] and retrieval [3], [36]. As the most popular research
task, affective image classification mainly tries to assign a
dominant emotion category to an image based on CES mod-
els. We also represent image emotions using CES model.
But instead of focusing on the single dominant emotion cat-
egory, we propose to predict the DPD of image emotions.

Feature extraction plays an important role in IER. In the
early years, different levels of hand-crafted features are
designed to bridge the affective gap. Yanulevskaya et al. [4]
extracted low-level holistic Wiccest and Gabor features.
Inspired from psychology and art theory, Machajdik
et al. [5] defined a combination of rich features, including
color, texture, composition and simple semantics. The mapping
between emotion and low-level shape features is investi-
gated in [7]. Complementary to elements-of-art, more robust
and invariant visual features are designed based on princi-
ples-of-art to capture mid-level emotion representation [10].
Visual sentiment ontology and detectors are proposed to
detect high-level adjective noun pairs based on large-scale
social multimedia data [1] [9]. More recently, with the great
success of convolutional nerual network (CNN) in many
computer vision tasks, such as image classification [37] and
object detection [38], CNN has also been directly employed
in IER [14], [32], [35]. In this paper, we extract hand-crafted
features together with CNN features, and jointly combine
them for emotion distribution prediction.

To learn the mapping between features and emotions,
different machine learning methods have been employed,
such as Naive Bayes [5], SVM or SVR [7], [10], sparse learn-
ing [15], [28], multi-graph learning [36], nonlinear matrix
completion [35] and hypergraph learning [13], [18]. We
present a novel sparse learning method to map the feature
space to emotion distribution space.

Note that affective content analysis has also been widely
studied based on other types of input data, such as text [39],
[40], speech [41], [42], music [43], [44], [45], [46], videos [47],
[48], [49], [50], physiological signals [51], [52] and multi-
modal data [53], [54], [55].

Probability Distribution Prediction. In many applications of
machine learning, simply predicting the most likely value
for a target variable is not enough. For example, it is often
important in economics to study the fluctuations of stocks. In
such cases, it would bemore reasonable and useful to predict
the probability distribution for that variable [56], which has
been studied in some areas, such as surf height [56], user
behavior [57], spike events [58] and facial ages [59].

According to probability theory, there are typically two
types of probability distributions: discrete probability distri-
bution (DPD) and continuous probability distribution (CPD).
Generally, the distribution prediction task can be formalized
as a regression problem. As the emotions that are evoked in
viewers by an image are highly subjective, predicting the dis-
tribution instead of the dominant emotion would make more
sense. For different emotion representation models, the dis-
tribution prediction varies slightly. For CES, the task aims to
predict the discrete probability of different emotion

categories, the sum of which is equal to 1 [11], [12]. For DES,
the task usually turns to predict the parameters of specified
continuous probability distribution, the form of which
should be firstly decided, such as Gaussian distribution [15]
and exponential distribution. In this paper, we focus on the
former one, i.e., predicting the DPD of image emotions.

Sparse Learning and Multi-Modal Learning. Sparse learning
represents the target variable as a sparsely linear combina-
tion of a set of basis functions and is widely used in many
areas, such as face recognition [60], visual classification [61]
and emotion analysis [15], [28]. Meanwhile, in many real-
world applications, we might have multi-modal data [62],
[63] from different sources [55], [64], [65], [66], [67]. We may
also extract multiple features for each modality [36], [68],
[69], [70]. As different modal data and different features usu-
ally represent different aspects of the target, jointly combin-
ing them may promisingly improve the performance [62],
[63]. Besides the traditional early fusion and late fusion, there
are many other multi-modal/multi-feature fusion strategies,
such as hypergraph learning [71], multigrahp learning [72]
and multimodal deep learning [73]. By extending sparse
learning in multi-feature settings, in this paper we present
weighted multi-feature shared sparse learning to make full
use of the representation ability of different features for prob-
ability distribution prediction of visual emotions.

3 SYSTEM OVERVIEW

Our goal is to predict the DPD of image emotions when
multi-features are available. Suppose we have L emotion
categories c1; c2; . . . ; cL and N training images I1; I2; . . . ; IN .
The mth features of the N training images are XXm ¼ ½xxm

1 ;
xxm2 ; . . . ; xx

m
N � and the feature dimension is dm (m ¼ 1;

2; . . . ;M). Let ppn ¼ ½pn1; . . . ; pnl; . . . ; pnL�T denote the emo-
tion distribution of the image In, where pnl represents the
probability that image In conveys emotion cl (n ¼ 1; 2; . . . ;
N , l ¼ 1; 2; . . . ; L). For each image In, we have

PL
l¼1 pnl ¼ 1.

Suppose I is a test image, its M features are yy1; yy2; . . . ; yyM

and the ground-truth distribution is pp ¼ ½p1; p2; . . . ; pL�T. Let
X ¼ fXX1; XX2; . . . ; XXMg and YY ¼ fyy1; yy2; . . . ; yyMg denote the
feature set of the training images and the test image, respec-
tively. Let PP ¼ ½pp1; pp2; . . . ; ppN � denote the training labels of
emotion distribution. Then our task is to predict emotion
distribution bpp ¼ ½bp1; . . . ; bpl; . . . ; bpL�T, where bpl ¼ pðcljYY Þ for
test image I based on training examples ðX; PP Þ. That is, our
task aims to find the appropriate mapping

f : fðX; PP Þ; YY g ! bpp: (1)

The framework of the proposed method is shown in
Fig. 3, which consists of operations in the visual space and
the emotion space. In the visual space, we extract multi-fea-
tures from the images and use algorithms such as PCA for
dimension reduction [5], [10]. In the emotion space, the
human emotion annotations are normalized to obtain the
DPDs for the training images. For a given test image, the
shared factors learning algorithms are used to learn the
mapping factors in the visual space, which are directly
transferred to the emotion space to predict the DPD.

4 DISTRIBUTION PREDICTION ALGORITHMS

In this section, we introduce the proposed emotion distribu-
tion prediction method in detail. Since few algorithms have
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been developed before to predict the DPD of image emo-
tions, we first introduce some baselines and then present our
main prediction algorithm. For clarification, we take themth
feature for example to explain the four baselines and SSL.

4.1 Baseline A: Global Weighting

The idea of global weighting (GW) is simple and direct. The
emotion distributions ppnðn ¼ 1; 2; . . . ; NÞ of all training
images are considered as basis functions. The emotion dis-
tribution bpp for image I is computed by weighting all the
basis functions,

bpp ¼
PN

n¼1 snppnPN
n¼1 sn

; (2)

where sn ¼ expð� dðyym;xxmn Þ
s
Þ is the similarity between yym and

xxm
n , dð�; �Þ is a specified distance function, s is set as the aver-

age distance of all the training images. In our implementa-
tion the Euclidean distance is used for dð�; �Þ.

4.2 Baseline B:K-Nearest Neighbor Weighting

Different from GW, K-nearest neighbor weighting
(KNNW) just usesK instead of all basis functions by select-
ing the top K most similar training images. Suppose the top
K largest similarities in ½s1; . . . ; sN � are sl1 ; . . . ; slK , then the
emotion distribution bpp for image I predicted using K-near-
est neighbor weighting is computed by

bpp ¼
PK

k¼1 slkplkPK
k¼1 slk

: (3)

WhenK ¼ N ,KNNW equals GW.

4.3 Baseline C: Softmax Regression

Softmax regression (SR) defines the posterior emotion
pðcljyymÞ as a softmax transformation of linear functions of
the features yym, which is computed by

pðcljyymÞ ¼ expðvvTl yymÞPL
j¼1 expðvvTj yymÞ

; (4)

where vv1; vv2; . . . ; vvL are dm dimensional weight vectors.
These parameters fvvlg are determined by optimizing the fol-
lowing objective function, which tries to minimize the errors
between the predicted results pðcjjxxmn Þ of training examples
and their ground truth pnj

vv�1; . . . ; vv
�
L ¼ min

vv1;...;vvL
Eðvv1; . . . ; vvLÞ; (5)

Eðvv1; . . . ; vvLÞ ¼
XN
n¼1

XL
j¼1
½pðcjjxxm

n Þ � pnj�2 þ �
XL
j¼1
kvvjk22; (6)

where k:k2 is ‘2 norm, � is the regularization coefficient that
controls the relative importance of the regularization term
and the sum-of-squares error term.

We use gradient descent to solve the optimization prob-
lem of Eq. (5). The gradient of Eq. (6) with respect to vvl is

rvvlE ¼ 2
XN

n¼1 pðcljxx
m
n Þ

�
pðcmjxxm

n Þ � pnl

�
XL

j¼1½pðcjjxx
m
n Þ � pnj�pðcjjxxm

n Þ
�
xxm
n þ 2�vvl:

(7)

Then vvl ðl ¼ 1; 2; . . . ; LÞ can be iteratively updated by
vvl  vvl � zrvvlE, where z is the step size.

4.4 Baseline D: CNN Regression

Convolutional neural network regression (CNNR) [37] was
used for emotion distribution prediction in [11]. We follow
the settings of CNNR in [11] as a baseline. That is, a regres-
sor is trained for each emotion category with the exact CNN
in [37] except that the number of output nodes is changed to
1 to predict a real value and that the softmax loss layer is
replaced with the Euclidean loss layer. The predicted proba-
bilities of all emotion categories are normalized to sum to 1.

4.5 Algorithm E: Shared Sparse Learning

The basic idea of shared sparse learning is that yym and bpp can
be written in terms of bases XXm 2 Rdm�N and PP 2 RL�N

respectively, but with shared sparse coefficients uum 2 RN .
That is

yym ¼ XXmuum and bpp ¼ PPuum; (8)

where uum is obtained by

uum� ¼min kyym �XXmuumk22 þ hkuumk0;
s:t: uum � 0 and kuumk1 ¼ 1:

(9)

h is a regularization coefficient, similar to � in Eq. (6). The
constraints uum � 0 and kuumk1 ¼ 1 ensure that the predictedbpp is a probability distribution, that is, bpp � 0 and kbppk1 ¼ 1.

Please note that sparse learning was previously used in
many applications [28], [60], [61]. The difference is that the
proposed SSL utilizes ‘0 norm instead of ‘1 norm and is
optimized with constraints. Directly optimizing ‘1 norm
without constraints cannot guarantee that the predicted
results sum to 1. Though we may normalize the results to
satisfy the probability definition, the emotion correlations
are actually ignored.

Fig. 3. The framework of the proposed method for DPD prediction of image emotions from visual features. The black solid and blue dash arrowed
lines indicate the operations for the training and test images, respectively.

ZHAO ET AL.: DISCRETE PROBABILITY DISTRIBUTION PREDICTION OF IMAGE EMOTIONS WITH SHARED SPARSE LEARNING 577

Authorized licensed use limited to: Tsinghua University. Downloaded on April 13,2023 at 02:59:19 UTC from IEEE Xplore.  Restrictions apply. 



The optimization of Eq. (9) is a NP-hard problem [74],
which cannot be directly solved. By replacing ‘0 norm with
‘p norm as in [21], [22], we relax the objective function to

J ðuumÞ ¼ kyym �XXmuumk22 þ hkuumkpp
¼ kyym �XXmuumk22 þ h

XN

n¼1 ju
m
n jp;

(10)

where 0 < p 	 1. By iteratively reweighted least
squares [21], [22], Eq. (10) can be reduced to the following
quadratic function with respect to uum

J ðuumÞ ¼ kyym �XXmuumk22 þ h
XN
n¼1

1

jumn j2�p þ "
junj2

¼ ðuumÞTððXXmÞTXXm þ hGGÞuum � 2ðyymÞTXXmuum;

(11)

where " > 0 is introduced to avoid division by zero, GG is a
diagonal matrix with GGðn; nÞ ¼ 1

jumn j2�pþ"
. The original optimi-

zation problem Eq. (9) is now approximately solved by a

series of constrained least squares problems

minfðuumÞTððXXmÞTXXm þ hGGÞuum � 2ðyymÞTXXmuumg;
s:t: uum � 0 and kuumk1 ¼ 1:

(12)

In practice, p! 0. The procedure is summarized in Algo-
rithm 1. The computation complexity is Oðc � E �N � dmÞ,
where c is the number of iterations in conjugate gradient.

Algorithm 1. Procedure for Shared Sparse Learning

Input: Training examples ðXXm;PP Þ, test feature yym, max-epochs
E, error threshold t, regularization coefficient h

Output: Predicted emotion distribution bpp for yym
1 Initialization: uuð0Þ ¼ ½uð0Þ1 ; . . . ; u

ð0Þ
N �  1=N , " 10�9, p 0;

2 for e 1 toto E do
3 GGðeÞðn; nÞ  1

juðe�1Þn j2�pþ"
, n ¼ 1; . . . ; N ;

4 uuðeÞ  minfuuTððXXmÞTXXm þ hGGðeÞÞuu � 2ðyymÞTXXmuug, s.t. uu �
0; kuuk1 ¼ 1

5 if kuuðeÞ � uuðe�1Þk2 < t then
6 break;
7 end
8 end
9 return bpp ¼ PPuuðeÞ.

4.6 Algorithm F: Weighted Multi-Feature Shared
Sparse Learning

As shown in [36], image emotions are conveyed by complex
visual features from low-level to high-level, such as color
contrast and semantic concepts. In practice, we can extract
multiple visual features to represent images. Jointly combin-
ing the strength ofmulti-featuresmay improve the prediction
performance. CNNR is based on CNN features, while GW,
KNNW, SR, and SSL can simply adopt early fusion, late
fusion, and canonical correspondence analysis (CCA)
fusion [75], [76] to handle multi-features. But they ignore the
latent correlation between different features. We present
weighted multi-feature shared sparse learning to provide
additional useful information to the prediction problem by
the constraint of joint sparsity across different features,which
may enforce the robustness in coefficient estimation [61].

Algorithm 2. Procedure for Weighted Multi-Feature
Shared Sparse Learning

Input: Training examples ðX; PP Þ, test feature YY , max-epochs
E, error threshold t1; t2, regularization coefficients
a;b

Output: Predicted emotion distribution bpp for YY
1 Initialization: uumð0Þ  1=Nðm ¼ 1; 2; . . . ;MÞ, " 10�9, p 0,

wwð0Þ  1=M;
2 for e 1 toto E do

/* Updating QQ when fixingWW /*
3 form 1 toto M do
4 Compute the diagonal matrix FðeÞ by ’ðeÞn  1=� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1ðumðe�1Þn Þ2
q

þ "
�
, FðeÞðn; nÞ  

ffiffiffiffiffiffiffiffi
’
ðeÞ
n

q
ð1 	 n 	 NÞ;

5 Optimize uum by

uumðeÞ  minwðe�1Þm kyym �XXmuumk22 þ akFðeÞuumk22;
s:t: uum � 0; kuumk1 ¼ 1;

6 end
/* Updating ww when fixing QQ /*

7 Optimize ww by

wwðeÞ  min
XM

m¼1 wmkyym �XXmuumðeÞk22 þ bkwwk22;
s:t: ww � 0; kwwk1 ¼ 1;

8 if kuumðeÞ � uumðe�1Þk2 < t1ðm ¼ 1; 2; . . . ;MÞ & kwwðeÞ � wwðe�1Þ

k2 < t2 then
9 break;
10 end
11 end
12 QQðeÞ ¼ ½uu1ðeÞ; uu2ðeÞ; . . . ; uuMðeÞ�;
13 return bpp ¼ PPQQðeÞwwðeÞ.

Extended from SSL, WMFSSL assumes that multi-
features YY and bpp can be written in terms of bases X and
PP 2 RL�N respectively, but with shared sparse coefficients
QQ 2 RN�M . That is

yym ¼ XXmuumðm ¼ 1; 2; . . . ;MÞ and bpp ¼ PPQQww; (13)

where QQ ¼ ½uu1; uu2; . . . ; uuM � and ww ¼ ½w1; w2; . . . ; wM �T are
obtained by

½QQ�; ww�� ¼ min
XM
m¼1

wmkyym �XXmuumk22

þ akQQk2;1 þ bkwwk22;
s:t: uum � 0; kuumk1 ¼ 1 and ww � 0; kwwk1 ¼ 1:

(14)

a and b are regularization coefficients. The constraints
uum � 0, kuumk1 ¼ 1 and ww � 0, kwwk1 ¼ 1 together ensure that
the predicted bpp is a probability distribution.

Please note that the difference between our method and
[61] is that our method adopts a weighted strategy for the
integration of different features., and is optimized with con-
straints to guarantee the property of probability distribution.
Themethod in [61], mainly used for visual classification, can-
not be directly employed in our DPD prediction task.

To solve the dual-optimization problem in Eq. (14), we
alternatively conduct optimization.

1) Updating QQ when fixing ww. Similar to SSL, we employ
IRLS [21], [22] to optimize QQ in Eq. (14), the component
kQQk2;1 of which is transformed by
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kQQk2;1 ¼
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1
ðumn Þ2

vuut ’
XN
n¼1

PM
m¼1ðumn Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1ðumn Þ2

q
þ "

; (15)

where " > 0 is introduced to avoid division by zero. Let

’n ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1ðumn Þ2
q

þ "Þ. Define diagonal matrix Fðn; nÞ ¼ffiffiffiffiffi
’n
p ð1 	 n 	 NÞ. Then the objective function of Eq. (14)

with respect to QQ is transformed to

OðQQÞ ¼
XM
m¼1

wmkyym �XXmuumk22 þ akFuumk22: (16)

minOðQQÞ can be optimized for each uum independently

min wmkyym �XXmuumk22 þ akFuumk22;
s:t: uum � 0; kuumk1 ¼ 1;

(17)

which can be easily and efficiently solved by off-the-shelf
quadratic optimization methods.

2) Updating ww when fixing QQ. The optimization problem of
Eq. (14) with respect to ww is transformed to

min
XM
m¼1

wmkyym �XXmuumk22 þ bkwwk22;

s:t: ww � 0; kwwk1 ¼ 1;

(18)

which is a also quadratic programming problem. The learn-
ing procedure is summarized in Algorithm 2. The computa-
tion complexity is Oðc � E �N �PM

m¼1 dmÞ, where c is the
number of iterations in conjugate gradient when optimizing
uum. As c, E, N and dm are all not large in experiment, the
algorithm can be converged in a few seconds.

5 EXPERIMENT SETUP

To the best of our knowledge, there are three public datasets
that contain DPD information of image emotions:
Abstract [5], Emotion6 [11] and IESN [13], [18]. In this sec-
tion, we introduce these benchmark datasets and the experi-
mental settings in evaluating the performance of emotion
distribution prediction.

5.1 Datasets

The Abstract dataset [5] includes 279 abstract paintings
without any recognizable objects. These images were peer
rated in a web-survey by approximately 230 people into
8 emotion categories, including anger, disgust, fear, sadness
as negative emotions and amusement, awe, contentment,
excitement as positive emotions, based on a rigorous

psychological study [27]. On average each image was rated
about 14 times [5]. Only 228 images can be used for affective
image classification [5], [10], while all the 279 images can be
used for emotion distribution prediction.

The Emotion6 dataset [11] consists of 1,980 images col-
lected from Flickr, 330 for each of the Ekman’s 6 basic emo-
tions [26]: anger, disgust, fear, joy, sadness and surprise. The
emotional responses from subjects were obtained using
Amazon Mechanical Turk (AMT). Each image was scored
by 15 subjects into Ekman’s 6 basic emotions and neutral.

The Image-Emotion-Social-Net dataset [13], [18], which
contains 1,012,901 images collected from Flickr keywords
based searching strategy [8], [9], [30], is firstly used for per-
sonalized emotion prediction. Employing viewers to label
the emotions of images is tedious and time-consuming, and
even impossible for large-scale datasets. Instead, the emotion
information of the social images in IESN is automatically
obtained from the text data, such as the metadata and com-
ments, based on the assumption that viewers express their
emotion perceptions of the images by the text comments.
Similar to Abstract [5], the emotions are also classified into 8
categories. Totally, we select 3,792 images, each of which is
assignedwithmore than 15 categorial emotion labels.

Some image examples in the three datasets are illustrated
in Fig. 4. The emotion distribution on the 8 or 7 categories of
each image can be easily obtained by normalization, i.e.,
dividing the number of subjects who perceive each emotion
category by the number of all emotion perceptions. For
example, given an image, suppose the perceived emotion
number by 20 subjects on the 8 emotion categories is
v ¼ ½7; 0; 4; 5; 0; 6; 2; 1�, then the DPD is v=

PðvÞ ¼ ½0:28; 0;
0:16; 0:2; 0; 0:24; 0:08; 0:04�. Note that one subject can per-
ceive multiple emotions from the same image. The distribu-
tion of emotion numbers for the images in the three datasets
is shown in Fig. 5, from which we can clearly see the subjec-
tivity issue of emotion perceptions. Please note that the
emotions in IESN is less subjective than those in Abstract
and Emotion6. This is probably because that the images in
Abstract are abstract paintings without clear semantics, the
images with apparent expressions or text directly related to
emotions are removed when constructing Emotion6, while
the images in IESN are social ones and the emotions of one
viewer may be easily influenced by another.

5.2 Emotion Features

The features that determine the emotions of an image may
vary for different kinds of images [36]. To enhance the
representation power of visual features, we extract various
features, including hand-crafted ones of different levels and
learning-based ones.

Fig. 4. Image examples that contain DPD information in Abstract (top),
Emotion6 (middle) and IESN (bottom) datasets.

Fig. 5. The distribution of images that are labeled with different emotion
numbers, where the horizontal axis is the number of different emotions,
and the vertical axis is image proportion. The majority of images are
labeled with at least two emotion categories, which demonstrates that
the perceived emotions are truly subjective.
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We first extract two classes of low-level hand-crafted fea-
tures for their global descriptors of the overall image con-
tent. The first is the GIST feature, which is one of the most
commonly used features, for its relatively powerful descrip-
tion ability of visual phenomena in a scene perspective [77].
The second class includes the features derived from ele-
ments-of-art, i.e. color and texture [5].

Mid-level features are more semantic, interpretable and
have stronger link to emotions than low-level features [10].
Here we extract two classes of mid-level features. The first
is attribute based representation, including 102 dimensional
attributes which are commonly used by humans to describe
scenes [77]. Features inspired from principles-of-art, includ-
ing balance, contrast, harmony, variety, gradation, and move-
ment [10], are extracted as another mid-level features.

High-level features are the detailed semantic contents
contained in images. People can easily understand the emo-
tions conveyed in images by recognizing the semantics. We
extract a set of concepts described by the 1,200 adjective
noun pairs (ANPs) [9], which are detected by a large detec-
tor library SentiBank [9].

Further, we extract the deep features from the response
of the fully connected layer (FC) 7 of the AlexNet trained on
ImageNet [37], which is the final fully connected layer
before producing the class predictions. The deep feature for
each image is a 4096-dimensional vector.

The six sets of extracted visual features are abbreviated
as GIST, Elem, Attr, Prin, ANP and CNN with dimension
512, 48, 102, 165, 1200 and 4096, respectively.

5.3 Evaluation Metrics

The sum of squared difference, the Kullback-Leibler diver-
gence, the Bhattacharyya coefficient and the coefficient of
determination are used as the evaluation metrics. Suppose
T is the test set. For test image I, the ground-truth emotion
distribution is pp ¼ ½p1; p2; . . . ; pL�T and the predicted emo-
tion distribution is bpp ¼ ½bp1; bp2; . . . ; bpL�T.

The sum of squared difference (SSD) of test image I is
defined as

SSDIðIÞ ¼
XL
l¼1
ðbpl � plÞ2;

the SSD of emotion cl is defined as

SSDEðclÞ ¼ 1

#T

X
I2Tðbpl � plÞ2;

where#T is the number of test images; the overall SSD on T
is defined as

SSD ¼ 1

#T

X
I2T

SSDIðIÞ or
XL
l¼1

SSDEðclÞ:

SSD ranges from 0 to 1 and a good prediction results in a
small SSD value.

As a classical measure of distance between distributions,
the KL divergence (KL)2 of the predicted distribution bpp
from the ground truth distribution pp is defined as

KLðppjjbppÞ ¼XL
l¼1

�
pl ln pl � pl ln bpl�:

KL measures the amount of information lost when bpp is
used to approximate pp. KL � 0 and lower value indicates
better performance, with equality if, and only if the predicted
distribution bpp is equal to the ground truth distribution pp.
SinceKL is not well definedwhen a bin has value 0, we use a
small value 10�10 to approximate the values in such bins [11].

The Bhattacharyya coefficient (BC)3 between two DPDs pp
and bpp is defined by

BCðpp;bppÞ ¼XL

l¼1
ffiffiffiffiffiffiffiffi
plbplp

:

0 	 BC 	 1 and larger value represents better results.
The coefficient of determination, denoted R2 statistic

(R2),4 between two DPDs pp and bpp is defined by

R2ðpp;bppÞ ¼ cov2ðpp;bppÞ
varðppÞvarðbppÞ ;

where covð:; :Þ and varð:Þ are the covariance function and
variance function, respectively. R2 ranges from 0 to 1. If bpp
perfectly matches pp, the R2 value is 1. If there is no linear
relationship between the two DPDs, R2 is 0.

Please note that (1) SSD measures the performance from
the aspect of regression, while KL, BC and R2 measure the
distance between two distributions; (2) KL and BC empha-
size on each individual element, whereas R2 considers the
variance among all the elements in the DPD. Note that other
similarity measures between distributions, such as the earth
mover’s distance and Chebyshev distance [11], can also be
used as evaluation metrics. Due to the page limit, we do not
report these results.

5.4 Implementation Details

We randomly select 80, 50 and 50 percent images from the
Abstract, Emotion6 and IESN datasets respectively as the
training set and the remained form the testing set. For
KNNW, K is empirically set to 200, 500 and 500 respectively
for the Abstract, Emotion6 and IESN datasets. For SR, � is
decided by 5-fold cross validation in the training set. For
CNNR, as in [11], the AlexNet [37] is firstly pre-trained using
the Caffe reference model [78] and then fine-tuned with our
training set. As in [11], the number of output nodes is changed
to 1 to predict a real value. The softmax loss layer is replaced
with the Euclidean loss layer. In the predicting phase, the
probabilities of all emotion categories are normalized to sum
to 1. The following parameter settings are adopted: h ¼ 0:0001
for SSL, a ¼ 0:05 and b ¼ 0:1 for WMFSSL. We also conduct
empirical analysis on parameter sensitivity, which demon-
strates that SSL and WMFSSL have superior and stable per-
formances with a wide range of parameter values on all three
datasets. The features that are over 50-dimensional before
fusion are reduced to 50 by PCA to accelerate the optimiza-
tion. The settings of early and late fusions are similar to [72].
For early fusion, we concatenate the different features after
normalization of each feature and then put the combined one
into the learning algorithms. For late fusion, we first predict

2. https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_
divergence

3. https://en.wikipedia.org/wiki/Bhattacharyya_distance
4. https://en.wikipedia.org/wiki/Coefficient_of_determination
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the emotion distribution using each feature and then compute
the fused distribution using feature distance-based linear
weighting. The settings of CCA fusion are similar to [76]. The
linear combinations are transformed by maximizing the pair-
wise correlations across two features. Feature-level fusion is
performed by concatenation of the transformed feature vec-
tors for every two features successively. CCA fusion adopted
here is, in fact, another kind of early fusion. For better compar-
ison, the parameters of the baselines are carefully tuned and
the best results are reported. To remove the influence of any
randomness, we perform 20 runs and report the average
results with the standard deviation.

6 EXPERIMENTAL RESULTS

In this section, we report the results on different uni-
features, feature fusion methods, and parameter sensitivity.

6.1 On Uni-Features

Firstly, we conduct experiments to compare the performance
of different visual features and uni-feature based methods
for emotion distribution prediction. The average performan-
ces measured by SSD, KL, BC, R2 and the standard devia-
tions on Abstract, Emotion6 and IESN datasets are
summarized in Tables 1, 2, and 3, respectively. The best uni-
feature for each learning method is shown in italic, while the
best method for each uni-feature is emphasized in bold.

From the results, we have the following observations. (1)
Generally, the CNN features have stronger, at least compara-
ble, discriminability than the hand-crafted ones; the high-
level and mid-level hand-crafted features perform better
than low-level ones. These results are consistent with several
existing literatures [13], [14], [36]. (2) The CNNR method
achieves the best results in most cases with uni-features,

which demonstrates the effectiveness of CNNR in DPD pre-
diction of image emotions [11]. (3) For hand-crafted visual
features, the proposed SSL method outperforms the base-
lines, including GW,KNNWand SR. (4) The performance of
SR is not stable. Though direct and simple, GW andKNNW
perform better than SR. (5) The metrics SSD,KL andBC are
more consistent to measure the performance of distribution
prediction thanR2.

Besides the common observations above, there are still
some different results across datasets. (1) The features
derived from principles-of-art and elements-of-art perform
even better than the high-level ANP features on Abstract
and Emotion6 datasets. This is probably because the images
in Abstarct are abstract paintings without recognizable
objects, the emotions of which are mainly evoked by art the-
ory and aesthetics. Meanwhile, the apparent semantics
directly related to the evoked emotions, such as expressive
faces, are removed in the Emotion6 dataset construction [11].
(2) For most uni-features, GW performs better than KNNW
on Abstract dataset while reversely on Emotion6 and IESN
datasets, which might be caused by the fact that the number
of bases in Abstract dataset is small, which cannot well rep-
resent the variability within each emotion. (3) The metric R2

is much larger in IESN dataset than Abstract and Emotion6
datasets, since the evoked emotion numbers of each image
is relatively smaller in IESN (Fig. 5) due to the influence of
social factors, such as the joined interest groups.

6.2 On Different Feature Fusion Methods

Secondly, we compare the performance of different feature
fusion methods for emotion distribution prediction, includ-
ing the proposed WMFSSL, early fusion, late fusion and
CCA fusion for GW, KNNW, SR, and SSL. On the right of

TABLE 1
Performance Comparison on Abstract Dataset Measured by SSD,KL, BC, R2 (�10�1) and the Standard Deviations (�10�1)

GIST Elem Attr Prin ANP CNN Early Late CCA

GW 1.382 (0.060) 1.365 (0.056) 1.387 (0.060) 1.352 (0.039) 1.370 (0.056) 1.371 (0.056) 1.369 (0.056) 1.368 (0.055) 1.384 (0.057)
S KNNW 1.505 (0.113) 1.397 (0.979) 1.507 (0.096) 1.361 (0.040) 1.389 (0.051) 1.257 (0.050) 1.263 (0.049) 1.250 (0.047) 1.350 (0.061)
S SR 1.432 (0.068) 2.959 (1.410) 8.451 (1.911) 2.169 (0.299) 3.904 (1.817) 1.405 (0.616) 1.426 (0.083) 1.970 (0.490) 1.405 (0.044)
D CNNR – – – – – 1.244 (0.096) – – –

SSL 1.369 (0.073) 1.346 (0.134) 1.473 (0.090) 1.316 (0.106) 1.354 (0.035) 1.282 (0.046) 1.271 (0.045) 1.241 (0.055) 1.227 (0.060)
WMFSSL – – – – – – 1.191 (0.060)

GW 5.543 (0.168) 5.472 (0.160) 5.558 (0.163) 5.430 (0.128) 5.497 (0.150) 5.495 (0.157) 5.491 (0.155) 5.490 (0.152) 5.549 (0.161)
KNNW 6.113 (0.379) 5.687 (0.362) 6.166 (0.370) 5.576 (0.247) 5.657 (0.362) 5.173 (0.176) 5.142 (0.132) 5.105 (0.156) 5.491 (0.146)

K SR 5.754 (0.183) 36.61 (39.93) 98.01 (112.4) 15.35 (2.329) 28.86 (15.38) 5.653 (0.160) 5.742 (0.235) 7.074 (1.069) 5.613 (0.858)
L CNNR – – – – – 5.103 (0.305) – – –

SSL 5.525 (0.329) 5.439 (1.379) 6.070 (0.204) 5.421 (0.551) 5.475 (0.153) 5.225 (0.177) 5.126 (0.096) 5.034 (0.177) 5.014 (0.141)
WMFSSL – – – – – – 4.820 (0.209)

GW 7.984 (0.072) 8.010 (0.072) 7.980 (0.071) 8.017 (0.072) 7.996 (0.070) 7.998 (0.069) 7.999 (0.069) 7.999 (0.070) 7.982 (0.070)
KNNW 7.898 (0.125) 8.050 (0.078) 7.880 (0.102) 8.103 (0.069) 8.039 (0.099) 8.111 (0.077) 8.120 (0.048) 8.150 (0.068) 8.081 (0.082)

B SR 7.898 (0.069) 6.724 (1.218) 4.332 (1.247) 6.982 (0.236) 6.355 (0.818) 7.928 (0.061) 7.913 (0.073) 7.683 (0.221) 7.956 (0.247)
C CNNR – – – – – 8.173 (0.093) – – –

SSL 7.992 (0.108) 8.106 (0.168) 7.849 (0.928) 8.118 (0.077) 8.095 (0.048) 8.118 (0.074) 8.142 (0.046) 8.210 (0.081) 8.268 (0.039)
WMFSSL – – – – – – 8.319 (0.078)

GW 1.863 (0.062) 2.027 (0.120) 1.817 (0.065) 2.066 (0.092) 1.865 (0.094) 1.945 (0.109) 1.931 (0.102) 1.931 (0.081) 1.897 (0.092)
KNNW 1.919 (0.365) 2.316 (0.557) 1.758 (0.403) 2.447 (0.270) 2.327 (0.556) 2.612 (0.227) 2.759 (0.341) 2.789 (0.328) 2.416 (0.375)

R2 SR 1.754 (0.200) 1.400 (0.519) 1.891 (0.697) 1.790 (0.343) 1.674 (0.506) 2.122 (0.232) 1.632 (0.627) 1.534 (0.547) 1.687 (0.293)
CNNR – – – – – 2.796 (0.309) – – –
SSL 1.915 (0.236) 2.161 (0.372) 1.850 (0.395) 2.478 (0.428) 2.483 (0.337) 2.660 (0.385) 2.678 (0.354) 2.818 (0.456) 2.930 (0.145)

WMFSSL – – – – – – 2.993 (0.467)
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Tables 1, 2 and 3, the better fusion method for GW,KNNW,
SR, and SSL is shown in italic, while the best overall result is
highlighted in both italic and bold. Comparing the results,
we can observe that: (1) fusing multi-features by either early
fusion, late fusion or CCA fusion for GW, KNNW, SR, and

SSL can obtain better prediction performance than most of
uni-features; (2) the best fusion method is dependent on the
methods and datasets; on Abstract dataset, late fusion
achieves better performance for GW and KNNW, while
CCA fusion performs better for SR and SSL; on Emotion6

TABLE 3
Performance Comparison on IESN Dataset Measured by SSD,KL, BC, R2 (�10�1) and the Standard Deviations (�10�1)

GIST Elem Attr Prin ANP CNN Early Late CCA

GW 2.027 (0.035) 1.899 (0.027) 2.017 (0.035) 1.966 (0.036) 1.867 (0.036) 1.882 (0.038) 1.872 (0.038) 1.890 (0.035) 1.853 (0.036)
S KNNW 2.019 (0.199) 1.900 (0.029) 1.895 (0.003) 1.893 (0.024) 1.786 (0.083) 1.761 (0.123) 1.706 (0.062) 1.713 (0.051) 1.688 (0,054)
S SR 3.485 (0.440) 5.266 (0.348) 5.247 (0.335) 5.240 (0.332) 5.153 (0.316) 4.781 (1.120) 3.692 (0.349) 3.737 (0.067) 3.524 (0.328)
D CNNR – – – – – 1.703 (0.022) – – –

SSL 1.928 (0.431) 1.854 (0.078) 1.863 (0.008) 1.852 (0.113) 1.728 (0.002) 1.719 (0.054) 1.676 (0.125) 1.706 (0.090) 1.628 (0.119)
WMFSSL – – – – – – 1.569 (0.014)

GW 5.967 (0.095) 5.479 (0.093) 5.356 (0.098) 5.227 (0.110) 4.947 (0.099) 4.960 (0.101) 4.903 (0.100) 4.932 (0.099) 4.885 (0.096)
KNNW 5.824 (0.919) 5.284 (0.115) 5.236 (0.092) 5.195 (0.716) 5.059 (0.139) 4.916 (0.119) 4.853 (0.566) 4.901 (0.198) 4.817 (0.542)

K SR 18.86 (7.174) 14.53 (0.495) 14.57 (0.500) 14.46 (0.486) 14.35 (0.479) 15.02 (3.598) 14.51 (0.496) 10.09 (0.078) 12.48 (0.462)
L CNNR – – – – – 4.828 (0.953) – – –

SSL 5.606 (1.136) 5.292 (0.385) 5.173 (0.177) 5.083 (0.929) 4.915 (0.288) 4.874 (0.115) 4.812 (0.108) 4.837 (0.134) 4.783 (0.100)
WMFSSL – – – – – – 4.777 (0.016)

GW 7.910 (0.013) 8.258 (0.006) 8.319 (0.013) 8.385 (0.018) 8.457 (0.017) 8.453 (0.016) 8.455 (0.017) 8.453 (0.014) 8.461 (0.016)
KNNW 8.383 (0.086) 8.448 (0.009) 8.449 (0.058) 8.457 (0.006) 8.425 (0.092) 8.511 (0.096) 8.511 (0.038) 8.508 (0.028) 8.557 (0.034)

B SR 5.947 (0.307) 5.311 (0.089) 5.321 (0.090) 5.342 (0.089) 5.736 (0.087) 5.496 (0.873) 6.125 (0.090) 6.406 (0.049) 6.392 (0.088)
C CNNR – – – – – 8.534 (0.047) – – –

SSL 8.450 (0.290) 8.456 (0.054) 8.461 (0.020) 8.486 (0.055) 8.505 (0.003) 8.515 (0.037) 8.542 (0.072) 8.525 (0.068) 8.561 (0.066)
WMFSSL – – – – – – 8.583 (0.015)

GW 7.051 (0.284) 6.903 (0.292) 6.998 (0.281) 7.033 (0.273) 7.127 (0.285) 7.146 (0.281) 7.162 (0.282) 7.156 (0.283) 7.186 (0.280)
KNNW 7.014 (0.435) 7.150 (0.356) 7.119 (0.295) 7.155 (0.213) 7.219 (0.256) 7.230 (0.063) 7.281 (0.180) 7.252 (0.325) 7.296 (0.161)

R2 SR 6.922 (0.383) 6.324 (0.949) 6.576 (0.321) 6.730 (0.291) 6.831 (0.310) 6.795 (0.641) 6.963 (0.688) 7.016 (0.407) 6.968 (0.672)
CNNR – – – – – 7.306 (0.015) – – –
SSL 6.828 (0.361) 7.043 (0.059) 7.154 (0.283) 7.201 (0.501) 7.221 (0.319) 7.232 (0.239) 7.314 (0.178) 7.265 (0.171) 7.335 (0.175)

WMFSSL – – – – – – 7.358 (0.382)

TABLE 2
Performance Comparison on Emotion6 Dataset Measured by SSD,KL, BC, R2 (�10�1) and the Standard Deviations (�10�1)

GIST Elem Attr Prin ANP CNN Early Late CCA

GW 1.991 (0.043) 1.959 (0.052) 1.992 (0.043) 1.914 (0.050) 1.972 (0.046) 1.966 (0.047) 1.964 (0.047) 1.963 (0.047) 1.960 (0.047)
S KNNW 2.123 (0.048) 1.871 (0.084) 2.161 (0.052) 1.844 (0.057) 1.850 (0.014) 1.448 (0.075) 1.540 (0.017) 1.616 (0.008) 1.533 (0.036)
S SR 2.226 (0.063) 5.336 (4.246) 2.319 (0.172) 5.220 (4.156) 5.878 (2.473) 2.787 (0.245) 4.690 (1.383) 2.212 (0.121) 3.562 (0.185)
D CNNR – – – – – 1.394 (0.080) – – –

SSL 2.043 (0.061) 1.828 (0.061) 1.984 (0.033) 1.806 (0.065) 1.794 (0.122) 1.427 (0.043) 1.344 (0.033) 1.402 (0.086) 1.332 (0.042)
WMFSSL – – – – – – 1.268 (0.076)

GW 6.183 (0.016) 6.098 (0.044) 6.189 (0.017) 5.965 (0.033) 6.121 (0.027) 6.109 (0.026) 6.099 (0.026) 6.103 (0.027) 6.067 (0.024)
KNNW 6.768 (0.083) 6.039 (0.204) 6.871 (0.171) 5.892 (0.291) 5.972 (0.232) 5.349 (0.222) 5.058 (0.063) 5.067 (0.025) 5.024 (0.028)

K SR 7.093 (0.451) 44.62 (52.25) 7.499 (0.612) 28.31 (29.84) 36.02 (31.69) 11.89 (5.250) 19.93 (0.896) 6.880 (0.075) 8.379 (0.631)
L CNNR – – – – – 4.846 (0.469) – – –

SSL 6.389 (0.317) 5.999 (0.882) 6.205 (0.096) 5.863 (0.445) 5.705 (0.306) 5.244 (0.041) 4.825 (0.084) 5.064 (0.150) 4.796 (0.082)
WMFSSL – – – – – – 4.793 (0.097)

GW 7.876 (0.023) 7.892 (0.031) 7.868 (0.023) 7.935 (0.029) 7.884 (0.025) 7.888 (0.026) 7.890 (0.025) 7.890 (0.026) 7.912 (0.024)
KNNW 7.822 (0.031) 8.056 (0.082) 7.795 (0.044) 8.073 (0.043) 8.118 (0.009) 8.294 (0.055) 8.365 (0.005) 8.222 (0.008) 8.374 (0.006)

B SR 7.723 (0.033) 5.991 (2.170) 7.524 (0.082) 6.111 (2.004) 5.870 (1.399) 7.270 (0.451) 6.302 (0.167) 7.744 (0.056) 6.615 (0.154)
C CNNR – – – – – 8.437 (0.050) – – –

SSL 7.868 (0.097) 7.940 (0.049) 7.909 (0.009) 8.111 (0.113) 8.151 (0.061) 8.402 (0.015) 8.484 (0.012) 8.411 (0.044) 8.502 (0.014)
WMFSSL – – – – – – 8.529 (0.059)

GW 2.683 (0.345) 2.792 (0.316) 2.745 (0.367) 3.166 (0.365) 2.691 (0.322) 2.685 (0.352) 2.691 (0.337) 2.801 (0.345) 2.736 (0.336)
KNNW 2.738 (0.331) 3.582 (0.053) 2.505 (0.068) 3.625 (0.015) 3.632 (0.288) 4.142 (0.021) 4.386 (0.295) 4.012 (0.236) 4.427 (0.283)

R2 SR 2.105 (0.138) 2.314 (1.212) 1.682 (0.075) 2.399 (0.999) 2.256 (1.369) 1.700 (0.075) 2.524 (0.867) 3.175 (0.232) 2.739 (0.835)
CNNR – – – – – 4.434 (0.348) – – –
SSL 2.755 (0.381) 3.601 (0.104) 2.832 (0.151) 3.644 (0.117) 3.683 (0.182) 4.237 (0.014) 4.533 (0.180) 4.368 (0.161) 4.582 (0.174)

WMFSSL – – – – – – 4.679 (0.172)
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and IESN datasets, CCA fusion works better for GW,
KNNW and SSL, while late fusion outperforms early fusion
and CCA fusion for SR; (3) SSLwith CCA fusionmethod out-
performs CNNR on Abstract, Emotion6 and IESN datasets;
(4) generally, CCA fusion works better than early fusion; (5)
the proposed fusion method, namely WMFSSL, performs
the best on the three datasets, which demonstrates the effec-
tiveness ofWMFSSL for emotion distribution prediction.

Specifically, the performance improvements of SSL with
the best fusion method over the best uni-features measured
by SSD, KL, BC, R2 are 3.20, 3.66, 1.13, 5.94 percent on
Abstract, 5.82, 7.99, 0.98, 6.99 percent on Emotion6 and 2.50,
1.48, 0.32, 1.13 percent on IESN datasets, respectively. Com-
pared with the best results of GW, KNNW, SR, CNNR and
SSL, WMFSSL achieves the KL performance gains of 11.23,
5.58, 14.74, 5.55, 4.25 percent on Abstract, 19.65, 5.24, 30.33,
1.09, 0.66 percent on Emotion6 and 2.60, 1.57, 52.66, 1.06,
0.73 percent on IESN datasets, respectively. These results
demonstrate that the proposed (WMF)SSL method can
achieve superior performance over the state-of-the-art
approaches for emotion distribution prediction. The perfor-
mance improvements benefit from the representation com-
plementation of various features jointly explored in the
proposed method. Further, the weights of different features
are automatically learned, which indicates that the pro-
posed method can easily generalize to new datasets.

Fig. 6 shows the predicted emotion distributions on
images fromdifferent datasets. For convenience,we just com-
pare the proposed method with the best baseline method, i.e.
CNNR [11]. From the results, we can see thatWMFSSL gener-
ates the most similar distributions to the ground truth, which
demonstrates the effectiveness of the proposedmethod.

We also compare the computational efficiency between
the proposed method and the baselines. For fair compari-
son, we just compute the average test time of each algorithm
(GW, KNNW, SR, SSL all with CCA fusion, CNNR, and
WMFSSL), excluding the time of feature extraction and
dimension reduction. The average computational time of
different methods in the test stage is listed in Table 4. The
proposed method costs more time than other methods
due to its complexity of optimization. Since the dataset size
is not large, all the methods can predict a test image’s DPD
in a few seconds. The above computational time is obtained
by conducting the experiments on a server with an Intel

TABLE 4
The Average Computational Time (Seconds) in the Test Stage

GW KNNW SR CNNR SSL WMFSSL

Abstract 2.35e-5 4.23e-5 1.21e-4 2.46e-2 0.051 0.549
Emotion6 6.37e-5 9.89e-5 3.56e-4 3.52e-2 0.168 1.236
IESN 1.19e-4 2.71e-4 4.57e-3 7.68e-2 0.506 5.483

Fig. 6. Predicted emotion distributions using the proposed (WMF)SSL and the best state-of-the-art approach (CNNR [11]). Images and the corre-
sponding ground truth distributions (‘GT’) are shown in the first and last columns of each group, respectively.
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Core i7-4770K CPU, 32GB RAM and 64-bit ubuntu 16.04
LTS operating system.

6.3 On Parameter Sensitivity

In SSL, we have one sparsity parameter h. In WMFSSL, we
have two model parameters, a to control the model sparsity
and b as the feature weight parameter. We investigate how
sensitive SSL and WMFSSL are to the parameters. When
analyzing a and b in WMFSSL, we fix the other as the value
we introduced above.

The influence of parameter h in SSL onAbstract, Emotion6
and IESN datasets measured by KL divergence is shown in
Fig. 7. Generally, with the decrease of h, the performance
becomes better. When h decreases to 0.0001, the performance
turns to be stable. The parameter h controls the sparsity of
the model. When h is too large, the model tends to be too
sparse, which cannot guarantee that the test features are well
linearly represented by the training features. In such cases,
the prediction performancemight be degraded.

The influences of the regularization parameters a;b in
WMFSSL are validated, with results shown in Fig. 8. From
these results, we can observe that: (1) the influences of a;b
are different on different datasets; more stable performances
are obtained on Emotion6 and IESN datasets than Abstract
dataset; (2) generally,with the decrease of a, the performance
tends to become better with relatively stable performance
achieved when a decreases to 0.1; (3) on Abstract dataset,
with the increase of b, the performance firstly becomes better
and then turns worse, meaning that there exists the best b;
though not so obviously,WMFSSL achieves betterKL values
when b � 0:1 on Emotion6 and IESNdatasets.

6.4 On Feature Dimension Reduction in WMFSSL

In this subsection, we evaluate the influence of feature
dimension reduction by PCA in WMFSSL on the prediction

results. The performance comparison with and without PCA
is shown in Table 5. From these results, it is clear that after
feature dimension reduction by PCA, all the metrics degrade
on all the three datasets without a significant performance
drop. This is because although the principal components are
preserved by PCA, some discriminative information may be
missing. On the other hand, we are able to accelerate the
computation by about 20X after PCA, which is calculated
based on the computation complexity in Section 4.6.

6.5 On Feature Contribution in WMFSSL

Finally, we evaluate the impact of different features in the
proposed WMFSSL by comparing the performance of
removing one feature each time and using all features. The
results are shown in Table 6. It should be noted that the
smaller the performance is as compared to WMFSSL, the
larger gain the feature contributes to WMFSSL, taking KL
for example. From the results, we can conclude that: (1) simi-
lar contribution order for each dataset can be obtained as the
discriminability order in Tables 1, 2 and 3; CNN contributes
more than other features; among the hand-crafted features,
Prin and Elem contribute more in Abstract dataset, while
ANP and Prin are more discriminative in Emotion6 and
IESN datasets, this is probably because the images in
Abstract dataset are abstract paintings without obvious
semantics, while the emotions in Emotion6 and IESN data-
sets are mainly determined by rich semantics, such as scenes
and objects; (2) the proposed WMFSSL still achieves satisfy-
ing results without significant performance drop by remov-
ing some features, such as Attr in Abstract andGIST in IESN.

7 CONCLUSION

In this paper, we proposed to predict the probability distribu-
tion of image emotions, which can be viewed as an attempt to
measure the subjectivity issue of emotion perceptions. We
presented shared sparse learning as the learning model and
extended it to multi-features settings, where both hand-
crafted features and learning-based ones, are jointly
explored. The optimal weights of different features that
reflect their representation abilities are automatically learned.
Experimental results on Abstract, Emotion6 and IESN data-
sets demonstrated the effectiveness of the proposed emotion
distribution prediction method. For further studies, we plan
to improve the computational efficiency of SSL andWMFSSL
to tackle large-scale data. In addition, we will implement
applications based on emotion distribution, such as image
retrieval [36], [79], [80] and user opinionmining.

Fig. 7. The influence of parameter h in SSL on the three datasets measured by KL divergence.

Fig. 8. The influence of different parameters in WMFSSL on the three
datasets measured by KL divergence: (a) the influence of a when
b ¼ 0:1, and (b) the influence of b when a ¼ 0:05.
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