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Abstract

Recognizing unseen classes is an important task for
real-world applications, due to: 1) it is common
that some classes in reality have no labeled image
exemplar for training; and 2) novel classes emerge
rapidly. Recently, to address this task many zero-
shot learning (ZSL) approaches have been pro-
posed where explicit linear scores, like inner prod-
uct score, are employed to measure the similarity
between a class and an image. We argue that ex-
plicit linear scoring (ELS) seems too weak to cap-
ture complicated image-class correspondence. We
propose a simple yet effective framework, called
Implicit Non-linear Similarity Scoring (ICINESS).
In particular, we train a scoring network which us-
es image and class features as input, fuses them
by hidden layers, and outputs the similarity. Based
on the universal approximation theorem, it can ap-
proximate the true similarity function between im-
ages and classes if a proper structure is used in
an implicit non-linear way, which is more flexible
and powerful. With ICINESS framework, we im-
plement ZSL algorithms by shallow and deep net-
works, which yield consistently superior results.

1 Introduction

Image classification is an active research topic in artificial in-
telligence, machine learning and computer vision communi-
ties [Bishop and others, 2006]. Recently, the emergence of
deep convolutional neural networks has led to tremendous
progress for this task and even achieved surpassing-human-
level performance [He er al., 2016]. But it should be noted the
success of current techniques for image classification heavily
relies on a large number of labeled training samples for each
class. However, collecting a large number of labeled training
samples is challenging and expensive in real-world scenarios,
like Web image classification, because the number of images
for each classes follows a long-tail distribution [Changpiny-
0 et al., 2016] so that many classes have limited, or even no
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Figure 1: The basic framework of existing ZSL approaches.

labeled exemplar. In addition, many new concepts emerge
every day and it is difficult to collect labeled data for them.
In these cases, the recognition model has to recognize class-
es which are unseen before. Therefore, how to train image
recognition models that is capable of generalizing well for
unseen classes, i.e., zero-shot learning, has recently become
a hot research topic and is an open issue [Xian et al., 2017].
The basic idea of ZSL is to learn a function to measure
the correspondence/similarity between an image and a class
using seen classes which have sufficient labeled images, and
then transfer the similarity function to unseen ones. If an im-
age is very similar to a class, it is likely to belong to this
class. We summarize the framework in Figure 1. Each image
is represented by a feature vector (image feature extraction),
like deep feature [Donahue ef al., 2014]. Each class is al-
so given a feature vector (class feature extraction), like the
word2vec output using the class name as input or the class
attributes [Lampert et al., 2014]. Then the key step is to
construct an image feature projection function ¢ and a text
feature projection function ¢ to map them into a joint em-
bedding space such that the similarity between them can be
directly measured. The joint embedding space can be the
image feature space [Guo et al., 2017], the class feature s-
pace [Socher er al., 2013], or a new latent space [Akata et al.,
2016]. After the joint embedding step, the similarity between
an image and a class can be measured directly in this space,
where the explicit linear scoring is widely adopted, for exam-
ple, inner product similarity [Romera-Paredes and Torr, 2015;
Zhang and Saligrama, 2016; Xian et al., 2016]. Because the
seen classes and unseen classes are related and similar, al-
though different, the function learning on seen classes can
work well on unseen classes. In this way, the model is able to
recognize unseen classes based on the transferred knowledge.
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1.1 Observation and Contribution

As reviewed in the survey [Xian er al., 2017], we have t-
wo important observations. Firstly, existing works pay most
attention to learn the projection functions ¢ and ¢. Sec-
ondly, explicit linear scoring is widely used for similarity
measure. In fact, the similarity measure plays an important
role in ZSL and finding or approximating the true similarity
function between images and classes should be an important
learning goal. However, it seems similarity measure has not
gained adequate attention but a simple linear one is utilized
for convenience. For example, the similarity function in many
ZSL approaches [Frome et al., 2013; Norouzi et al., 2013;
Socher et al., 2013; Akata et al., 2015; Kodirov et al., 2015;
Romera-Paredes and Torr, 2015; Zhang and Saligrama, 2015;
Akata et al., 2016; Xian et al., 2016] can be summarized as:

f(@,y) = ¢(z)We(y)" (1)

where x and y denote an image and a class, f(z,y) is the
similarity function, ¢ and ¢ are the image-specific and class-
specific embedding functions, and W is the linear compat-
ibility parameters. Different approaches may have different
choices for these functions. We need to point out although
one may utilize non-linear functions for ¢ and ¢, these func-
tions can be regarded as the feature extraction functions so
that generally f is still linear similarity with explicit scoring.

The simpleness of explicit linear scoring makes it easy to
optimize. However, the true similarity function between im-
ages and classes is intuitively more than a linear one. Dif-
ferent datasets and scenarios may also have different func-
tions. So explicitly defining a linear similarity function by
human knowledge is sometimes not the best choice. On the
other hand, using implicit non-linear similarity scoring seem-
s more reasonable and practical. Motivated by this idea, we
propose a ICINESS framework for ZSL. In particular, as stat-
ed by the universal approximation theorem, a feed-forward
network with a single hidden layer containing a finite number
of neurons can approximate continuous functions on compact
subsets of R” under mild assumptions on the activation func-
tion. Inspired by it, we adopt a neural network to approximate
the true similarity function F'(x,y). The network uses image
and class features as input and output a similarity score di-
rectly. In this way, we do not need to specify the definition
of f and let the network learn it automatically. In addition, it
can learn non-linear similarity function. Obviously, ICINESS
is more flexible and powerful than the explicit linear scoring
in Eq. (1), which can better approximate the true function F'.
Moreover, based on ICINESS, it is easy to implement shal-
low or deep networks to make fully use of the advantages of
neural network. We make the following contributions:

1. Different from the explicit linear similarity scoring in
many ZSL approaches, we propose a novel implicit non-
linear similarity scoring (ICINESS) for ZSL. Based on the
universal approximation theorem, we use a neural network to
implicitly approximate the non-linear similarity between im-
ages and classes, which can be more powerful and flexible.

2. Based on ICINESS, we implement shallow and deep
networks. In practice, many existing ZSL approaches can be
regarded as a special linear case of ICINESS but our work can
deal with more complicated non-linear similarity functions.

3. We conduct extensive experiments on several bench-
mark datasets. The experimental results demonstrate consis-
tent accuracy improvement over existing approaches for (gen-
eralized) ZSL, which validates the effectiveness of ICINESS.

2 Preliminary and Related Work

2.1 Problem and Notation

The problem of ZSL is defined as follows. we have two dis-
joint class sets C* = {c{,...,c;_} and C* = {cf,...,c} }
denoting seen classes and unseen classes respectively with
C*NC* = (), where k, and k, are the number of classes
in seen set and unseen set. From the image perspective, a
training image set D* = {xf,...,r;, } is given where each
image x§ is associated with one seen class y; € C°. We uses
{zf,yi};=, to learn the similarity function between images
and classes. At the test stage, an image x"“ is given and our
goal is to predict its class in the unseen classes y* € CY,
which is the standard setting of ZSL. In the generalized ZSL
(GZSL) [Xian et al., 2017], an image 2! is given. Different
from standard ZSL, x* is from C® U C*. To enable similarity
measure between images and classes, each class ¢ € C* U C*
has a feature vector a. € RY, which can be class attribute vec-
tor [Lampert et al., 2014] or word2vec [Socher et al., 2013].

2.2 Related Work

As reviewed before, existing ZSL approaches adopt explicit
linear similarity scoring, which can be generally formulated
as Eq. (1). The difference is how to choose the embedding
functions. Akata et al. [2016], Frome et al. [2013], Akata et
al. [2015], Romera-Paredes and Torr [2015], and Kodirov et
al. [2017] directly adopted identity function (g(x) = z) for
¢ and ¢. The difference is the loss function used to learn .
Socher et al. [2013] utilized a simple two layer neural net-
work for ¢, identity function for ¢ and identity matrix for .
Fu et al. [2015] adopted a Markov absorbing chain, while
Lampert e al. [2014] employed probabilistic classifier pre-
dictions to construct function ¢. Zhang and Saligrama [2015]
used class independent transformation for ¢ and sparse cod-
ing for ¢. Norouzi ef al. [2013] proposed to use class proba-
bility prediction for ¢ and semantic relatedness for . In the
synthesized classifier approach [Changpinyo et al., 2016], a
complicated projection was constructed for ¢ but finally it
still used Eq. (1) for similarity measure. In some recent da-
ta synthesis approaches [Guo et al., 2017], a reconstruction
based algorithm is used to project class features into image
feature space for directly linear similarity measurement. In
summary, though many ZSL approaches may have linear or
non-linear functions for ¢ and ¢, they essentially have linear
function for similarity measure between images and classes.

3 Implicit Non-linear Similarity Scoring
3.1 General Framework

Previous approaches adopt image specific function ¢ and
class specific function  which consider the information from
the corresponding side only, and they need to define a spe-
cific linear similarity function by human knowledge as in
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Eq. (1). Due to these limitations, they are not flexible e-
nough and too simple to capture the complicated relationship
between images and classes. To address these limitations,
a model is expected that takes into account the knowledge
from both image and class and captures non-linear image-
class relationship. Since the non-linear similarity is hard
to define, the model should approximate it in an implic-
it way. Fortunately, it is observed that feed-forward neural
network is able to approximate non-linear similarity func-
tion implicitly. Specifically, based on the universal approx-
imation theorem, a feed-forward network with hidden lay-
ers can approximate continuous functions on compact sub-
set of R™ under mild assumptions on the activation func-
tion, which has been discussed theoretically [Cybenko, 1989;
Hornik, 1991] and applied to a wide range of real-world ap-
plications [Krizhevsky er al., 2012; Sengupta et al., 2016]. In-
spired by it, we propose a framework ICINESS to implicitly
learn the non-linear similarity function for ZSL, as illustrated
briefly in Figure 2. In particular, after the feature extraction
step for images and classes, we propose to directly fuse image
and class features by a few fully connected layers which take
both image feature and class feature as input. Then an activa-
tion function such as tanh is applied to each unit. The fused
features are then connected to an output unit which gives the
similarity score for the image-class pair.

It is easy to see the difference from existing approaches.
Firstly, suppose the true similarity function is F', existing ap-
proaches need to define manually a similarity f explicitly
which is likely to be different from F. On the other hand,
ICINESS utilizes feed-forward neural network to directly ap-
proximate F' implicitly without defining f, which is more
flexible. Secondly, existing approaches basically adopt linear
similarity. On the contrary, ICINESS directly adopts non-
linear activation function, which is capable of capturing non-
linear similarity, which is more powerful. Thirdly, existing
approaches process image feature and class feature in a dis-
joint way such that the relationship between them is not fully
explored, while ICINESS adopts a fully connected layer to
fuse both features before similarity scoring such that it can
better connect image and class features for similarity scoring.
Based on these three advantages, ICINESS is able to better
explore the cross-modality similarity between image feature
and class feature than the explicit linear scoring framework.

3.2 Loss Function and Optimization
Given a training image-class pair {z,y} as input, ICINESS
will finally output a similarity score (after a sigmoid function)
§ € [0,1]. The ground truth target is defined as s(z,y) = 1
if image x belongs to class ¥y, or 0 otherwise. One simple
way to define the loss function is to use a binary classification
(similar/dissimilar) loss, like the cross-entropy loss below:
L(z,y) = —s(x,y)log 8(z,y)—(1—s(x, y)) log(1-3(z, y)) (2)
Compared to the regression based loss function [Romera-
Paredes and Torr, 2015; Zhang and Saligrama, 2016; Xian et
al., 2016; Guo et al., 2016], classification based loss directly
optimizes the ZSL goal: judging whether an image-class pair
is similar. It is simple to adopt a regression based loss like
ls — 3||? as the loss function. In the experiments, we will
show that the classification based loss performs much better.
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Figure 2: The proposed ICINESS framework. We fuse image and
class features in a non-linear way and approximate the image-class
similarity by a neural network based universal approximate theorem.

Ranking based loss is also widely used in ZSL. In fact, it
is expected not only the similarity to its own class §(x;, y;)
is large, but also larger than any other classes y # ;. Fortu-
nately, it is also very easy to adopt ranking loss in ICINESS.
For example, we can adopt triplet loss:

YAYi

where ) is a positive margin parameter, we use A = 0.1 here.

Based on back-propagation algorithm, it is easy to optimize
the network by minimizing the loss function. Specifically, the
partial derivative of the cross-entropy loss with respect to § is:

L s(zy)  1=s(ey) “
5(z,y) S(z,y)  1-3(z,y)
The partial derivative of the triplet loss with respect to § is:
oL
— = —I(s(x; — (i s >
ER) (8(zi,y) = 8(ziys) +A=0) (5
oL
= 1(8(wiy) — 8(wiyi) + A 2
oy~ G@ey) = S@iy) £AZ0) O

where [(z) = 1 if z is true, or 0 otherwise. Since ICINESS
adopts basic neural network operations, like convolution lay-
er, fully connected layer, sigmoid, and ReLU, it is easy to
back-propagate the gradient of loss functions through the net-
work, especially with well-established neural network tools,
like TensorFlow. Then we can use batch-based stochastic
gradient descent algorithm to optimize network parameters.

3.3 Implementation

ICINESS is a general framework and flexible. In this paper,
we implement a shallow and a deep networks based on it.
Shallow Network. We can view ICINESS as a purely sim-
ilarity scoring model which takes image feature and class fea-
ture as input and output a score. In this case, the “image
model” and “class model” in Figure 2 are fixed and we on-
ly need the output of them. For example, the image model
can be a pre-trained deep convolutional neural network, like
ResNet [He er al., 2016] which we use the 2048-dim top-
layer pooling units’ output as image feature. The class mod-
el can be the word2vec tool which gives a 300-dim feature
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vector using the class name as input, or the class attribute
vector [Lampert et al., 2014]. Then with the image feature
and class feature as input (the left layer in the blue box in
Figure 2), we uses a hidden layer in which each unit is fully
connected to both image and class features, followed by an
activation function, like tanh. Then all the hidden units are
fully connected to the output layer which gives the similarity
score §(x, y). Because the image and class features are given,
the network only needs to train hidden fully-connected layer-
s, which can be fast. In our experiment, we find out that this
simple shallow network yields state-of-the-art performance.
Deep Network. The shallow network uses pre-trained and
fixed image and class models. In fact, we can also train or
fine-tune them in ICINESS in an end-to-end manner. In par-
ticular, for image model, we adopt ResNet-101 as the base
architecture where its top-layer pooling units (we directly use
its output as image feature in shallow network) are connect-
ed to the hidden fusion layer. As for class feature, we can
also use a neural network as class model. In this work, we
adopt another fully connected hidden layer to class model. In
addition, to relieve the computational burden, we still use the
word2vec or class attribute features as raw input of a class. S-
ince the image and class models are fine-tuned, they generate
more powerful features, which is able to better fit the data.
For feature fusion, we can use only one hidden layer as
briefly shown in Figure 2, which leads to a simple model and
is easy to train, or two (or more) hidden layers which is hard-
er to train but can approximate more complicated similarity
function. In the experiments, we will show the difference.

3.4 Discussion

Interestingly, we observe that many existing ZSL approaches
turn out to be a specific case of ICINESS if proper activa-
tion function is utilized. For example, suppose z is the image
feature and a is the class feature for y. The similarity func-
tion for many linear models [Romera-Paredes and Torr, 2015;
Akata et al., 2016; Kodirov et al., 2017] can be written as:

q
flinear(x7 a) =zWad' = Z Clm(-jlj . W*m) (7

m=1

where a,, is the m-th element in vector a, W,,, is the m-th
column in matrix W. Now suppose we have 3 * ¢ hidden
units, where the r-th unit is connected to input features with
a weight 77 € R?%9 where the first d weights correspond
to the image feature and the last ¢ weights correspond to the
class feature. Then we can set the weights in 7" as follows:

wjr; Vr=1,...,q, Vi =1,...,d

1, Vr=1,...,q, J=d+r

Wir—q); Vr=q+1,..,2¢,Vj=1,...,d (8)
1;Vr=2¢+1,..,3q, j=d+1—2q

0; otherwise

T —

Then suppose we use square function as the activation func-
tion for each hidden unit, and the weights connected to output
unit are 1 for the first ¢ hidden units, and —1 for the last 2¢
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[ AWA2 | aPY | SUN | CUB

F#seen class 40 20 645 150
##(train) seen sample | 23,527 | 5,932 | 10,320 | 7,057
#(test) seen sample 5,882 | 1,483 | 2,580 | 1,764

#unseen class 10 12 72 50
#unseen sample 7,913 | 7,924 | 1,440 | 2,967

F#class attributes 85 64 102 312

Table 1: The statistics of datasets.

units. We can compute the pre-activation output as follows:

0= (T"-[z,a])* = > (T"-[x,d])
r=1 r=q+1

r=1
3q
- Z (T7,.a- @'+ Tisr,.a4q - @)° ®
r=q+1
q
= Z((l‘ W*r) + ar) — Z(-’L' W*'r) - CL%
r=1 r=1 r=1
q
= Z QGT(ZC . W*'r) = 2flinear
r=1

which indicates the output of the network is equivalent to
linear similarity score. In fact, if the projections ¢ and
¢ are linear [Zhang and Saligrama, 2015; Norouzi et al.,
2013], i.e., ¢(x) = xP and p(a) = aR, we can define
Whet = PW R’ and define a network by Eq. (8) using W,,¢:.
This network is equivalent to the original similarity function.
For which adopt non-linear projections [Socher et al., 2013;
Changpinyo ef al., 2016], we can also regard their transfor-
mation functions as a feature preprocessing step for ICINESS
which is analogous to the deep implementation of ICINESS.

4 Experiment

4.1 Experiment Setting

Following [Xian et al., 2017], we adopt 4 benchmark datasets
for ZSL. The first is Animals with Attributes2 (AwA?2) [Xi-
an et al., 2017] with 40 seen classes and 10 unseen classes.
The second is aPascal-aYahoo (aPY) [Farhadi et al., 2009]
with 20 seen classes and 12 unseen classes. The third is
SUN [Patterson and Hays, 2012] scene recognition dataset
with 645 seen classes and 72 unseen classes. The last is
CUB [Wah et al., 2011] bird recognition dataset with 150
seen classes and 50 unseen classes. For each image, we use
the 2, 048-dimensional output of the pre-trained ResNet-101
as image feature considering its efficacy [Tang er al., 2017;
Zhang et al., 2017]. For each class, the attribute vector from
each dataset is used as the class feature. The seen-unseen split
is from Xian et al. [2017]. The statistics are in Table 1.

‘We consider two tasks. The first is standard ZSL, where a
test sample is from C* and the goal is to assign a label ¢ € C*
to the test sample. For ICINESS, the prediction is given by

¢(x) = argmax .. 5(z, ¢) (10)
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Figure 3: The effect of loss functions, the number of hidden layers, architectures, and the number of hidden units.

where §(z, c) is the similarity score given by ICINESS. In
this case, the performance is evaluated by the average per-
class top-1 accuracy [Xian et al., 2017] defined as follows:

ACCe =

1 Z #correct predictions in ¢ an

IC| poere #samples in ¢
where C = C*. We use all samples from the seen classes,
including both train and test in Table 1, to train the network.

The second task is generalized ZSL (GZSL) where a test
sample may come from both C* and C° and the goal is to
assign a label ¢ € C* U C" to the test sample. Because the
model is likely to assign larger values to seen classes [Chao
et al., 2016], we slightly modify the prediction as follows:

Cqy(x) = argmax o ou5(2, ) — yI(c € C%) (12)

where we simply use v = 0.1 in this paper. In GZSL, the
test data contains two parts. One is the unseen samples and
the other is the test seen samples (the fourth row in Table 1).
We only use the train seen samples (the third row in Table 1)
as the training set. The harmonic mean of the accuracies on
seen classes and unseen classes is used as evaluation metric:

_ 2x ACC¢s x ACCeu
~ ACCes + ACCeu

4.2 TImplementation Details

To alleviate the difference between image feature’s scale and
class feature’s scale, all features are all normalized to have
unit length before feed into the network. For feature fusion,
512 hidden units are used for each hidden layer. For the deep
implementation, we use ResNet-101 as the backbone for im-
age model, which is pre-trained on ImageNet [Russakovsky
et al., 2015]. For each class, we use the attribute vector as in-
put and adopt an one-hidden-layer network as the class model
which has 512 hidden units and 128 output units with tanh as
the activation function. In fact, because the manually defined
attribute vector is itself a good class feature, we also consider
to directly use the attributes as the input to the fusion network.

We implement the network in TensorFlow framework.
Mini-batch based stochastic gradient descent is used to op-
timize network parameters with initial learning rate 0.01 and
decrease it to 0.001 after 75k batches. The training stops after
100k batches. We use 128 image-class pair in each batch. In
particular, a positive pair is given by an image and its ground
truth class label. A negative pair is an image and a randomly

13)

sampled other class. In fact, because each image belongs to
only one class, there are much more negative pairs. In this
paper, we set the positive:negative ratio to 1 : 3, i.e., for each
positive class, we randomly sample 3 negative classes for an
image in a batch. Therefore, each batch has 32 images and
each image has 1 positive class and 3 negative classes, lead-
ing to 128 pairs in each batch. The weight decay is be —5 and
we use random flip and random rotate for data augmentation.

4.3 Ablation Study

Loss functions. We introduce the cross-entropy classification
loss in Eq. (2) and ranking loss in Eq. (3). It is mentioned
we can use pre-activation output for regression loss (squared
Euclidean loss) like in previous works [Romera-Paredes and
Torr, 2015; Zhang and Saligrama, 2016; Guo et al., 2016].
We consider both shallow and deep implementations with one
hidden layer. The ZSL accuracy on AwA?2 dataset is utilized
for evaluation. The comparison is shown in Figure 3(a). Ob-
viously, the classification loss and the ranking loss perform
better than the regression loss. In fact, the proposed scoring
network attempts to yield large similarity scores for positive
pairs and small similarity scores for negative pairs, instead of
fitting a particular similarity score, which is more reasonable.
The number of hidden layers. For feature fusion, we can
use one hidden layer for simpleness. One hidden layer is able
to introduce non-linearity into similarity measure. Also we
can adopt more hidden layers to increase the complexity of
the model so that it can approximate more complicated sim-
ilarity function between images and classes. Here we con-
sider the difference between them. We also use shallow and
deep implementations and SUN dataset. The results are giv-
en in Figure 3(b). It can be observed that two-layer networks
achieve higher accuracy than one-layer networks. The su-
perior performance of two-layer networks indicates that im-
posing more non-linearity is indeed useful for ZSL which
is an evidence for the key assumption in this paper that the
image-class similarity function is non-linear, which further
indicates that the linear functions adopted in previous ZSL
works seems too weak to capture the image-class similarity.
The architectures. In the shallow implementation, the im-
age model and class model are fixed while only the fusion
layers are tuned. In the deep implementation, we can simul-
taneously train all parts. In fact, the manually defined class
attribute is an effective feature for classes. Therefore, it seems
we do not need to train the class model. Instead, we can di-
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AwA2 aPY SUN CUB Average

ACC| H |ACC| H |[ACC| H |ACC| H | ACC | H
Norouzi et al. [2013] 44.5 1.0 26.9 0.0 38.8 | 11.6 | 34.3 3.1 36.13 3.93
Changpinyo er al. [2016] 46.6 | 18.0 | 23.9 | 13.3 | 56.3 | 13.4 | 55.6 | 19.8 | 45.60 | 16.13
Frome et al. [2013] 59.7 | 27.8 | 39.8 9.2 56.5 | 20.9 | 52.0 | 32.8 | 52.00 | 22.68
Socher et al. [2013] 379 | 159 | 28.0 | 19.0 | 39.9 | 13.3 | 34.6 8.7 | 35.10 | 14.23
Lampert ef al. [2014] 46.1 0.0 33.8 9.0 39.9 7.2 40.0 3.3 39.95 4.88
Romera-Paredes and Torr [2015] || 58.6 | 11.0 | 38.3 | 4.6 | 54.5 | 15.8 | 53.9 | 21.0 | 51.33 | 13.10
Xian et al. [2016] 55.8 | 20.0 | 35.2 0.2 55.3 | 19.5 | 49.3 | 24.0 | 48.90 | 15.93
Akata et al. [2015] 61.9 | 14.4 | 32.9 6.9 53.7 | 19.8 | 53.9 | 33.6 | 50.60 | 18.68
Akata et al. [2016] 62.5 | 23.9 | 39.7 8.7 58.1 | 26.3 | 54.9 | 34.4 | 53.80 | 23.33
ICINESS-S 64.2 | 36.3 | 424 | 23.1 | 629 | 303 | 59.8 | 394 | 57.33 | 32.28
ICINESS-D 67.0 | 41.0 | 46.1 | 254 | 651 | 32.1 | 629 | 41.8 | 60.28 | 35.08

Table 2: (Generalized) zero-shot performance comparison on benchmarks. ZSL is evaluated by ACC and GZSL is evaluated by H.

rectly use the attribute vector as the input of fusion layers.
Here we investigate the difference between them. In particu-
lar, we compare the shallow implementation (Shallow), deep
implementation which uses attribute vector for fusion layers
directly and only optimizes the image model (Deep-Image),
and deep implementation which uses image and attribute at-
tribute vector as raw input for image and class models which
are both optimized (Deep-ALL). We use CUB dataset and the
results are shown in Figure 3(c). The deep implementations
are better than the shallow one. But we observe that Deep-
ALL yields unstable performance while Deep-Image seems
more robust. One possible reason is that there are thousands
of images and only tens of classes. The class model is likely
to overfit the data while the image model is not. Therefore,
the fine-tuned image model may better fit the dataset and pro-
duce more powerful image feature which leads to better per-
formance than Shallow. However, the overfitted class model
may yield worse class feature than the attribute vectors. In
the experiments introduced beforehand, we use Deep-Image.
The number of hidden units. Now we study the effect the
number of units in each hidden layer to the performance. We
use aPY, shallow and deep implementations with one or two
hidden layers. The ZSL accuracy w.r.t. the number of hidden
units is plotted in Figure 3(d). When increasing the number
at first, performance gets better because more units lead to
more powerful model so that it is capable of approximating
more complicated non-linear similarity function. On the oth-
er hand, if the model has many hidden units (e.g., 1,024),
further increasing the number may degrade the performance
because the model becomes too complicated to train. Using
512 units is a good trade-off between speed and accuracy.

4.4 Benchmark Comparison

We compare ICINESS to the related ZSL approaches on four
benchmarks for ZSL and GZSL tasks. In particular, we use
the shallow implementation with one hidden layer, denoted as
ICINESS-S. It has the same input features as baselines. We
also use the Deep-Image with two hidden layers, denoted as
ICINESS-D. Both are trained with the cross-entropy loss.

The comparison is summarized in Table 2. ICINESS-S and
ICINESS-D both achieve significant improvement over the
other baseline approaches for all benchmarks and tasks.

In the experiment, ICINESS-S is almost the simplest im-
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plementation of ICINESS. It has the same input features as
the baseline approaches, but significantly outperforms them.
In particular, the ZSL ACC is improved by 3.53 and the GZS-
L H by 8.95 in average compared to the best baseline. The
baseline approaches all adopt explicit linear scoring, while
ICINESS defines the non-linear similarity function in an im-
plicit way. The results clearly demonstrate the superiority of
implicit non-linear scoring to explicit linear scoring. As dis-
cussed, the image-class similarity is complicated by nature. It
is more reasonable to use a non-linear function than a linear
one. However, it is quite difficult, if not impossible, to define
the function manually. To address this issue, we propose to
use a neural network to approximate the function. Based on
the universal approximation theorem, neural network is capa-
ble of capturing non-linear functions to some extent. Because
of this advantage, ICINESS-S achieves much better result.
By using more powerful architectures, ICINESS-D im-
proves average ACC and H by 6.48 and 11.75 respectively
compared to the best baseline, which demonstrates its effica-
cy. By using two hidden layers, ICINESS is able to approx-
imate more complicated non-linear similarity functions. In
addition, by fine-tuning the image feature model at the same
time, more powerful image features are available. Both issues
contribute to the extraordinary performance of ICINESS-D.

5 Conclusion

This paper focuses on zero-shot learning problem. We no-
tice that existing ZSL approaches can be summarized into the
same framework, explicit linear similarity scoring which ex-
plicitly defines a linear similarity function between images
and classes. However, the image-class similarity is compli-
cated by nature so that it seems not reasonable to simply de-
fine a linear one. We propose a novel, simple yet effective
framework with implicit non-linear similarity scoring (ICI-
NESS) which fuses image feature and class feature by hidden
layers to output a similarity score by a network. Based on
universal approximation theorem, the network can approxi-
mate the true non-linear similarity in an implicit way. We
develop shallow and deep versions and we show that many
existing ZSL approaches can be regarded as a special case of
ICINESS. Experiments on four ZSL benchmarks demonstrate
that ICINESS yields better results than the state-of-the-arts.
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