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Abstract

In recent years considerable research efforts have been de-
voted to compression techniques of convolutional neural net-
works (CNNs). Many works so far have focused on CNN
connection pruning methods which produce sparse parame-
ter tensors in convolutional or fully-connected layers. It has
been demonstrated in several studies that even simple meth-
ods can effectively eliminate connections of a CNN. How-
ever, since these methods make parameter tensors just sparser
but no smaller, the compression may not transfer directly to
acceleration without support from specially designed hard-
ware. In this paper, we propose an iterative approach named
Auto-balanced Filter Pruning, where we pre-train the network
in an innovative auto-balanced way to transfer the represen-
tational capacity of its convolutional layers to a fraction of
the filters, prune the redundant ones, then re-train it to restore
the accuracy. In this way, a smaller version of the original net-
work is learned and the floating-point operations (FLOPs) are
reduced. By applying this method on several common CNNs,
we show that a large portion of the filters can be discarded
without obvious accuracy drop, leading to significant reduc-
tion of computational burdens. Concretely, we reduce the in-
ference cost of LeNet-5 on MNIST, VGG-16 and ResNet-56
on CIFAR-10 by 95.1%, 79.7% and 60.9%, respectively.

Introduction
The past few years have witnessed rapid developments of
convolutional neural networks (CNNs) in the areas of com-
puter vision, natural language processing, etc. However,
due to their nature of computational intensity, as CNNs
grow wider and deeper, their computational burdens have
increased dramatically, making them difficult to deploy on
embedded systems. Therefore, this research community is
soliciting the solutions that are able to simplify the CNNs
but without losing too much accuracy.

Recent researches on CNN compression methods have at-
tracted much attention. Some excellent works, such as (Han
et al. 2015) and (Guo, Yao, and Chen 2016), have explored
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connection-wise pruning techniques. However, these meth-
ods make the parameter tensors of convolutional or fully-
connected layers just sparser, but no smaller, hence the com-
pression may not transfer directly to acceleration without
support from specially designed hardware (Molchanov et al.
2016) (Han et al. 2016).

Some other works focus on filter-wise pruning approaches
and have made promising achievements, which can be di-
vided into two categories. One category of works tends to
impose sparse constraints on the model and produce a com-
pact network by training, where the representatives include
group sparsity regularizer (Lebedev and Lempitsky 2016),
group Lasso regularization (Wen et al. 2016) (Alvarez and
Salzmann 2016), tensor low rank constraints (Zhou, Al-
varez, and Porikli 2016) and group sparse constraints (Zhou,
Alvarez, and Porikli 2016). Another category of works iter-
atively discards unimportant filters from a well-trained net-
work and usually requires re-training to avoid severe accu-
racy drop. (Abbasi-Asl and Yu 2017) measures a filter’s im-
portance by the classification accuracy reduction of the net-
work after pruning it, and eliminates one single filter at each
iteration based on this metric. (Molchanov et al. 2016) and
(Li et al. 2016) prune filters in a similar iterative way but
by different metrics. (Hu et al. 2016) evaluates a filter’s im-
portance by its output on a subset of the training data and
prunes a fraction of the filters in several layers simultane-
ously at one single iteration.

In this paper, we aim to combine the advantages of the
two paradigms. On the one hand, we are inspired by the idea
that the network can be trained under a certain constraint to
introduce structured sparsity in the parameters. On the other
hand, a progressive approach consisting of alternate prun-
ing and re-training is more suitable for pursuing the highest
compression rate, since we can easily roll back to a previ-
ous state when the network is irreversibly damaged. Taking
both points into account, we seek for an approach where we
fine-tune a well-trained model to make it robust to pruning,
then alternately prune and re-train it to produce a signifi-
cantly smaller network. The rationale behind our idea is that
we can certainly pre-train the network as a prevention of the
structural damage at the very beginning, instead of making
up for the performance reduction after pruning.

There is thereby an urgent need but it is still a significant
challenge to find a powerful pre-training method before the



first pruning which prepares the network for the upcoming
pruning process as well as maintains the accuracy. As a can-
didate approach, reducing the absolute value of parameters
is most natural: considering that the parameters are set to
zero during pruning, the closer to zero they used to be, the
less structural damage pruning does to the network (Han et
al. 2015). Though (Han et al. 2015) uses `1 and `2 regular-
izations to zero out parameters in the connection-wise iter-
ative pruning pipeline and gets encouraging results, it must
be pointed out that filter-wise pruning is something different:
it’s hard to push all parameters in one filter close to zero si-
multaneously. If applying `1 or `2 regularization is expected
to zero out a whole filter, the regularization factor must be
much larger. Unfortunately, an overly strong regularization
puts another problem on the table: when the `1 or `2 regular-
ization term added to the objective function becomes larger,
the accuracy loss is considered less important due to the na-
ture of back-propagation algorithm, thus degrading the net-
work performance. When we use usual `1 or `2 regulariza-
tion in the proposed pipeline, we encounter a dilemma. If the
regularization factor is small, filters cannot be effectively ze-
roed out, thus the pruning operation causes severe accuracy
reduction. However, if the factor is large, the network’s per-
formance gets badly harmed during the pre-training process.

As our first contribution, we propose an approach called
Auto-balanced Regularization to address this problem,
where we apply `2 regularization with positive factors on
unimportant filters and negative factors on important ones.
The intuition is that we dynamically adjust the negative
factors such that the sum of positive and negative regular-
ization terms is always kept zero during training, meaning
that as weak filters become weaker, the strong ones grow
even stronger accordingly. Training with this regularization
is able to transfer the model’s representational capacity to a
fraction of its filters, thus minimizing performance drop in
the forthcoming pruning stage.

As our second contribution, we introduce a pre-training
stage to common iterative pruning methods, as demonstrated
in Figure 1. To be more specific, we propose a filter-wise
pruning pipeline called Auto-balanced Filter Pruning (AFP),
which removes redundant filters from a well-trained CNN
to produce a smaller one, significantly reducing the com-
putational cost. In this pipeline, the network is pre-trained
at the very beginning, then iteratively pruned and re-trained
to reach a satisfactory compression rate. In the pre-training
process, we fine-tune the network with Auto-balanced Reg-
ularization to change the filter-wise distribution of param-
eters. In the pruning stage, the unimportant filters are dis-
carded along with the corresponding feature maps. After
pruning, the model is re-trained to restore its accuracy. Note
that re-training is also done with our proposed regulariza-
tion, hence each re-training stage can also be viewed as
the pre-training stage of the next iteration. Besides, instead
of pruning layer by layer, we prune filters from all convo-
lutional layers simultaneously. To this end, we propose a
novel iteration strategy named Abreast Advancing to decide
which filters to prune at each iteration. By performing exper-
iments on several common CNNs, we show that a large por-
tion of the filters can be discarded without obvious accuracy

drop, leading to significant reduction of computational bur-
dens. Concretely, we reduce the inference cost of LeNet-5 on
MNIST, VGG-16 and ResNet-56 on CIFAR-10 by 95.1%,
79.7% and 60.9%, respectively.
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Figure 1: Auto-balanced Filter Pruning Pipeline

Related Work

Connection-wise CNN Pruning

A natural way to compress a CNN is removing some of
its unimportant parameters. Nevertheless, defining what is
important is a non-trivial work. Optimal Brain Damage
(LeCun, Denker, and Solla 1990) and Optimal Brain Sur-
geon (Hassibi and Stork 1993) use second-order Taylor ex-
pansion to calculate the metric for importance of the pa-
rameters. However, these two methods require computa-
tion of the second derivatives, which is costly for today’s
deep CNNs. (Han et al. 2015) proposes a simple but ef-
fective approach where the importance of a parameter is
measured by its absolute value. Based on that, the CNN
is iteratively pruned and fine-tuned. In the pruning stage,
a layer’s unimportant parameters, i.e. the parameters with
absolute values below a certain threshold, are set to zero,
hence the network’s accuracy drops due to the structural
damage. Later in the re-training stage, the model recovers
from the damage and restores its accuracy. After every it-
eration, the threshold for each layer is raised, thus produc-
ing increasingly sparser weight parameters. In the experi-
ments, LeNet-5 (LeCun et al. 1998), AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) and VGG-16 (Simonyan and
Zisserman 2014) are successfully compressed by an order of
magnitude. However, the compression effects mainly come
from fully-connected layers and the pruning of convolu-
tional layers remains challenging.



Filter-wise CNN Pruning
In the past few years, several fully-convolutional neural net-
works (Long, Shelhamer, and Darrell 2015) (Redmon and
Farhadi 2016) have made satisfactory achievements in the
areas of semantic segmentation, object detection, etc. Be-
sides, a substitute for fully-connected layers named global
average pooling has been applied in some main-stream
CNNs (Lin, Chen, and Yan 2013) (He et al. 2016). In this
context, compression techniques for convolutional layers are
attracting much attention.

Recently the application of sparsity constraints on CNN
compression has been intensively investigated (Zhou, Al-
varez, and Porikli 2016) (Wen et al. 2016) (Alvarez and Salz-
mann 2016) (Lebedev and Lempitsky 2016). These works
use group sparsity based constraints to penalize unimportant
parameters and learn a small compact network from a big
redundant one.

Another way of filter pruning is iteratively deleting unim-
portant filters from a well-trained network. (Abbasi-Asl and
Yu 2017), (Molchanov et al. 2016), (Guo, Yao, and Chen
2016), and (Li et al. 2016) have discussed different iteration
strategies as well as various metrics to measure the filter im-
portance. Apparently, the number of filters pruned at each
iteration is a sort of trade-off to be solved: the fewer filters
are discarded once, the less damage is done to the network
structure, which means the less retraining time is required
for the network to restore the accuracy; but more iterations
are needed to reach a satisfactory compression rate.

Other Methods
Apart from pruning, there are some other CNN compression
methods such as parameter quantization (Han, Mao, and
Dally 2015), distillation (Hinton, Vinyals, and Dean 2015)
and binarization (Rastegari et al. 2016) (Courbariaux et al.
2016), which are complementary to ours. It’s important to
point out that since our method simply learns a small and
compact full-precision network with no sparsity or custom
structure, it’s promising to combine it with other methods
and achieve even higher compression rate.

The Proposed Method
Filter-wise Pruning
In contrast to previous connection-wise pruning methods,
we prune a CNN at the filter level. Every time a CNN is
pruned, some 3-D filters along with the corresponding fea-
ture maps are deleted, resulting in a structural change in
the network. It must be mentioned that when several con-
volutional layers stacked together are pruned, the FLOPs of
the entire network are reduced quadratically. Imagine a sim-
ple CNN with n convolutional layers andm fully-connected
layers on top, let ui be the FLOPs of convolutional layer
i and vi be the FLOPs of fully-connected layer i, then the
original inference cost can be represented as

Co =

n∑
i=1

ui +

m∑
i=1

vi . (1)

Let oi be the original number of filters in the convolutional
layer i and ri be the number of remaining filters after prun-
ing. Then the FLOPs of the pruned network is

Cp =
r1
o1
u1 +

n∑
i=2

ri−1ri
oi−1oi

ui +
rn
on
v1 +

m∑
i=2

vi . (2)

Metric for Filter Importance
It’s natural to measure a filter’s importance by observing the
performance drop of the network if it is deleted (Abbasi-
Asl and Yu 2017). However, calculating the filter’s impor-
tance in the way that remeasures the whole network’s per-
formance after discarding filters one by one is computa-
tionally impractical. Therefore, how to approximate a fil-
ter’s importance without bringing in too much computa-
tional burdens becomes an inevitable topic. Recently many
researchers have focused on this topic and proposed some
enlightening metrics.

(Li et al. 2016) uses `1 norm to evaluate the importance of
a filter for the ease of the calculation. This metric is naive but
natural, for a parameter with a bigger absolute value is more
likely to have a strong influence on the network’s output.
Inspired by the early works of (LeCun, Denker, and Solla
1990) (Hassibi and Stork 1993), some researchers choose
to approximate a filter’s importance in a Taylor expansion
based way (Molchanov et al. 2016) (Wolfe et al. 2017). In-
stead of simply summing up filter parameters, an evaluation
process is performed on a subset of the training set to calcu-
late the metrics. Though costly, these methods usually out-
perform the naive ways.

In our experiments, we choose `1 norm as the filter impor-
tance metric to minimize the time cost as well as produce ex-
perimental results comparable to (Li et al. 2016). Formally,
let Mi,j be the importance metric of the j-th filter in the i-th
convolutional layer, Fi,j be the corresponding 3-D parame-
ter tensor, and vec be the function that flattens a 3-D tensor
to obtain a vector, we have

Mi,j = ||vec(Fi,j)||1 . (3)

Auto-balanced Training
(Han et al. 2015) has demonstrated that `2 norm gives bet-
ter experimental results than `1 norm as a means of regu-
larization for iterative pruning. Considering that, we apply
a customized `2 regularization to penalize weak filters and
stimulate strong ones to grow stronger. Specifically, we set
a hyper-parameter ri for each layer i to represent the target
number of remaining filters after pruning. For each layer i,
we pick ri filters with the biggest importance metric, i.e. `1
norm, to form a remaining set denoted as Ri and the oth-
ers to make up a to-be-pruned set denoted as Pi. We define
a threshold value θi as the ri-th largest importance metric
among all the filters in layer i. Then we have

Mi,j < θi ∀Fi,j ∈ Pi , (4)

Mi,j ≥ θi ∀Fi,j ∈ Ri . (5)

An `2 regularization term is added on every filter with
different factors. The factors are positive for the filters in Pi



and negative for those in Ri. Furthermore, for the filters in
Pi, the weaker they are, the harder they are penalized. And
for those in Ri, the stronger they are, the more intensely
they are stimulated. Since the magnitude of the parameters
in different layers may vary considerably, a filter’s impor-
tance is only comparable to the other ones in the same layer.
In view of that, we define the factors based on θi as follows,

λi,j =


1 + log

θi
Mi,j + ε

if Fi,j ∈ Pi ,

−1− log
Mi,j

θi + ε
if Fi,j ∈ Ri .

(6)

Note that these factors are calculated when a training
stage starts and remain unchanged until the end of the train-
ing. This design brings about another benefit: when each re-
training stage starts and Mi,j for each filter j in convolu-
tional layer i is updated, if one filter Fi,j has been penalized
at the last iteration but not yet pruned, λi,j becomes larger,
since θi is not likely to have significantly decreased. In this
way, the penalization of Fi,j becomes harder at the current
iteration so that the training process is accelerated. We use
logarithm here because the parameters may vary in magni-
tude but we don’t want their regularization factors to differ
that enormously. ε is set to 1× 10−12 to avoid division by
zero. Then we have the positive regularization term for Pi

and the negative term for Ri denoted by S(Pi) and S(Ri),

S(Pi) =
∑

Fi,j∈Pi

λi,j ||vec(Fi,j)||22 , (7)

S(Ri) =
∑

Fi,j∈Ri

λi,j ||vec(Fi,j)||22 . (8)

We denote the union of all to-be-pruned sets by P and the
union of all remaining sets by R, thus we have,

S(P ) =

n∑
i=1

S(Pi) , (9)

S(R) =

n∑
i=1

S(Ri) . (10)

The positive regularization terms of all convolutional lay-
ers are added to the network’s original objective function by
a factor α. Similarly, all negative terms are added by a factor
τ . Let Lo denote the original objective function including
common regularization terms, if any, then the new optimiza-
tion objective of training is to minimize

L = Lo + αS(P ) + τS(R) . (11)

Therefore, the gradients of filters are changed as

∂L

∂Fi,j
=


∂Lo

∂Fi,j
+ 2αλi,jFi,j if Fi,j ∈ Pi ,

∂Lo

∂Fi,j
+ 2τλi,jFi,j if Fi,j ∈ Ri .

(12)

Since λi,j > 0 ∀Fi,j ∈ Pi, λi,j < 0 ∀Fi,j ∈ Ri, the
weak filters are penalized and the strong ones are stimu-
lated, respectively. Notably, τ is not a hyper-parameter but

calculated and reset before every batch of data is fed into
the network during training (Eq. 13). Therefore, our method
requires two hyper-parameters, namely the n-dimensional
vector r which represents the target number of remaining
filters in each layer, and the regularization factor α.

τ = −αS(P )

S(R)
(13)

The word auto-balanced includes two meanings. On the
one hand, according to Eq. 13, the intensity of stimulation
on strong filters varies with the weak ones. When the weak
filters are zeroed out, the stimulation automatically stops and
the training converges. On the other hand, as the weak fil-
ters in a certain layer are weakened and the strong ones are
stimulated, the representational capacity of the weak part is
gradually transferred to the strong part, keeping the whole
layer’s representational capacity unharmed.

Abreast Advancing Iterative Pruning

Algorithm 1 Abreast Advancing Iterative Pruning

Require: Original network No; Target number of remain-
ing filters vector r; Schedule vector s

1: Initialize: Index i = 1; Current progress p = 0
2: Build network N by imposing Auto-balanced Regular-

ization to No

3: Pre-train N
4: repeat
5: p = si
6: Calculate vector z according to r and p, which de-

notes the number of filters to be pruned in each layer
at current iteration

7: For each layer i, remove zi filters with the smallest
M value

8: Re-construct Auto-balanced Regularization of N
9: Re-train N

10: i = i+ 1
11: until p == 1
12: return N

For deep CNNs, such as VGG-16 (Simonyan and Zisser-
man 2014) and ResNet-56 (He et al. 2016), pre-training once
is not enough for transferring the representational capacity
of the weak filters to the strong ones entirely. Considering
that, an iterative process of pruning and re-training is applied
for these deep networks. In the pre-training stage, the net-
work polarizes its filters and gets prepared for the pruning. In
every pruning iteration, the network is pruned and re-trained.
Concretely, in the pruning stage, some of the weak filters are
discarded and the remaining ones are re-organized to make
up a smaller network. In the following re-training stage, the
new network is re-trained to restore its accuracy and fur-
ther polarize the remaining filters. So essentially, every re-
training stage can also be seen as the pre-training stage of
the next iteration.

The iteration strategy that decides which filters to prune
at each iteration plays an important role in the pipeline.
In order to preserve the holistic structure of the original



model during training as well as reduce the time cost of the
pipeline, we do not prune the network layer by layer, which
is the most conservative and popular style. Instead, we pro-
pose a novel iteration strategy named Abreast Advancing,
which means that the pruning tasks for all convolutional lay-
ers are carried out synchronously. Concretely, we pre-set the
target number of pruned filters for each layer, and the ratios
of the already pruned filters and the target numbers are kept
the same among all convolutional layers at each iteration.
For simplicity, we use a vector s named schedule vector to
denote the pruning progress at each iteration. The elements
in s must be strictly increasing and the last one must be 1.
For example, s = (0.5, 0.75, 1) means that 50%, 75% and
100% of the target filters in every convolutional layer are
synchronously removed at each iteration, respectively, thus
the whole pruning process is finished within 3 iterations. We
specify the algorithm in Algorithm 1.

Experiment
We evaluate the effectiveness of our proposed method (AFP)
by pruning LeNet-5 (LeCun et al. 1998) on MNIST, VGG-
16 (Simonyan and Zisserman 2014) and ResNet-56 (He et
al. 2016) on CIFAR-10. We perform our experiments with
tensorflow (Abadi et al. 2016) 1.01 on one NVIDIA TITAN
X GPU. Every pruning experiment starts from a well-trained
model and produces a smaller network with dramatically re-
duced FLOPs and comparative accuracy.

LeNet-5 on MNIST
MNIST is a well-known database of handwritten digits con-
taining 60,000 images for training and 10,000 for testing.
We perform experiments on a version of LeNet-5 defined in
(Yangqing 2014), which consists of two convolutional and
two fully-connected layers. Since the two convolutional lay-
ers comprise 20 and 50 filters, respectively, we use a tuple
(20, 50) to denote the network structure for simplicity. We
train LeNet-5 from scratch on MNIST using the same train-
ing parameters as (Yangqing 2014). The trained network is
tested on MNIST test set and achieves an error rate of 0.83%.

Since LeNet-5 is shallow, there is no need for pruning it
in a progressive way. We simply pre-train the network with
Auto-balanced Regularization and the filters are polarized
perfectly. According to our most satisfactory result labeled
as AFP-C, the error rate even further decreases to 0.76%. In
the end, the weak filters are discarded and the error rate re-
mains unchanged. Some experimental results of our method
and another comparable work (Wen et al. 2016) are demon-
strated in Table 1.

To demonstrate the effectiveness of Auto-balanced Regu-
larization, we visualize the `1 norm of all the filters of the
result AFP-C before and after pre-training in Figure 2. Ob-
viously, all the filters except for the 3 and 8 strongest ones
in two convolutional layers are zeroed out. It’s noteworthy
that, if pre-trained properly, the network even performs bet-
ter with far fewer filters, which is consistent with the obser-
vation from (Han et al. 2015). A possible explanation is that
eliminating parameters is an effective way of regularization
which reduces overfitting of the network (Han et al. 2015).

0 5 10 15 20
filters

0

2

4

6

8

10

` 1
 n

o
rm

remaining
increased
decreased

(a) conv-1

0 10 20 30 40 50
filters

0

10

20

30

40

50

60

` 1
 n

o
rm

remaining
increased
decreased

(b) conv-2

Figure 2: The change of `1 norm of LeNet-5 filters

Table 1: LeNet-5 Experimental Results

Method Filter Error% FLOPs Pruned%

baseline 20,50 0.83 4.40× 106 -
SSL-2 5,19 0.80 5.97× 105 86.42%
SSL-3 3,12 1.00 2.89× 105 93.42%
AFP-A 4,10 0.74 3.07× 105 93.00%
AFP-B 4,5 0.96 1.95× 105 95.56%
AFP-C 3,8 0.76 2.14× 105 95.13%
AFP-D 3,5 2.21 1.58× 105 96.41%

VGG-16 on CIFAR-10
CIFAR-10 is a widely used database comprising 50,000
RBG images of 32 × 32 pixels for training and 10,000 for
testing. In our experiments, we use random horizontal flip
and random shift for data augmentation.

The experiments in this section are based on a VGG-16
version same as (Li et al. 2016). Concretely, the overall
convolutional architecture remains the same as (Simonyan
and Zisserman 2014), while every convolutional layer is fol-
lowed by a batch normalization (Ioffe and Szegedy 2015)



layer. Besides, the fully-connected part is re-designed: only
one hidden layer with 512 neurons is applied without
dropout (Srivastava et al. 2014). The network is trained from
scratch for 160 epochs and eventually achieves 7.08% error
rate.

We set the hyper-parameter r based on the layer-wise his-
togram of `1 norm of filters in the original network. Basi-
cally, the steeper the histogram looks, the more filters we
prune from the layer. Note that if we define this hyper-
parameter too conservatively and result in an unsatisfac-
tory compression effect, we can adjust r and restart our
pipeline with the previous output as initialization, thus no
effort is wasted. Based on the histograms of the 13 layers,
we prune 50% of the filters from layer 4-8 and 90% of the
filters from layer 9-13. We only shift r1, r2 and r3, namely
r = (r1, r2, r3, 64, 128, 128, 128, 256, 52, 52, 52, 52, 52).
Considering that the original `2 regularization factor of the
network is 5× 10−4, we set α to be an order larger i.e.
5× 10−3. Since VGG-16 is deep, an Abreast Advancing
pipeline is applied with s = (0.5, 0.9, 1). We train the net-
work with a learning rate of 3× 10−4 and 3× 10−5 for 50
epochs respectively in each training stage. We first perform
experiments with no Auto-balanced Regularization but only
Abreast Advancing (AA) iterative pruning and then apply
the complete version of AFP. It can be seen from Table 2
that our method is able to reduce the FLOPs of VGG-16 on
CIFAR-10 by 79.69% with acceptable accuracy drop using
only Abreast Advancing. Better still, when AFP is applied,
no accuracy loss is observed (AFP-E).

Table 2: VGG-16 Experimental Results

Method r1, r2, r3 Error FLOPs Pruned%

Li-base - 6.75 3.13× 108 -
Li-pruned - 6.60 2.06× 108 34.2%
AFP-base - 7.08 3.13× 108 -

AA-E 39,39,77 7.28 6.37× 107 79.69%
AFP-E 39,39,77 7.06 6.37× 107 79.69%
AA-F 64,26,52 7.56 5.83× 107 81.39%
AFP-F 64,26,52 7.13 5.83× 107 81.39%

ResNet-56 on CIFAR-10
We use the same ResNet-56 architecture as described in (He
et al. 2016), which contains 3 stages of convolutional layers
connected by projection mapping and followed by a global
average pooling layer and one fully-connected layer. After
trained on CIFAR-10 from scratch using the same training
parameters as (He et al. 2016), the network achieves an error
rate of 6.07%.

For simplicity and consistency, we number the convolu-
tional layers of ResNet-56 as follows: the first layer is num-
bered 1; from the shallower to the deeper in one stage, the
number increases; when it comes to the junction of two ad-
jacent stages, we number the projection layer before the two
convolutional layers in the parallel residual block.

Due to the special structure of identity mapping, the
pruned indexes of the input and output feature maps of one

Table 3: ResNet-56

Method q Error FLOPs Pruned%

Li-base - 6.96 1.25× 108 -
Li-A - 6.90 1.12× 108 10.4%
Li-B - 6.94 9.04× 107 27.6%

AFP-base - 6.07 1.42× 108 -
AFP-G 10,20,40 7.06 5.55× 107 60.86%
AFP-H 12,20,32 7.41 5.72× 107 59.65%
AFP-I 12,16,16 9.43 4.14× 107 70.79%

residual block must be identical (Li et al. 2016), or the resid-
ual mechanism goes wrong. WithDi denoting the set of dis-
carded filter indexes of layer i, we have D1 = D3 = D5 =
. . . = D19, D20 = D22 = D24 = . . . = D38,D39 = D41 =
D43 = . . . = D57 as constraints. Since we cannot expect
that the important filters in the same stage are in the same
positions, pruning this network is a real challenge,

(Li et al. 2016) performs experiments on ResNet-56 in
a conservative way. To avoid changing the input and out-
put feature maps of each residual block, (Li et al. 2016)
only prunes filters from the first layers of each block.
Namely, only filters from layer 2,4,6,. . . ,18 in stage 1, layer
21,23,25,. . . ,37 in stage 2 and layer 40,42,44,. . . ,56 in stage
3 are pruned.

We perform our experiments far more aggressively by sat-
isfying

Di = D1 ∀1 < i ≤ 19 ,

Di = D20 ∀20 < i ≤ 38 ,

Di = D39 ∀39 < i ≤ 57 ,

which means all convolutional layers in the same stage (if
we group projection 1 into stage 2 and projection 2 into stage
3) are pruned following the same pattern. To this end, we
pick 3 layers from the 3 stages respectively as the paceset-
ters and force every other convolutional layer to transfer its
representational capacity exactly the same way as its corre-
sponding pacesetter does. We use Mi := Mj as a simple
notation for assigning Mi,k := Mj,k ∀k ≤ h where layer
i and j both have h filters. With this notation, we assign
Ma := Mb to force layer a to adjust its filters just like layer
b does. In our experiments, we pick the first layer of stage
1, the second layer of stage 2 and the second layer of stage
3 as pacesetters. Note that since projection layers have 2×2
kernels instead of 3×3, we pick the first convolutional layer
in the first residual block of stage 2 but not the projection
layer as the pacesetter simply because it is more similar to
other convolutional layers, and the same is true for stage 3.
Formally, that is

Mi :=M1 ∀1 ≤ i ≤ 19 ,

Mi :=M21 ∀20 ≤ i ≤ 38 ,

Mi :=M40 ∀39 ≤ i ≤ 57 .

In practice, we simply calculate the `1 norms of layer 1,
21 and 40 as the importance metrics and apply them to cal-
culate the λ values of all filters. Since we don’t expect the



importance of all the filters in one stage to be of identical
distribution, some important filters may be penalized and
unimportant ones may be stimulated. Aggressive as it is, our
method performs well. We use a triple q to denote the num-
ber of remaining filters in each convolutional layer within
the 3 stages. Our results are demonstrated in Table 3 together
with a comparable work (Li et al. 2016). We also visualize
the `1 norm of filters in layer 4 and layer 14 after pre-training
but before pruning. We choose these two layers simply be-
cause of their distinctly different distribution of parameters.
It is observed that even if important filters are penalized and
zeroed out to follow the pattern of the pacesetter i.e. layer 1,
the network performs well.

Though we cannot learn a smaller network with an ac-
curacy higher than our baseline, the experiment is still a
success considering that ResNet-56 is an originally compact
network with complex structure. Concretely, our method is
able to reduce the FLOPs of ResNet-56 by 60.86% with
an acceptable accuracy decrease of 0.99%. This experiment
demonstrates that our method is able to not only utilize and
amplify the inherent difference between filters, but also re-
shape the network drastically as we wish.
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Figure 3: The change of `1 norm of ResNet-56 filters

Conclusion
To prune CNNs at the filter level, we propose a method
named Auto-balanced Filter Pruning (AFP), which learns
a small compact network from a big redundant one, hence
significantly reduces the FLOPs of the network. We propose
Auto-balanced Regularization, which penalize the weak fil-
ters as well as stimulate the strong ones, transferring the
representational capacity of a whole convolutional layer to
a fraction of its filters. Furthermore, we propose a pruning
pipeline, which contains one pre-training stage before the it-
erative pruning and re-training process. In the pre-training
stage, we train the network with Auto-balanced Regulariza-
tion and polarize its filters. In the pruning stage, some of
the weak filters are discarded along with the corresponding
feature maps. In the re-training stage, the network is trained
to restore its accuracy and prepare for the next pruning. Be-
sides, instead of pruning layer by layer, we propose a novel
iteration strategy named Abreast Advancing, which is aimed
to preserve the original holistic network structure as well as
reduce the time cost of the pipeline. By applying this method
on a few common CNNs, we reduce the inference cost of
LeNet-5 on MNIST, VGG-16 and ResNet-56 on CIFAR-10
by 95.1%, 79.7% and 60.9%, respectively.
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