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a b s t r a c t 

Hashing, which seeks for binary codes to represent data, has drawn increasing research interest in recent 

years. Most existing Hashing methods follow a projection-quantization framework which first projects 

high-dimensional data into compact low-dimensional space and then quantifies the compact data into bi- 

nary codes. The projection step plays a key role in Hashing and academia has paid considerable attention 

to it. Previous works have proven that a good projection should simultaneously 1) preserve important 

information in original data, and 2) lead to compact representation with low quantization error. How- 

ever, they adopted a greedy two-step strategy to consider the above two properties separately . In this 

paper, we empirically show that such a two-step strategy will result in a sub-optimal solution because 

the optimal solution to 1) limits the feasible set for the solution to 2). We put forward a novel projection 

learning method for Hashing, dubbed Optimized Projection (OPH). Specifically, we propose to learn the 

projection in a unified formulation which can find a good trade-off such that the overall performance can 

be optimized. A general framework is given such that OPH can be incorporated with different Hashing 

methods for different situations. We also introduce an effective gradient-based optimization algorithm 

for OPH. We carried out extensive experiments for Hashing-based Approximate Nearest Neighbor search 

and Content-based Data Retrieval on six benchmark datasets. The results show that OPH significantly 

outperforms several state-of-the-art related Hashing methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The demand for effective indexing structures emerged recently

hich can perform Approximate Nearest Neighbor (ANN) search

fficiently given a large-scale database. One of the best known

tructures is tree [7] providing logarithmic searching complexity.

ut tree-based structure may reduce to exhaustive linear search

iven high-dimensional data [8] which is more common in real

orld. Hashing, which represents data by binary codes, can effec-

ively cope with such problem. For example, we just need about

GB memory to load 32 million points with each point represented

y 256 bits and performing ANN search needs less than 1 s as only

imple bit operations are required to compute Hamming distance

16] . Due to its low storage cost and very high retrieval efficiency,

n recent decade Hashing has drawn increasing interest from both

cademia and industry. 

Locality Sensitive Hashing (LSH) [1] is one of the most cele-

rated models. It adopts random linear projections to map original

eature vector to binary codes. Such coding method is quite fast.
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ut in practice, long Hashcodes are required to achieve satisfactory

erformance because it is data-independent [51] . To tackle this

roblem, several machine learning techniques have been adopted

o design effective and compact Hashcodes, such as Principle Com-

onents Analysis, Manifold Learning, Semi-supervised Learning,

nd Restricted Boltzmann Machine, which respectively lead to PCA

ashing [19] , Spectral Hashing [46] , and Semi-supervised Hashing

45] . Such deta-dependent Hashing methods can exploit important

nformation hidden in the original features, like global Euclidean

istance, local manifold structure, and etc. 

Producing binary codes directly from original features is dif-

cult in most cases [46] . Hence, most existing works follow a

rojection-quantization framework [6,10,15,19,33,34] . Firstly, the

high-dimensional) original features are projected into a low-

imensional compact space whose dimensionality is always equal

o the target Hashcode length by a real-value projection func-

ion. Secondly, the real-value compact representation is quanti-

ed into binary codes by, in most cases, thresholding. A flowchart

f such framework is illustrated in Fig. 1 Up. Despite the re-

ent emerging research on quantization [11,16,20,30,39] , most re-

earchers have paid and are paying more attention to the projec-

ion step [3,19,23,32,45,46,50] because this lays the foundation for

https://doi.org/10.1016/j.patrec.2018.04.027
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Fig. 1. The flowchart of Hashing. Up) The projection-quantization framework. 

Down) An extra re-projection is adopted for better result. 
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Hashing and more effective projection can always lead to better

result [10] . 

Observed from literatures, an effective projection should sat-

isfy the following properties simultaneously: 1) preserving impor-

tant information in original features, such as global Euclidean [19] ,

local manifold structure [34,46] , or pair-wise label information

[12,31,45] , etc.; and 2) leading to projected data with low quan-

tization error which occurs when mapping real-value features to

binary codes [10] . Previous works mostly focus on the first prop-

erty. However, recent studies have demonstrated that the second

property is also quite important and optimization aiming at it can

result in much better performance [10,49] . Thus they propose to

adopt an extra adjustment (a rotation is always utilized) after the

initial projection to re-project the data for better result, as illus-

trated in Fig. 1 Down. However, this is a two-step strategy which

considers above two properties separately . Meanwhile, the second

step is limited by the result of initial projection and it only finds

the sub-optimal solution. 

It is intuitive and straightforward to raise a question: can com-

bining the two steps in projection learning together lead to better

result? This paper empirically studies it and obtains a positive an-

swer. Motivated by this observation, in this paper, we propose a

novel projection learning method for Hashing, referred to as Opti-

mized Projection (OPH). Besides, we also make the following con-

tributions in this paper: 

• A unified formulation for Hashing projection learning is put for-

ward which can find a good trade-off between preserving in-

formation and minimizing quantization error, such that overall

performance can be optimized. 
• We give a general learning framework for OPH such that it can

be incorporated with different Hashing methods based on spe-

cific situations. For example, when global Euclidean information

is important, we can combine OPH with PCA, while Spectral is

adopted if we concern more for the local manifold structure of

data. 
• For the orthogonality-constrained optimization problem of OPH,

we also put forward an effective iterative learning algorithm

based on the gradient flow method. 
• We carry out extensive experiments for Approximate Nearest

Neighbor (ANN) search and Content-based Data (image and

text) Retrieval (CBDR) based on Hashing on several benchmark

datasets. Experimental results validate the effectiveness of OPH

compared with several state-of-the-art related Hashing meth-

ods. 

2. Observation and motivation 

2.1. Problem and notation 

Given a set of training data X = [ x 1 , . . . , x n ] 
T ∈ R 

n ×d , where n

is the number of samples and d is the dimensionality of original

features, we want to learn a Hashing function h which can pro-

duce binary codes B = h (X ) = [ b 1 , . . . , b n ] 
T ∈ {−1 , 1 } n ×k for each

sample, which are termed as Hashcodes, where k is the length

of Hashcodes. Generally, we require the Hashcodes to be balanced

( 1 n B = 0 ) and uncorrelated ( B 

T B = n I k ). Designing h directly is dif-

ficult and sometimes NP-hard [46] , so we can adopt a projection-

quantization strategy. Specifically, we can find a projection ma-

trix P ∈ R 

d×k , and let h (x ) = sign ( xP ) . Here sign (x ) = 1 if x ≥ 0 or

−1 otherwise. The sign function is widely used in previous works

[10,19,34,45,46] for quantization. Of course we can adopt more

complicated quantization functions [16,20] . But this is not the fo-

cus of this and some related previous papers thus we still use sign

function for fair comparison. Without loss of generality, in this pa-
er we assume the data to be zero centered, i.e., 
∑ n 

i =1 x i = 0 . Con-

equently, the projected data Y = XP is zero centered as well. 

.2. An observation on PCA projection 

PCA projection has been widely utilized in several Hashing

ethods [10,16,21] as the initial projection. Here we analyze the

roperty of PCA for Hashing. In PCA projection, the global Eu-

lidean structure is expected to be preserved by minimizing the re-

onstruction error under a linear orthogonal projection P . Specifi-

ally, such projection matrix can be learned by the optimization

roblem as below 

in 

P , Y 
‖ X − YP 

T ‖ 

2 
F , s.t. P 

T P = I k , Y = XP (1)

here ‖ · ‖ F denotes the Frobenius norm of matrix. Based on the

onstraints, it is easy to verify that the projection error (recon-

truction error mentioned above) can be computed as 

 p = ‖ X − YP 

T ‖ 

2 
F = ‖ X ‖ 

2 
F − ‖ XP ‖ 

2 
F (2)

ince ‖ X ‖ 2 
F 

is a constant, by substituting Eq. (2) into problem (1) ,

e obtain the final objective function of PCA, 

ax 
P 

‖ XP ‖ 

2 
F , s.t. P 

T P = I k (3)

hich can be regard as maximizing the total variance of projected

ata because the data is zero centered. Problem (3) can be effi-

iently optimized by eigenvalue decomposition. 

The projection P obtained above can preserve the global Eu-

lidean structure, i.e., it satisfies the first property. Now let us con-

ider the second property, minimizing quantization error. Given

eal-value data Y , and corresponding binary codes B = sign (Y ) , the

uantization error caused by sign function is defined as the dis-

ance between them as follows, 

 q = ‖ B − Y ‖ 

2 
F = ‖ B ‖ 

2 
F + ‖ Y ‖ 

2 
F − 2 ‖ Y ‖ 1 (4)

here ‖ Y ‖ 1 = 

∑ 

i, j | y i j | . We have the last term above because b i j =
ign (y i j ) ⇒ b i j y i j = | y i j | . Since we have ‖ B ‖ 2 

F 
= nk is a constant and

 = XP , the projection which can minimize the quantization error

an be learned as below 

ax 
P 

2 ‖ XP ‖ 1 − ‖ XP ‖ 

2 
F , s.t. P 

T P = I k (5)

omparing problem (3) to (5) , we can obtain an interesting obser-

ation: directly maximizing (5) longs for smaller ‖ XP ‖ 2 
F 

which is

gainst maximizing (3) . In most situations, the respective optimal

olutions to (3) and (5) are different. 

Above we show the direct connection and contradiction be-

ween minimizing projection error and quantization error. How-

ver, such relationship between above two errors is ignored in pre-

ious works [10,21] . Consequently, a greedy two-step strategy con-

idering two properties separately is widely adopted. One repre-

entative work is Iterative Quantization (ITQ) [10] . Specifically, they
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Fig. 2. Toy data. The value of ‖ Y ‖ 2 F for left (right) is 264.4 (261.8). On the other 

hand, the overall quantization error for left (right) is 2642.5 (2628.3). 
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Table 1 

e p and e q ( × 10 4 ) on SIFT1M. 

e p e q 

ITQ OPH �OPH ITQ OPH �OPH 

16 bits 17.69 17.95 +1 . 47% 13.97 12.74 −8 . 80% 

32 bits 10.29 10.56 +2 . 62% 14.31 12.51 −12 . 58% 

64 bits 3.82 3.92 +2 . 61% 19.22 16.78 −12 . 70% 

96 bits 1.17 1.20 +2 . 56% 28.07 25.11 −10 . 47% 
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rst optimize problem (3) and obtain an initial projection P . Then

 rotation matrix R ∈ R 

k ×k is learned by a Procrustean approach to

inimize the quantization error from projected data Y = XP . The

bjective function of ITQ can be formulated as follows, 

in 

B , R 
‖ B − YR ‖ 

2 
F , s.t., B = sign ( YR ) , RR 

T = I k (6)

he final projection is given by PR . A rotation matrix satisfies

r(R 

T YR ) = tr(Y ) for any square matrix. So PR must be the op-

imal solution to problem (3) too. Hence, their basic idea can be

ummarized as: first minimizing projection error, then minimizing

uantization error while fixing projection error . Since ‖ XP ‖ 2 F is fixed

ow, problem (5) in a two-step strategy could be rewritten as for-

ulation below 

ax 
P 

‖ XP ‖ 1 , s.t. P 

T P = I k , ‖ XP ‖ 

2 
F = c (7)

here c is the optimal value of problem (3) . Here, the extra con-

traint limits the feasible set of P hence the obtained projection

ay be only sub-optimal for the second property. 

Let us take the toy data in Fig. 2 as an example. Suppose we

ave two different orthogonal projections P 1 and P 2 for original

ata X and map data to 2-dimensional space, and then we solve

roblem (6) to find the rotation which can minimize the quanti-

ation error given the initial projection, whose results are shown

n Fig. 2 (a) and (b) respectively. The value of ‖ XP 1 ‖ 2 F 
is larger than

 XP 2 ‖ 2 F 
, indicating that P 1 is a better solution to problem (3) and

as smaller projection error based on Eq. (2) . However, after an

ptimal rotation, the quantization error in Fig. 2 (a) is larger than

n Fig. 2 (b), implying that the extra constraint from ‖ XP 1 ‖ 2 F 
= c in-

eed leads to a worse optimal solution to problem (7) . In addition,

ntuitively we also prefer the result in 2 (b). Consequently we can

ay Fig. 2 (b) achieves a better overall performance for both proper-

ies than Fig. 2 (a), even if its projection is indeed not the optimum

or the first property. 

Based on above observation, it is straightforward to raise a

uestion: can we sacrifice some projection error to reduce quantiza-

ion error such that the overall performance is optimized ? We carried

ut experiment to empirically analyze this question. We utilize a

eal-world dataset, SIFT1M, which consists of 128-dimensional SIFT

oints, and we select 10,0 0 0 points for our experiment. We com-

are ITQ that adopts greedy two-step strategy mentioned above,

ith OPH who optimizes the overall errors in a unified formula-

ion which will be introduced latter. The projection error defined

n Eq. (2) and quantization error in Eq. (4) of ITQ and OPH with

ifferent Hashcode length are summarized in Table 1 . We can ob-

erve that OPH slightly increases the projection error (less than 3%)

ut significantly reduces the quantization error (more than 10% in

verage). Experiment results introduced in Section 5 also demon-

trate that the overall performance of OPH is better. This result

uggests that 1) we have a positive answer to above question, and

n practice, it is possible to reduce much quantization error while
ncrease little projection error, i.e., we can find a better trade-off

etween them such that the overall error is minimized; and 2)

he two-step strategy indeed leads to sub-optimal solution because

he results from initial projection limit the feasible solution set for

roblem (7) . Considering the ultimate goal is to generate binary

ashcodes from original features, the projection learning should

ake into account both preserving information and minimization

uantization error simultaneously, but not separately as ITQ. There-

ore it is more reasonable to learn an optimal projection function

ia jointly optimizing the projection and quantization error. 

. Learning optimized projection 

.1. Objective function 

The observation in Section 2 is based on PCA projection. How-

ver, the phenomenon can be observed for other projections, such

s in Spectral Hashing [46] . To make our formulation general, i.e.,

t can be incorporated into different projections, we first need to

nvestigate the projection and quantization error for different pro-

ections. Observed from literatures [19,23,34,46,50] , the following

rojection learning formulation is widely adopted, 

ax 
P 

tr(P 

T X 

T WXP ) , s.t. P 

T P = I k (8)

here W ∈ R 

n ×n is a weight matrix. Actually, according to the spe-

ific situations, we need to preserve different information in orig-

nal data hence different W can be adopted. For example, when

lobal Euclidean structure is concerned about [10,19,21] , like in

CA, we set W = I k and problem (8) is identical to problem (3) ;

hen we want to exploit the local manifold structure, i.e., we want

o preserve the local neighborhood relationship between data, like

pectral Hashing [46] , Anchor Graph Hashing [34] and Locality Pre-

erving Hashing [52] , we can adopt the normalized adjacency ma-

rix constructed from nearest neighbor graph; to preserve the pair-

ise label information, such as in Semi-supervised Hashing [45] ,

e can adopt the label-sharing matrix. 

With the formulation in (8) , the projection error is no longer

ust the reconstruction error in Euclidean space. But we can define

he projection error analogous to PCA below, 

efinition 1. Given a weight matrix W , the projection error is de-

ned as the loss of weighted similarity among data, 

 p = 

n ∑ 

i =1 

n ∑ 

j=1 

w i j x i x 

T 
j −

n ∑ 

i =1 

n ∑ 

j=1 

w i j (x i P )(x j P ) T 

= tr(X 

T WX ) − tr(P 

T X 

T WPX ) , P 

T P = I k 

(9) 

It is not difficult to verify that the e p defined in Eq. (2) is a spe-

ial case of (9) with W = I n . Also, since the first term is fixed, min-

mizing projection error in above definition is equivalent to prob-

em (8) . Furthermore, here is another explanation for above defini-

ion. The essential purpose of Hashing is to preserve data similarity ,

.e., the similar points should be similar after projection. Therefore,

iven a similarity measure (in this paper, we adopt the weighted

nner product as [45] ), the overall loss of data similarity resulted

rom a projection reflects how well it preserves the similarity. 
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The generalized projection error in Definition 1 considers the

information preserving property, and the quantization error in

Eq. (4) considers the other property. Intuitively, we can jointly op-

timize them such that the overall result is better, as illustrated in

Table 1 . Specifically, we can define the overall error under a pro-

jection P as the weighted sum of projection and quantization error

as follows 

e = λe p + e q = c + tr(P 

T X 

T (I n − λW ) XP ) − 2 ‖ XP ‖ 1 (10)

where c = tr(X 

T WX ) + nk is a constant, and λ is the weight pa-

rameter. Therefore we just need to minimize such overall error to

learn optimized projection. Based on the unified formulation, we

can obtain the objective function for Optimized Projection in a gen-

eral learning framework as 

max 
P 

O = tr(P 

T X 

T APX ) + ‖ XP ‖ 1 , s.t. P 

T P = I k (11)

where A = 

1 
2 (λW − I n ) . As we have mentioned, we formulate this

framework to be general such that it can be incorporated with dif-

ferent Hashing methods given specific W . Setting W = I n , we ob-

tain the learning problem below 

max 
P 

O PCA = α‖ XP ‖ 

2 
F + ‖ XP ‖ 1 , s.t. P 

T P = I k (12)

where α = 

1 
2 (λ − 1) . Above is the joint optimization framework of

PCA, which optimizes the overall performance of preserving global

Euclidean structure and minimizing quantization error, which is in-

trinsically different from ITQ which optimizes them separately. Our

results shown in Table 1 are obtained by it. We can see we do not

aim at optimizing either of it, but focus on finding a good trade-off

which, compared to ITQ, works slightly worse for projection but

much better for quantization. Such formulation looks simple but

not trivial. To our best knowledge, we are the first to notice and

analyze the connection between the projection error and quantiza-

tion error, and empirically prove the reasonability and effectiveness

of (12) . 

Another important information in data is the local manifold

structure [2] . In CBDR task, we care more about obtaining data

sharing the same semantic label as the query where manifold dis-

tance is a better measure than global Euclidean distance [34] . Pre-

serving the manifold structure is always formulated as preserving

the local nearest neighbor (NN) relationship in data. Specifically,

we can construct a p -NN graph with the weight of each edge as

below 

S i j = 

{
e −

‖ x i −x j ‖ 2 
σ , if x i ∈ N (x j ) or x j ∈ N (x i ) 

0 , otherwise 
(13)

where N (x i ) is the p -NN of x i and σ is the band width [13] . Then

we obtain a diagonal degree matrix D whose diagonal elements are

D ii = 

∑ n 
j=1 S i j . Now we can define W as the normalized adjacency

matrix for the p -NN graph 

W = D 

−1 / 2 SD 

−1 / 2 (14)

With this symmetric normalized adjacency matrix, we can learn

an optimized projection by (11) which can find a good trade-off

between preserving local manifold structure and minimizing quan-

tization error. We can also utilize other definitions of W for spe-

cific purposes. But because of the limitation of space, in this paper

we just incorporate OPH with two of the most widely used deifni-

tions. These two simple definitions can yet lead to state-of-the-art

performance. 

3.2. Learning algorithm 

Considering problem (12) is just a special case of problem (11) ,

we only show the learning algorithm for (11) . In this paper, we

use the gradient flow [47] to solve the orthogonality constrained
 1 norm regularized maximization problem. Obviously, we can also

tilize some accelerated proximal gradient methods (APG) for opti-

ization [25,26] . But to make the algorithm more general, we still

se the original one. The basic idea is to firstly find the upgradient

t a point, secondly project the upgradient to the tangent space

f feasible set defined by the orthogonality constraint, and thirdly

ove the point with a properly small step size towards this direc-

ion in the feasible set . We can iterate above three steps until con-

ergence. Specifically, the feasible set for the solution is defined

s M P = { P ∈ R 

d×k : P 

T P = I k } . Given point P t ∈ M P , we first com-

ute the upgradient of O at P t 

 t = −DO (P t ) = −X 

T ( AXP t + sign ( XP t )) (15)

o project U t to tangent space, we need the theorem below, 

heorem 1. Given a direction U t at P t , the projection of U t onto the

angent space of M P at P t is computed below 

 t = M t P t , where M t = U t P 

T 
t − P t U 

T 
t (16)

The detailed proof can be found in [47] . Then we need to move

 t to a new point P t+1 . Directly moving it like in conventional gra-

ient descent ( P t+1 = P t − τD t ) will move P t+1 out of the feasible

et. So in practice [9,44,47] , we will compute the next point by the

rank–Nicolson-like scheme: 

 t+1 = P t − τM t ( 
P t + P t+1 

2 

) (17)

hich can lead to the following closed form solution for P t+1 

 t+1 = (I d + 

τ

2 

M t ) 
−1 (I d −

τ

2 

M t ) P t (18)

bove updating rule is called Cayley transformation and τ is a step

ize satysfying Armijo–Wolfe conditions [36] . Considering that U t 

s a skew-symmetric matrix, i.e., U 

T 
t = −U t , the matrix I d + 

τ
2 M t is

efinitely invertable and P t+1 is also orthogonal, i.e., P t+1 ∈ M P ,

nd it results in nonincreasing objective function value. For more

etail please see the proof to Lemma 3 in [47] . We can randomly

enerate an orthogonal matrix to initialize P and repeat above

teps until a stationary point is achieved, i.e., P t+1 = P t , which is

he solution to problem (11) . The overall learning algorihm for Op-

imized Projection is summarized in Algorithm 1 . To this end, the

lgorithm 1 Learning optimized projection. 

nput: 

Training matrix X , Hashcode length k , 

weight matrix W , balance parameter λ
utput: 

Optimized Projection P 

1: Construct A = 

1 
2 (λW − I n ) ; 

2: Initialize P 0 by a random orthogonal matrix, t=0 

3: repeat 

4: Compute the upgradient U t by (15); 

5: Compute the skew-symmetric matrix M t by (16); 

6: Compute the new point P t+1 by (18); 

7: t = t + 1 ; 

8: until Convergence. 

9: Return P t ; 

ashing function is given as h (x ) = sign ( xP ) . 

. Discussion 

Now we discuss the time complexity of Algorithm 1 . The time

omplextity to compute the upgradient U t is O(ndk + n 2 k ) , to

ompute the skew-symmetric matrix is O ( d 2 k ). And to compute

ew point by Eq. (18) , the complexity is O(d 2 k + dk 2 + k 3 ) . Actu-

lly, the complextity for inverting an arbitrary d × d matrix should
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Fig. 3. Objective function w.r.t. # iterations. 
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e O(d 3 ) . However, since we always have k � d , especially for

igh-dimensional image and text data, the rank of matrix M t is at

ost 2 k . Hence following the Sherman–Morrison–Woodbury theo-

em [40] , the complexity for inverting ( I d + 

τ
2 M t ) is O(dk 2 + k 3 ) .

herefore, the overall complextity for Algorithm 1 is O(t(ndk +
 

2 k + d 2 k + dk 2 + k 3 )) , where t is the number of iterations to con-

ergence. In Fig. 3 , we plot the objective function value w.r.t. the

umber of iterations on two real-world datasets under different

ashcode length. Here we set W = I n , i.e., we incorporate OPH

ith PCA. We can observe that the objective function value in-

reases steadily with more iterations, and it can converge within

00 iterations, validating the effectiveness of Algorithm 1 , which

lso guarantees the training efficiency. 

In above section, we have mentioned that the proposed OPH

an be incorporated with different Hashing methods who have the

earning formulation in (8) with specific W , such as PCA Hashing

19] and Spectral (Anchor Graph) Hashing [34,46] , and etc. Actu-

lly, those Hashing methods can be regared as the special cases

f OPH with λ→ ∞ , i.e., they only focus on preserving informa-

ion while ignoring the quantization error. And there are three

ashing methods recently having close relation to OPH. The first

s Iterative Quantization (ITQ) [10] which we have introduced in

ection 2 . It adopts the greedy two-step learning strategy consid-

ring two properties separately resulting in sub-optimal solution.

he second is Isotropic Hashing (IsoH) [21] . It is also two-step

ethod combining PCA and an extra rotation to balance the vari-

nce of each dimension. Actually, balancing the variance can also

educe the quantization error thus we can regard it as a variant

f ITQ hence its solution is sub-potimal. In addition, it is unstable

n large-scale and high-dimensional data [49] . The third is Harmo-

ious Hashing (HamH) [49] which is derived from Spectral Hash-

ng. It finds a rotation to minimize the distance between the ro-

ated data and a matrix whose variance of each dimension is close.

owever, such strict requirement and its non-iterative optimization

lgorithm may fail to find a good enough solution. Above three

ethods all adopt two-step strategy so their overall performance

s worse than OPH. Furthermore, those three methods are derived

rom specific projection and there is no clue that they can still per-

orm satisfactorily when combined with other projections. But OPH

s quite general and based on the generalized projection error de-

ned in Eq. (9) . It is robust to different projections, which will be

emonstrated in our experiments. 

. Experiment 

.1. Baselines, metrics and settings 

We utilize the following related Hashing methods. Locality Sen-

itive Hashing (LSH) [1] , PCA Hashing (PCAH) [19] , Spectral Hash-

ng (SpH) [46] , Anchor Graph Hashing (AGH) [34] with two-layer

ashing function, Iterative Quantization (ITQ) [10] , Isotropic Hash-

ng (IsoH) [21] , and Harmonious Hashing (HamH) [49] . For mean-
ngful comparison, we carefully tuned the model parameters for all

aselines and the best performance is shown. 

Recently, some deep learning based hashing approaches

24,28,29,48,54] have achieved promising results. However, it

hould be noted that they mostly focus on image hashing and us-

ng raw pixels as input, while our approaches and selected base-

ines focus on feature hashing which is more flexible so that they

an use any kinds of features as input. Therefore, we do not choose

eep hashing approaches as baselines. 

We adopt mean Average Precision (mAP) as the numeric eval-

ation metric. mAP shows good discriminative power and stability

o evaluate the performance of retrieval task. A larger mAP indi-

ates better performance that true positive samples have higher

ank. Given a query and R retrieved samples based on Hamming

anking, the Average Precision (AP) is 

P = 

1 

L 

R ∑ 

r=1 

P (r) δ(r) (19) 

here L is the number of true positive samples in the retrieved

et, P ( r ) denotes the precision of top r retrieved samples defined as

he ratio between the number true positive samples and the num-

er of retrieved samples (i.e., r ), and δ( r ) is an indicator function

hich is equal to 1 if the r -th sample is true positive or 0 other-

ise. Averaging the AP of all queries leads to mAP. We also adopt

he Precision-Recall curve and the Recall curve. 

In this paper, we implement two Hashing methods based on

PH. The first utilizes PCA projection, i.e., the projection is learned

y problem (12) . When implementing it, the parameter α is chosen

rom {0.01, 0.1, 1} based on the change in projection and quantiza-

ion error in training data compared to ITQ. We select the value

hich maximizes the sum of �OPH for e p and e q . This method

s denoted as PCA-OPH. The second considers the local manifold

tructure, i.e., the weight matrix W is defined as in Eq. (14) and

onstructed from a p -NN graph where we set p as 0.1% of train-

ng data. The parameter λ is chosen from {0.1, 1, 2, 5, 10}. This

ethod is denoted as Sp-OPH following Sp ectral Hashing. When

earning P with Algorithm 1 , we stop at the 200th itertation.

he binary Hashcodes of a new coming sample x is computed by

 (x ) = sign ((x − x̄ ) P ) , where x̄ is the mean value of training data

hich is utilized to centralize training data. For fair comparison,

ur baseline methods also adopt such schema for generating Hash-

odes. When compute mAP, we set R = 50 . To remove any random-

ess caused by random initialization or random training data se-

ection, all results are the average over 10 repeated runs. All ex-

eriments are carried out on a computer which equips Intel Core

7-2600 CPU @3.40 GHz and 16GB RAM. 

.2. Approximate nearest neighbor search 

.2.1. Datasets 

The ANN search is a practical and important task in real world.

ts purpose is to find some Euclidean neighborhood from database

or a given query. In this task, we adopt two widely used large-

cale and high-dimensional datasets. The first dataset is SIFT1M

18] which consists of 1 million 128-dimension SIFT [35] points

nd 10,0 0 0 independent points as the query. The second is GIST1M

43] containing 1 million 960-dimension GIST [37] poits and 10 0 0

ndependent queries. Following [10,21,49] , for each query, its true

ositive samples are the first 100 nearest neighbors in database

btained by brute force search with Euclidean distance. And to

est the ability of different Hashing methods to deal with out-

f-sample data, we randomly select 10,0 0 0 points from database

s the training data to learn Hashing functions. Then we gener-

te Hashcodes for samples in both database and query set by the

earned Hashing functions as in [5,41] . 
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Fig. 4. ANN search. Recall curves on SIFT1M with different Hashcode length. 

Fig. 5. ANN search. Recall curves on GIST1M with different Hashcode length. 
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5.2.2. Results 

The first important result is shown in Table 1 , which we have

introduced in Section 2 . It demonstrates that we can indeed sacri-

fice some projection performance for much better quantization to

promote overall result by a joint optimization framework instead

of the greedy two-step strategy. 

More extensive results are given in Figs. 4 and 5 . We can ob-

serve that PCA-OPH achieve best performance in all experiments

and markedly outperform the two-step methods (ITQ and IsoH) in

most cases. And Sp-OPH also outperforms baselines in most exper-

iments and it shows superior performance to the two-step HamH

in 10 out of 12 experiments. Such results validate the effectiveness

of OPH for ANN search. Moreover, we can observe the following

points. 

Firstly, OPH achieves more improvement over ITQ, IsoH and

HamH with shorter Hashcodes. Besides, the improvement is more

obvious on GIST1M (960 dimensions) than SIFT1M (128 dimen-

sions). The reason is as below. For shorter Hashcodes, OPH needs

to pick fewer directions such that it has more freedom hence it can

find a better trade-off from a large number of candidates. How-

ever, for two-step methods, its feasible set is limited by the ini-

tial projection. Actually, fewer directions lead to more limitation

therefore the overall solution is farther from the optimum. In ad-

dition, we can even observe that ITQ performs worse than PCAH

in some cases, typically with short Hashcodes. This phenomenon

also demonstrates that the initial projection will limit the follow-

ing adjustment step and the two-step strategy leads to sub-optimal

solution. With longer Hashcodes, ITQ has more freedom after ini-

tial projection so we can observe it significantly outperforms PCAH.

But it still suffers from some limitation to some extent such that

its overall result is worse than OPH. This result validates again the

reasonability of the unified formulation adopted in OPH. 

Secondly, OPH and methods considering the quantization er-

ror, such as ITQ, perform much better with longer Hashcodes,

while methods like PCA may perform worse. Such interesting

phenomenon has also been observed by previous researchers

[10,45,49] . Intuitively, longer Hashcodes can encode more infor-

mation thus better results are expected. However, the variance

in PCA projected data is quite imbalanced and many dimensions

in long Hashcodes contain little information such that they may

severely degrade the overall quality of long Hashcodes. Because of

t  
he quantization step, the information preserved in the projection

ay be destroyed. So considering the quantization error is impor-

ant for projection learning. 

.3. Content-based image retrieval 

.3.1. Datasets 

Hashing has been widely utilized in Content-based Image Re-

rieval (CBIR) [5,10,14,34,53] . Different from ANN, CBIR aims to ob-

ain samples from database which are semantically related to the

uery. In this task, we utilize two celebrated benchmarks. The first

s CIFAR-10 [22] , which consists of 60,0 0 0 images from 10 classes

uch as airplane and dog. Each image is represented by a 512-

imension GIST descriptor. We select 10,0 0 0 images as the query

et and the remained images form the database. The second one is

US-WIDE [4] dataset containing 186,577 images from 10 classes.

e adopt the deep features for images which are extracted by the

LSVRC2014 challenge winner GoogLeNet [42] pre-trained on Ima-

eNet. Specifically, we adopt the outputs of the last fully-connected

ayer as the feature for each image which is a 1024-dimensional

ector. In this task, the true positive samples are the ones shar-

ng the same semantic label with the query [34,53] . We randomly

elect 10,0 0 0 samples from the database as the training set. 

.3.2. Results 

The mAP comparison on two datasets among different methods

ith various Hashcode length is summarized in Table 2 , and the

orresponding Precision-recall curves are shown in Figs. 6 and 7 .

e can observe OPH outperforms other baseline methods regard-

ess of the datasets and Hashcode length, which demonstrates the

uperiority of OPH for CBIR task. And we have other two important

bservations. 

Firstly, our OPH improves the performance over ITQ and other

aselines more with longer Hashcodes. This observation is different

rom the one in ANN task but in fact they are not contradictory at

ll. In ANN, the data distribution is simple and we care about the

uclidean neighbors. As we have discussed above, the freedom to

elect directions is important for ANN. In contrast, CBIR faces more

omplicated data distribution and we care about high-level seman-

ic relationship between data. In such situation, encoding informa-

ion effectively becomes the key problem. With short Hashcodes,
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Table 2 

mAP comparison. The bold numbers indicate the best two results. 

CIFAR-100 NUS-WIDE 

16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 

LSH 0.2204 0.2372 0.2745 0.2750 0.3002 0.2999 0.4222 0.4397 0.4327 0.4478 0.4575 0.4629 

PCAH 0.2962 0.3249 0.3297 0.3340 0.3312 0.3311 0.4853 0.4958 0.4893 0.4865 0.4880 0.4870 

SpH 0.2801 0.3064 0.3340 0.3338 0.3495 0.3500 0.4195 0.4220 0.4377 0.4734 0.4569 0.4873 

AGH 0.3012 0.3427 0.3487 0.3508 0.3525 0.3524 0.4679 0.4855 0.4881 0.4902 0.4892 0.4912 

ITQ 0.3115 0.3421 0.3670 0.3708 0.3801 0.3868 0.4832 0.5083 0.5032 0.5108 0.5141 0.5132 

HamH 0.2963 0.3224 0.3291 0.3486 0.3524 0.3585 0.4892 0.4967 0.4892 0.4901 0.4917 0.4863 

IsoH 0.3052 0.3397 0.3521 0.3672 0.3759 0.3807 0.4866 0.4966 0.4963 0.4975 0.4973 0.5033 

PCA-OPH 0.3269 0.3689 0.3863 0.3997 0.4111 0.4222 0.4964 0.5165 0.5283 0.5341 0.5428 0.5486 

Sp-OPH 0.3074 0.3517 0.3769 0.4007 0.4141 0.4185 0.4871 0.5037 0.5147 0.5190 0.5343 0.5378 

Fig. 6. CBIR. Precision-recall curves on CIFAR-10 with different Hashcode length. 

Fig. 7. CBIR. Precision-recall curves on NUS-WIDE with different Hashcode length. 
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A  
he available information is too little to achieve good performance.

ut given long Hashcodes, more information is available. Our OPH

an preserve more information from original data to Hashcodes be-

ause it adopts a unified framework considering the overall perfor-

ance while the two-step strategy in ITQ, IsoH and HamH can only

btains sub-optimal solution. In addition, the iterative optimization

trategy in ITQ and IsoH leads to local optimum. With longer Hash-

odes and more variables, their local optimum will be farther from

he global optimum therefore the performance gap between OPH

nd them will be larger. 

Secondly, Sp-OPH outperforms PCA-OPH in some cases. Also,

pH and AGH defeat PCAH in several cases. This phenomenon in-

icates that the local manifold structure is important for CBIR task

34] because samples with short manifold distance tend to have 

he same semantic label [2] . However, we can observe that the

anifold based HamH performs worse than PCA based ITQ and

soH almost in all cases. Actually, these three methods focus on the

djustment after initial projection. This result implies that the op-

imization algorithm of HamH is less effective than ITQ and IsoH

n practice. We need to say that the adjustment in HamH helps

o some extent because HamH is still better than SpH and AGH.

his result also reveals the importance of optimization. The supe-

ior results of Sp-OPH over ITQ and IsoH show our unified learning

ramework indeed works. 

p  

t  

d  

c  
.4. Content-based text retrieval 

.4.1. Datasets 

The Content-based Text Retrieval (CBTR) is analogous to CBIR

xcept it is for text data which is another application of Hash-

ng [38] . In this task, two benchmark datasets are involved. The

rst is TDT2 [17] collected from newswires, radio and televi-

ion programs. It contains 64,527 documents classified into 100

emantic categories. Each document is represented by a term

requency-inverted document frequency (tf-idf) vector with 36,771

imensions. The other is Reuters [27] dataset which consists of

1,578 documents from 135 categories. For each document, we

se a 18,933-dimension tf-idf vector as original feature. For both

atasets, we randomly select 10 0 0 documents as the query set and

he remained form the database. We construct the training set by

andomly selecting 10,0 0 0 documents from database. True posi-

ives are documents sharing labels with the query. 

.4.2. Results 

In Table 3 , we show the mAP of all methods, and the Precision-

ecall curves are plotted in Figs. 8 and 9 . Again, OPH can achieve

etter performance than baseline methods, especialy PCA-OPH.

nd some trends similar to CBIR appear in CBTR too. For exam-

le, OPH achieves more improvement given longer Hashcodes. Ac-

ually, this phenomenon is more reasonable in CBTR because text

ata has higher dimensionality such that we need longer codes to

apture the information. However, Sp-OPH is consistently worse
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Table 3 

mAP comparison. The bold numbers indicate the best two results. 

TDT2 Reuters 

16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 

LSH 0.4270 0.6368 0.7447 0.7750 0.8246 0.8515 0.5918 0.6439 0.6902 0.7298 0.7448 0.7717 

PCAH 0.6488 0.7348 0.7455 0.7672 0.8047 0.8105 0.6844 0.7203 0.7579 0.7978 0.7964 0.7990 

SpH 0.3291 0.3678 0.4103 0.4726 0.4783 0.5082 0.4977 0.6162 0.6415 0.6592 0.6641 0.6739 

AGH 0.4183 0.6181 0.7416 0.7488 0.7659 0.7683 0.4513 0.5821 0.6569 0.7150 0.7282 0.7297 

ITQ 0.6629 0.7529 0.7902 0.8368 0.8286 0.8638 0.6977 0.7724 0.7916 0.8012 0.8061 0.8172 

HamH 0.6788 0.7548 0.7855 0.7972 0.8147 0.8205 0.7344 0.7703 0.7879 0.7978 0.7964 0.7990 

IsoH 0.7032 0.7683 0.8131 0.8349 0.8523 0.8604 0.6826 0.7518 0.7739 0.7849 0.7992 0.8042 

PCA-OPH 0.7288 0.7740 0.8428 0.8727 0.8978 0.9094 0.7357 0.7830 0.8162 0.8376 0.8489 0.8507 

Sp-OPH 0.6807 0.7641 0.8205 0.8495 0.8602 0.8785 0.6537 0.7682 0.7859 0.8144 0.8231 0.8375 

Fig. 8. CBTR. Precision-recall curves on TDT2 with different Hashcode length. 

Fig. 9. CBTR. Precision-recall curves on Reuters with different Hashcode length. 

Fig. 10. mAP of PCA-OPH w.r.t. α. 
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than PCA-OPH in all experiments for CBTR. One possible reason

might be that the p -NN graph is less precise in high-dimensional

data like text given the imprecise distance computing, and the lo-

cal manifold structure can not be effectively exploited with such

low-quality graph. But in PCA-OPH, we do not need to compute

the distance between data thus such problem can be avoided. 

5.5. Other issues 

Now we investigate the balance parameter in OPH. For simplic-

ity, we show the effect of α on PCA-OPH. This parameter controls

the balance of projection error and quantization error. Results on
IFAR-10, TDT2 and Reuters with different α are plotted in Fig. 10 .

ndeed, the value of α has influence on OPH to some extent, but

e can also notice that statisfactory trade-off can be obtained with

 proper α. Typically, α ∈ [0.01, 1] always works. Actually, if α is too

ig (like 10,0 0 0), PCA-OPH degenerates to PCAH. 

Then we show the effect of the size of training data. The per-

ormance of PCA-OPH and Sp-OPH on CIFAR-10, NUS-WIDE and

DT2 is plotted in Fig. 11 . Given more training data, OPH can per-

orm slightly better because more information is available. But it

s also obvious that the improvement is quite small when the size

s larger than 10,0 0 0. When the training size grows from 10,0 0 0

o 50,0 0 0, the improvement in mAP is less than 0.01. In fact, given
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Fig. 11. mAP of OPH w.r.t. training size. 

Fig. 12. Top 5 retrieved images for query (left) by LSH (up), PCAH, AGH, ITQ, and PCA-OPH (down). 
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nough training data (say, 10,0 0 0), the model can be well trained

nd extra data is redundant. This phenomenon is also observed in

aseline methods, like PCAH, ITQ, AGH, and etc. 

. Conclusion 

Previous projection learning methods for Hashing consider pre-

erving information and minimizing quantization error seperately.

n this paper, we empirically study this problem and prove that

nly sub-optimal solution can be achieved in this two-step strat-

gy. Hence we propose a unified and general projection learning

ramework for Hashing to find the best trade-off between them

nd learn an Optimized Projection for better overall performance.

n effective optimization algorithm is given. Extensive experiments

or ANN and CBDR on several benchmarks compared to state-of-

he-art related Hashing methods validate the effectiveness of OPH

 Fig. 12 ). 
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