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Robust Quantization for General Similarity Search
Yuchen Guo , Guiguang Ding, and Jungong Han

Abstract— The recent years have witnessed the emerging
of vector quantization (VQ) techniques for efficient similarity
search. VQ partitions the feature space into a set of codewords
and encodes data points as integer indices using the code-
words. Then the distance between data points can be efficiently
approximated by simple memory lookup operations. By the
compact quantization, the storage cost, and searching complexity
are significantly reduced, thereby facilitating efficient large-
scale similarity search. However, the performance of several
celebrated VQ approaches degrades significantly when dealing
with noisy data. In addition, it can barely facilitate a wide range
of applications as the distortion measurement only limits to �2
norm. To address the shortcomings of the squared Euclidean
(�2,2 norm) loss function employed by the VQ approaches, in this
paper, we propose a novel robust and general VQ framework,
named RGVQ, to enhance both robustness and generalization
of VQ approaches. Specifically, a � p,q -norm loss function is
proposed to conduct the � p-norm similarity search, rather than
the �2 norm search, and the q-th order loss is used to enhance the
robustness. Despite the fact that changing the loss function to � p,q
norm makes VQ approaches more robust and generic, it brings
us a challenge that a non-smooth and non-convex orthogonality
constrained � p,q-norm function has to be minimized. To solve
this problem, we propose a novel and efficient optimization
scheme and specify it to VQ approaches and theoretically prove
its convergence. Extensive experiments on benchmark data sets
demonstrate that the proposed RGVQ is better than the original
VQ for several approaches, especially when searching similarity
in noisy data.

Index Terms— Vector quantization, similarity search,
efficiency, large scale, robustness, generalization, optimization,
experiment.

I. INTRODUCTION

S IMILARITY search, a.k.a., nearest neighbor (NN) search,
is of great importance in various applications, such as data

mining [1], machine learning [2], information retrieval [3], and
etc. Formally, NN search is defined as follows: given a set S of
points in a metric space M and a query point q ∈ M, find the
closest point in S to q . One straightforward way is to linearly
scan S and compute the distance d(q, xi) between q and
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Fig. 1. Illustration of vector quantization based ANN search.

any point xi ∈ S. However, when dealing with a large-scale
dataset, linear scanning is time consuming due to the expensive
distance computing operations. Therefore, how to perform
efficient NN search in large-scale dataset is an important
and practical problem, which has drawn considerable research
interest from both academia and industry in the past decades.

Considering the difficulty of exact NN search for large-
scale dataset, approximate NN (ANN) search is regarded as
a more practical solution which can simultaneously achieve
orders of magnitude speed-ups than exact NN search and near
optimal accuracy with proper designs [4]. One paradigm is to
utilize the tree structure, such as k-d tree [5]. Theoretically,
by recursively bi-partitioning the feature space, tree structure
can reduce the frequency of distance computation to O(log n).
However, because of the curse of dimensionality, tree structure
may degenerate to sub-linear complexity in high-dimensional
spaces since it needs to visit too many branches [6]. Alter-
natively, vector quantization (VQ) emerges recently which is
capable of handling high-dimensional data. Different from tree
structure that reduces the number of scanned points, the aim
of VQ is to speed up the exhausting distance computing.
Specifically, VQ partitions the space into a set of codewords,
i.e., a codebook C (|C| � |S|), and then quantizes each
point xi into the codewords. After the quantization, the feature
vector of each point is no longer needed and only an integer
index denoting which codeword the point is quantized into is
stored. Given a query, its distance d(q, c j ) to all codewords
can be pre-computed and stored in a distance table. The dis-
tance d(q, xi) can be approximated by d(q, cI (xi )) where I (xi )
denotes the index for xi . Obviously, we can obtain d(q, cI (xi ))
through a simple memory look-up operation using the pre-
computed distance table. Although VQ requires a linearly
scan of S, the look-up operation for distance computing is
much faster than the floating-point operations such that the
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Fig. 2. Traditional VQ approaches perform bad with the noisy data and can not deal with some other similarity measures. (a) SIFT1M, 64 bits.
(b) SIFT1M, 32 bits. (c) SIFT1M, 64 bits, p = 1. (d) SIFT1M, 32 bits, p = 1.

overall searching is quite efficient. Empirically, VQ takes less
than 10 seconds to linearly scan a 1-billion-size dataset and
it achieves real-time search if proper optimization is further
employed [7].

The most representative VQ approaches include hashing-
based Iterative Quantization (ITQ) [8], [9] which focuses
on binary quantization, Product Quantization (PQ) [10]–[12]
which segments a space into several orthogonal subspaces and
the quantization is performed in each subspace independently,
and Additive Quantization (AQ) [13]–[16] which constructs
several independent codebooks and each point is approximated
by summing up the selected codewords from each codebook.
As VQ approaches can achieve extreme data compression
and support efficient ANN search for large-scale dataset,
they have been adopted by many applications, such as image
retrieval [17]–[20] and many other tasks [21].

A. Problem Statement

The extraordinary performance and widely usage of the
VQ approaches motivate as to closely investigate these algo-
rithms. Though specific formulations may have tiny differ-
ences, these VQ approaches can be all formulated as a general
problem:

min
R,Q,C

n∑

i=1

�xi R − Q(xi , C)�2
2, s.t. RR� = I (1)

where xi ∈ R
d is the d-dimensional feature vector, Q is the

quantization function with the codebook C, R ∈ R
d×d is a

rotation matrix which can optimize the quantization [8], [10],
[16], and I is the identity matrix. A close look at the objective
function reveals that a squared �2 loss is applied to measure the
distortion. But unfortunately, this sort of distance measurement
comes with certain vulnerabilities. For instance, there are
noise and outliers in real-world datasets but the squared
loss is sensitive to them because their large distortion will
dominate the sum of the squared loss [22]–[24], which may
markedly degrade the quality of quantization codes. Solving
this problem becomes important when we need to search
nearest neighbors for data in the wild, such as Flickr images
and YouTube videos, as the noises are commonly existed.
To verify our observation, we carried out an experiment based
on SIFT1M [25] dataset, in which the noise is manually added
into the training data and we plot the ANN search performance
of two representative VQ approaches, ITQ [8] and OPQ [10],

w.r.t. the noise ratio, which is shown in Fig. 2(a) and 2(b)
respectively. Obviously, the performance of VQ degrades sig-
nificantly in the noisy environment, even with only 1% noisy
data. Secondly, existing VQ approaches work well for �2-norm
similarity search, i.e., d(q, xi ) = �q − xi�2 because they
focus on minimizing �2-norm distortion defined in Eq. (1).
However, when other measurements, such as Manhattan dis-
tance dM (q, xi ) = �q−xi�1 [26], are used, their optimization
objective may fail to well preserve the similarity structure.
In practice, the preferred measure means may need to be
defined by users depending on the specific applications, which
indicates that a good similarity search algorithm should be
generic enough to deal with different distance measurements.
Again, to demonstrate this, we plot the �1-norm distortion
(i.e.,

∑
i �xi R − Q(xi , C)�1

1) w.r.t. the number of iterations
of ITQ and OPQ in Fig. 2(c) and 2(d) respectively. It can
be observed that the distortion keeps increasing with more
iterations, rather than decreasing, because their optimization
algorithms are designed for �2-norm distortion instead of the
�1-norm one. This inevitably leads to less effective quantiza-
tion function, thereby resulting in worse search performance.

B. Contributions

The two problems mentioned above are important for
VQ approaches from both theoretical and practical perspec-
tives, but underestimated by the previous works. This moti-
vates us to develop an improved VQ framework with dual
goal to enhance both algorithm robustness and generaliza-
tion. Recently, several works have demonstrated that the
q-th order (q < 2, especially q ≤ 1) of �2 loss, i.e.,
�xi R − Q(xi , C)�q

2 , is less susceptible to the noise and outliers
in data than the squared loss [27], [28]. In addition, according
to the triangle inequality, preserving the �p-norm distance
can be achieved by minimizing the �p-norm distortion, i.e.,
�xi R − Q(xi , C)�p . Therefore, in this paper, we propose a
general VQ framework using a �p,q-norm loss function for
learning �p-norm similarity-preserving quantization function
with more robustness, termed as RGVQ. In summary, this
paper makes the following contributions:

• We put forward a new �p,q -norm loss function for vector
quantization based ANN search. It is robust to noise and
outliers by adopting a small q (e.g., q ≤ 1) and supports
�p-norm (p ≤ 2) similarity search with the �p-norm loss.

• To minimize the obtained orthogonality constrained
�p,q -norm function, a novel and efficient iterative



GUO et al.: ROBUST QUANTIZATION FOR GENERAL SIMILARITY SEARCH 951

TABLE I

SOME NOTATIONS AND DESCRIPTIONS IN THIS PAPER

optimization algorithm is proposed and its convergence
property is theoretically investigated. To our best knowl-
edge, it is the first work that provides the theoretical
solution to this challenging non-smooth and non-convex
problem.

• We specify our framework to several celebrated
VQ approaches, including ITQ, OPQ, and AQ. Exten-
sive experiments on benchmark datasets demonstrate the
superiority of the improved approaches to the original
ones.

In addition, it is worthwhile to highlight two important prop-
erties of RGVQ framework from the application perspectives:

• RGVQ is robust to the noise, enabling us to search
similarity in wild data. Such an framework is favor-
ably demanded by the applications like Internet image
retrieval. Extensive image retrieval experiments on bench-
marks collected from the Internet demonstrate the
effectiveness.

• Our algorithm is more generic in the sense that multiple
distortion measurements are implemented in one frame-
work, allowing us to facilitate a wide range of applica-
tions in which various measurements may be requested.

II. PRELIMINARIES AND RELATED WORK

A. Vector Quantization Approaches

In this paper, we focus on three celebrated VQ approaches,
Iterative Quantization (ITQ) [8], [9], (Optimized) Prod-
uct Quantization (PQ) [10]–[12], and Additive Quanti-
zation (AQ) [13]–[16]. As was mentioned above, these
approaches share a general learning objective presented in
Eq. (1) but they have different specific formulations and basic
ideas. In this section, we will introduce them in details.

ITQ focuses on binary quantization defined as Q(xi , C) =
sign(xiR), where sign(x) = 1 if x > 0 or −1 otherwise. Its
learning objective is to find the optimal rotation matrix R to
minimize the distortion between the original features and the
binary embedding as follows:

min
R

OITQ =
n∑

i=1

�xi R − sign(xi R)�2
2, s.t. RR� = I (2)

After the binarization, the original distance is approximated
by the Hamming distance which is defined as the number of

different bits between binary codes (a.k.a., hashcodes), and
its computation can be accelerated by either memory look-
up or the bit operations (like bit XOR), both of which are
efficient.

PQ is a k-means clustering like quantization approach. Its
basic idea is to cluster the samples into a set of codewords
C = {c j }k

j=1 and the distance d(q, xi ) can be approximated
by d(q, cI (xi )) which can be pre-computed and stored in
a distance table. Obviously, increasing the codebook size
(i.e., k) can partition the space more finely, which improves the
distance approximation accuracy. In the extreme case where
k = n, each training sample is quantized to itself such that the
distance is precisely approximated. However, when k is large,
computing the distance table, i.e., d(q, c j ), becomes a time-
consuming step. Therefore, it is preferable to construct a large
codebook while the extra distance computation is not heavy.
To address this issue, PQ proposes to partition the space into C
orthogonal subspace and the quantization is performed in each
subspace independently. Specifically, after the segmentation,
each subspace is ds = d/C dimension and the final codeword
is constructed by the concatenation of the sub-codeword
from each subspace, i.e., cI (xi ) = [c1

I1(xi )
, . . . , cC

IC (xi )
] where

cm
j ∈ Cm is a codeword from the m-th subspace. Suppose

there are k codewords for each subspace, i.e., |Cm| = k,
the total number of codewords in the original space is kC ,
which is extremely large. In addition, the distance is approx-
imated by �xi − q�2

2 ≈ ∑C
m=1 �qm − cm

Im (xi )
�2

2 where qm

is the component of q in the m-th subspace. In this way,
the distance table, i.e., d(qm, cm

j ), can be computed in each
subspace independently, which reduces the total complexity to
O(C · k · d

C ) = O(kd). For good ANN results, PQ minimizes
the distortion between the original features and the codewords:

min
R,cm

j ,Im

OPQ =
n∑

i=1

�xi R − [c1
I1(xi )

, . . . , cC
IC (xi )

]�2
2,

s.t. RR� = I (3)

where R is to optimize the quantization, whose effectiveness
has been demonstrated by several works [10], [16]. Suppose
x̂i = xi R is the rotated data, in PQ, each sub-codebook Cm

is learned by k-means clustering in the m-th subspace over
{x̂i}n

i=1 and the quantization function is defined as Q(xi , C) =
[c1

I1(xi )
, . . . , cC

IC (xi )
] where Im(xi ) = argmin j�x̂m

i − cm
j �2

2.
At the searching/testing phase, the query q is also rotated by R.

AQ is motivated by the multi-codebook idea of PQ. Differ-
ent from PQ which constructs the final codeword by concate-
nation, AQ constructs the final codeword by the summation
of sub-codewords. In addition, the sub-codeword in PQ is ds

dimension while AQ directly constructs sub-codewords in the
original space which leads to d-dimensional sub-codeword.
Formally, AQ constructs C codebooks Cm = {cm

j }k
j=1 where

cm
j ∈ R

d . The quantization function is defined as Q(xi , C) =∑C
m=1 cm

Im (xi )
. Because we have �q − xi�2

2 = �q�2
2 + �xi�2

2 −
2�q, xi 	, it is straightforward to approximate the distance by
�q − xi�2

2 ≈ �q�2
2 + �xi�2

2 − 2
∑C

m=1�q, cm
Im (xi )

	 using the
pre-computed table �q, cm

j 	∀m, j . Analogous to PQ, AQ can
also construct kC codewords in the original space and the
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complexity to construct the distance table is only O(Ckd).
Moreover, AQ attempts to minimize the distortion as follows:

min
R,cm

j ,Im

OAQ =
n∑

i=1

�xi R −
C∑

m=1

cm
Im (xi )

�2
2, s.t. RR� = I (4)

Theoretically, AQ can be regarded as the generalization of PQ
by removing the orthogonal constraints on the sub-codebooks.
Because more flexible codeword combination is given, smaller
distortion and more accurate quantization can be achieved such
that AQ performs better than PQ to some extent [14], [16].

Based on the VQ approaches, the storage cost is markedly
compressed and the distance computation is accelerated. For
example, in PQ, if we set k = 256 for each sub-codebook,
it requires only 1 byte (8 bits) to store the index Im(xi ) for
a sample. Even if we use 8 sub-codebooks, the memory cost
for one sample is only 8 bytes (64 bits) and the storage for all
sub-codebooks are independent from the data. Therefore, only
8 gigabytes are required for a 1-billion-size dataset, which
can be can be easily handled by only one single machine.
During searching, the complexity to compute the distance table
is O(Ckd) at most. Since we have Ck � n (in the above
example, Ck = 8×256 = 2, 048 and n = 1B), the complexity
is almost ignorable. When computing d(xi , q), only C memory
look-up operations and C − 1 addition operations are required
which is far fewer than directly computing d(xi , q) in an
element-wise way, especially for high-dimensional data.

B. Other Related Works

The main focus of this paper is on enhancing the robustness
and generalization of existing VQ approaches by introduc-
ing the �p,q -norm loss function to evaluate the quantization
distortion. However, we notice several works for some other
problems are related to our work [28]–[30]. Therefore, it is
necessary to introduce them and discuss their difference.
Generally, their difference comes from three folds. Firstly,
the tasks are different. We focus on vector quantization
for efficient and general similarity search including image
retrieval, while the others mainly focus on tasks like dictionary
learning [28], representation learning [29], and projection
learning [30]. In fact, we are the first to introduce a robust
loss function and consider the generalization simultaneously in
the field of VQ, which motivates us to propose the �p,q-norm
loss. Moreover, we specify the general framework to three
celebrated VQ approaches, ITQ, PQ, and AQ, which is also
very useful in practice. Secondly, the formulations are dif-
ferent. Generally, the �2,q -norm (especially �2,1-norm) loss is
adopted in many robust learning approaches [28]–[30]. But
the �p,q -norm is more general and complicated than them and
it seems that it is difficult to directly apply their optimization
algorithm to �p,q -norm loss. Some works also consider the
�p-norm term. For example, the �1-norm term is considered in
sparse coding [31] and the �p-norm is considered in [28]. But
it should be pointed out that our formulation employs �p-norm
to evaluate the reconstruction distortion while their approaches
use it only as a sparsity regularization term for coefficients
which element-wise decoupled. Obviously, our formulation is
more difficult and general especially when coupling with the

q-th order upon the �p norm and the orthogonality constraint.
Thirdly, the solutions are different. As stated, our problem is
an orthogonality constrained �p,q -norm minimization problem.
Unlike some works considering parts of the problem, e.g.,
�2,q-norm minimization is considered in [28], we systemat-
ically solve the general problem and provide the theoretical
analysis for the solution. In addition, in Section V, we demon-
strate that that the optimization algorithm is consistently
effective and efficient under different settings.

III. THE PROPOSED FRAMEWORK

A. Overall Objective Function

The first goal of this paper is to enhance the robustness
of VQ approaches. In the current framework, squared Euclid-
ean (i.e., �2,2-norm) loss is adopted. In fact, because of the
square operation, the loss function tends to assign large weight
to large-loss samples. However, in practice, the large loss is
often caused by noise and outliers. The loss function, in such
a situation, will focus on the noise but fail to capture the
intrinsic structure of samples, i.e., it is sensitive to noise,
which has been empirically demonstrated in Fig. 2(a) and 2(b).
To address this issue, we should reduce the weight of large-
loss samples. In this paper, we propose to replace the squared
loss by the q-th order loss. It has been demonstrated in
several literatures [24], [32]–[34] that the loss function is more
robust (less sensitive) to the noise and outliers in data in
case of q < 2, especially q ≤ 1. Motivated by this idea,
we reformulate Eq. (1) from squared loss into q-th order
loss as:

min
R,Q,C

ORQ =
n∑

i=1

�xi R − Q(xi , C)�q
2 , s.t. RR� = I (5)

where q < 2. It is not difficult to observe the following fact.
When q > 1, the objective prefers to decrease the distortion
of large-loss entries because it is obvious that the larger x (the
distortion) is, the larger |xq − (x − �x)q | (the change in loss)
is if �x is identical, which indicates the loss is encouraged to
fit the noisy data. On the other hand, when q ≤ 1, the situation
is different where the loss focuses more on the small-loss
entries which are normal data. In this way, we can enhance
the robustness of functions by setting q < 2, especially q ≤ 1.

Although the �2,q-norm loss function is more robust to the
noise, it is still questionable whether it works well for the other
similarity/distance measurements, like Manhattan distance.
In fact, just like the results shown in Fig. 2(c) and 2(d), the
�2-norm loss may fail when dealing with �1-norm based
similarity search. To address this issue, we firstly revisit one
important theoretical building block of VQ, i.e., the triangle
inequality:

|�x − y�p − �Q(x) − Q(y)�p|
≤ K1�x − y − Q(x) + Q(y)�p

≤ K2(�x − Q(x)�p + �y − Q(y)�p) (6)

where �x�p = (
∑

j |x j |p)
1
p is the �p-norm of a vector,

K1 = K2 = 1 for normal vector norm (i.e., p > 1) and they
are some constants for quasi-norm (i.e., 0 < p ≤ 1), and Q(x)
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denotes the quantization result of x. The first term denotes
the distance approximation error between the original feature
based distance (�x − y�p) and the quantized feature based
distance (�Q(x)−Q(y)�p), in which we expect the error to be
as small as possible, i.e., the distance approximation using the
quantized vectors is more accurate. The last term is exactly the
distortion caused by the quantization function (�x − Q(x)�p).
Obviously, the distortion provides an upper bound for the
distance approximation. Therefore, decreasing the distortion
leads to more accurate distance approximation and further
results in better ANN performance [8], [10], [15]. Fortunately,
based on the triangle inequality, it is straightforward to observe
that learning �p-norm similarity preserving quantization func-
tion can be achieved by minimizing the �p-norm distortion.
In the extreme case where the distortion is 0 (i.e., Q(x) = x),
the distance is perfectly approximated (i.e., �x − y�p =
�Q(x) − Q(y)�p). Theoretically, existing VQ approaches,
including ITQ, PQ, and AQ, can be regarded as a special
case (p = 2) of our scheme. To clarify it, we can rewrite
the loss in Eq. (5) from the �2-norm loss to the �p-norm loss,
leading to the overall objective function of RGVQ:

min
R,Q,C

ORG = �XR − Q(X, C)�q
p,q =

n∑

i=1

�xi R−Q(xi, C)�q
p

s.t. RR� = I (7)

where �A�p,q denotes the entrywise (in row) matrix �p,q norm
of matrix A. So far, we derive the �p,q -norm loss function for
RGVQ framework from the original �2,2-norm loss of VQ.

B. Optimization Algorithm

The motivation of changing the �2,2-norm loss into the
�p,q -norm loss is clear and reasonable, which makes VQ more
robust to noisy data and generalizable for different dis-
tance measurements. However, it is challenging to minimize
the obtained orthogonality constrained �p,q -norm function
because it becomes a non-smooth and non-convex optimiza-
tion problem when p ≤ 1 or q ≤ 1. Solving this problem
is much more difficult than minimizing the �2,2-norm in the
original VQ, for which many solutions are available [8],
[10], [14]. To solve it, we propose an efficient optimization
algorithm shown below.

It should be noticed that there are a rotation matrix R,
quantization function Q and the codebook C in the objective
function, and it is very difficult, if not impossible, to opti-
mize them as a whole. Therefore, following the traditional
VQ framework, we adopt an iterative optimization scheme to
update any of them while keeping the others fixed as follows.

Update R. This is the most difficult part in the entire
solution, which is also an important theoretical contribution of
this paper. The �p,q -norm is neither smooth nor convex, and
meanwhile, the orthogonality constraint limits the feasible set,
therefore making the problem more difficult. First, we denote
yi = Q(xi , C) as the quantized vector, which is fixed when
updating R. Then, to solve the problem, we rewrite the

complicated �p,q -norm loss into a weighted �2,2-norm loss as:

min
RR�=I

O =
n∑

i=1

�wi ◦ (yi − xi R)�2
2 = �W ◦ (Y − XR)�2

F (8)

where X = [x1; . . . ; xn] ∈ R
n×d represent the original training

vectors, Y = [y1; . . . ; yn] ∈ R
n×d are the quantized vectors,

W = [w1; . . . ; wn] ∈ R
n×d is the weighting matrix, � · �F is

the Frobenius norm of a matrix, and “◦” denotes the element-
wise multiplication operation. Specifically, the elements of the
weighting matrix in our algorithm are computed as follows:

fi = �yi − xi R�q−p
p , gi j = |yi j − xi R∗ j |p−2

wi j = ( fi gi j )
0.5 (9)

Based on the above definition, it is easy to verify that Eq. (8)
is numerically equivalent to Eq. (7). Now if we keep W fixed,
the problem is transformed into a weighted �2,2-norm problem.
Fortunately, solving this problem is much easier than solving
the original as it is smooth and convex. The only challenge left
in this problem is to address the orthogonality constraint which
limits the feasible set. In this paper, we adopt the framework
proposed by Wen and Yin [35] which is a gradient-descent
based algorithm but takes the orthogonality constraint into
consideration. In particular, we first compute the derivative
of O w.r.t. the variable R as:

G = ∂O
∂R

= X�(W ◦ W ◦ (XR − Y)) (10)

In the conventional gradient descent method, we just need to
update R along the direction given by the derivative with a
tiny step. However, this strategy will violate the orthogonality
constraint which moves R out of the feasible set. Therefore,
more operations on the gradient are required to address
the orthogonality constraint. Following the framework [35],
a skew-symmetric matrix is constructed based on G as below:

A = GR� − RG� (11)

Having obtained G and A, the following step is to search the
next point using the Crank-Nicolson-like scheme [36], [37]:

Rt+1 = Rt − τA(
Rt+1 + Rt

2
) (12)

where τ is a tiny step size. The solution to the problem is:

Rt+1 = (I + τ

2
A)−1(I − τ

2
A)Rt (13)

The objective function value in Eq. (8) will keep decreasing
w.r.t. the updating rule in Eq. (13) until the stationary point is
achieved and Rt+1 also satisfies the orthogonality constraint.
Please refer to [35] for the detailed proof. We update R by
fixing W as we can see W depends on R. Therefore, we can
update R and W in an iterative manner. This strategy can
decrease the loss in Eq. (7), whose proof will be given later.

Update Q and C. When the rotation matrix R is fixed,
we can update the quantization function Q and the cor-
responding codebook C. In this paper, we focus on three
celebrated VQ approaches, ITQ, PQ, and AQ, which achieve
state-of-the-art ANN performance, and therefore we specify
our RGVQ framework into these approaches. As they have
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different formulations and codebook construction methods,
the updating rules should be different, each being discussed
below. For simplicity, we denote x̂i = xi R in the following
derivation.

ITQ. ITQ focuses on binary quantization and the sign
function is adopted, so it does not have a codebook C. Thus,
extending it from the �2,2 normal loss in the original VQ to the
�p,q norm loss in RGVQ is the easiest one. Moreover, we can
observe that the quantization in ITQ is element-wise decoupled
even with the �p,q -norm loss. Therefore, the quantized vector
is yi j = sign(x̂i j ), which is the quantization function for ITQ.

PQ. In the original PQ with �2,2-norm loss,it only requires
performing k-means clustering in each subspace to learn each
sub-codebook Cm and the corresponding function Im . In the
RGVQ framework with the �p,q -norm loss, its loss function
for this step is more complicated, which is written as follows:

min
cm

j ,Im

ORGPQ =
n∑

i=1

(

C∑

m=1

ds∑

j=1

(x̂m
i j − cm

Im (xi ) j )
p)

q
p (14)

If p = q which is the case of original PQ, the problem can be
solved in each subspace attributable to decoupled subspaces.
However, in the general framework, we have p 
= q in most
cases, which makes the problem more complicated because the

(·) 1
p operation couples each subspace, i.e., the quantization

loss in one subspace has influence on the decision in the
other subspaces. To simplify the problem, we also adopt the
weighting method in Eq. (9) and rewrite the loss function as:

min
cm

j ,Im

O =
n∑

i=1

fi (

C∑

m=1

�x̂m
i − cm

Im (xi )
�p

p) (15)

Obviously, after the transformation, each subspace becomes
decoupled. To clarify it, we can rewrite Eq. (15) as follows:

min
cm

j ,Im

O =
C∑

m=1

Om =
C∑

m=1

(

n∑

i=1

fi�x̂m
i − cm

Im (xi )
�p

p) (16)

Therefore, in each subspace we solve the problem below:

min
cm

j ,Im

Om =
n∑

i=1

fi�x̂m
i − cm

Im (xi )
�p

p (17)

which leads to a Minkowski weighted kmeans clustering [38]
problem similar to the original kmeans clustering but with
�p-norm loss and weighted samples. It can be easily solved in
the EM framework by iteratively updating the index Im(xi) =
argmin j�x̂m

i − cm
j � and the centers cm

j by the simple gradient
descent algorithm. Such a procedure can be performed in each
subspace m independently. In this way, the function value in
Eq. (15) is decreased until convergence is achieved, which also
decreases the function value ORGPQ in Eq. (14).

AQ. In the RGVQ framework, the objective function to
update Q and C of AQ with �p,q -norm loss is written as below:

min
cm

j ,Im

ORGAQ =
n∑

i=1

�x̂i −
C∑

m=1

cm
Im (xi )

�q
p (18)

Algorithm 1 Optimization Algorithm for RGVQ

In order to simplify the problem, we also adopt the weighting
method mentioned before, which leads to the following loss:

min
cm

j ,Im

O =
n∑

i=1

fi�x̂i −
C∑

m=1

cm
Im (xi )

�p
p (19)

To solve this problem, we adopt the sequential learning
scheme [13], [16] which is widely utilized in many opti-
mization problems, such as matching pursuit [39], sparse
coding [40], and binary learning [41]. In particular, each sub-
codebook Cm is optimized to minimize the residual sequen-
tially by fixing the other sub-codebooks. Denote the residual
vector as rm

i = x̂i − ∑
m� 
=m cm�

Im� (xi )
. When the other sub-

codebooks are fixed, the problem w.r.t. Cm is reduced to:

min
cm

j ,Im

Om =
n∑

i=1

fi�ri − cm
Im (xi )

�p
p (20)

which is a Minkowski weighted kmeans clustering, of which
the updating rules for cm

j and Im are introduced in PQ. In this
way, we can repeat the residual vector computing and sub-
codebook updating for each sub-codebooks until convergence.

IV. THEORETICAL ANALYSIS

A. Convergence Analysis

In the above section, we introduce how to optimize the
challenging �p,q-norm loss defined by Eq. (7) in the specific
situations of ITQ, PQ, and AQ, which is summarized in
Algorithm 1. To simplify the complicated problem, we propose
a weighting method shown in Eq. (9) and optimize the
transformed problems in Eq. (8), (15), and Eq. (19). From
the definition of the weights in Eq. (9), it can be observed that
the weights are related to the variables R, Cm , and Im which
are to be optimized. In our algorithm, we iteratively update the
weights and the variables by fixing the other one. However,
it is not easy to figure out why decreasing the transformed
loss can decrease the original loss in Eq. (7) since they are
not strictly equivalent. In this section, we will theoretically
and rigourously prove that the loss function in Eq. (7) is non-
increasing at each iteration of Algorithm 1, which implies that
the algorithm can reach a stationary point of Eq. (7) finally.
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At the first of the proof, we introduce the following lemma:
Lemma 1: Given any a > 0 and 0 < b ≤ a, for ∀x ≥ 0,

we have the inequality: axb − bxa + b − a ≤ 0.
Proof 1: Denote c = b/a and f (x) = xc − cx + c − 1.

Apparently, f (1) = 0. Then, we have f �(x) = cxc−1 − c,
leading to f �(1) = 0. In addition, f ��(x) = c(c − 1)xc−2 ≤ 0
when x ≥ 0 because 0 < c ≤ 1. This implies f �(x) ≥ 0 ∀x ∈
[0, 1] and f �(x) ≤ 0 when x > 1. Therefore, f (x) ≤ f (1) =
0. Finally, we can obtain a f (xa) = axb − bxa + b − a ≤ 0.�

Based on Lemma 1, we can prove the following theorem:
Theorem 1: The objective function ORG in Eq. (7) is non-

increasing under the updating rules for R in Eq. (13), and Cm

and Im which can minimize Eq. (15) and (19).
Proof 2: Let S = Y − XRt , Z = Y − XRt+1, we have:

Ot
RG =

n∑

i=1

(

d∑

j=1

|si j |p)
q
p , Ot+1

RG =
n∑

i=1

(

d∑

j=1

|zi j |p)
q
p (21)

Based on the proof in [35], we know that the updating rule in
Eq. (13) can decrease the value of O in Eq. (8), i.e., we have∑

i j

fi gi j z2
i j ≤

∑

i j

fi gi j s2
i j . (22)

Now if we set a = 2, b = p, x will be |zi j |/|si j |. Based on
the Lemma 1 above, we can obtain the following inequalities

2(
|zi j |
|si j | )

p − p(
|zi j |
|si j | )

2 + p − 2 ≤ 0

⇒ |zi j |p − p

2
|si j |p−2|zi j |2 ≤ |si j |p − p

2
|si j |p−2|si j |2

⇒
∑

i j

fi (|zi j |p − p

2
gi j z2

i j ) ≤
∑

i j

fi (|si j |p − p

2
gi j s

2
i j ) (23)

Combining inequalities (22) with (23) will bring us∑

i

fi�zi�p
p =

∑

i j

fi |zi j |p ≤
∑

i j

fi |si j |p =
∑

i

fi�si�p
p

(24)

Denote a = p, b = q , and x = �zi�p/�si�p , then we get

p(
�zi�p

�si�p
)q − q(

�zi�p

�si�p
)p + q − p ≤ 0

⇒ �zi�q
p − q

p
�si�q−p

p �zi�p
p ≤ �si�q

p − q

p
�si�q−p

p �si�p
p

⇒
∑

i

(�zi�q
p − q

p
fi�si�p

p) ≤
∑

i

(�si�q
p − q

p
fi�si�p

p) (25)

Again, if we combine inequalities (24) with (25), we obtain

Ot+1
RG =

∑

i

�zi�q
p ≤

∑

i

�si�q
p = Ot

RG (26)

which means ORG in Eq. (7) is non-increasing w.r.t. Eq. (13).
Denote S = Qt (X, Ct ) − XR, Z = Qt+1(X, Ct+1) − XR.

We can also have Eq. (21). In addition, by minimizing the loss
function value in Eq. (15) and (19), we can obtain Eq. (24)
directly. Then together with Eq. (25) we obtain Eq. (26), which
indicates that ORG in Eq. (7) is non-increasing when we update
Cm and Im by minimizing Eq. (15) and (19). �

We have the following inequalities with the above proofs:

ORG(Qt , Rt ) ≥ ORG(Qt+1, Rt ) ≥ ORG(Qt+1, Rt+1) (27)

which states that ORG is non-increasing with Algorithm 1.

B. Complexity Analysis

Apparently, our optimization is more complicated than that
of the original VQ approaches, it is worthwhile to analyze the
algorithm complexity. In fact, since VQ approaches are applied
to large-scale dataset, we care more about the relationship
between the complexity and the training set size n. When
updating R, only the gradient computation in Eq. (10) is
related to n, whose complexity is O(n). For ITQ, updating the
binary codes requires O(n) time. For PQ, we need to solve
C sub-problems in each subspace given by Eq. (17). In the
original �2,2-norm loss, updating Cm just needs to compute
the average of samples belonging to the same cluster, which
can be achieved in only one step. In our method, we have to
adopt the gradient descent algorithm to update cm

j which needs
more steps to reach the optimum. Fortunately, we can adopt
the mini-batch based stochastic gradient descent (SGD) where
a small batch of training samples (e.g., 256), rather than the
whole set, are required to compute the gradient in one single
step. Although many steps are required, each step only utilizes
a small number of samples such that reaching the optimum
needs to traverse the whole set for just a few times. In our
experiment, we empirically find out that when trained with
100k samples and 256 mini batch, traversing the training set
once (i.e., ≈ 400 steps) can result in good performance. In fact,
we can notice that the mini-batch SGD has achieved great
success recently for gradient based optimization, such as deep
model training [42], [43]. Wen et al. [44] also demonstrate
that the mini-batch SGD works well for kmeans clustering
loss. Therefore, training by mini-batch SGD has a comparable
complexity to the original kmeans in our case. For AQ, we can
also adopt the mini-batch SGD to solve the sub-problem
in Eq. (20) whose complexity is O(n). In addition, as will
be demonstrated in the experiment section, Algorithm 1 can
always converge within about 200 iterations. In summary,the
increase in complexity due to the use of a more complicated
optimization is very limited, meaning that the overall com-
plexity of RGVQ is comparable to that of VQ.

V. EXPERIMENT AND DISCUSSION

A. Datasets

VQ approaches are so general that can be applied to differ-
ent kinds of features, including features for image [45]–[48],
video [49], text [50], [51], or sensing data [52], [53]. To com-
pare our framework with previous VQ approaches, we mainly
focus on image features in the experiment below.

To demonstrate the effectiveness of RGVQ for ANN
search, we adopt two widely used benchmarks for evalua-
tion. The first benchmark is SIFT1M [25] which consists of
128-dimensional SIFT [54] descriptors. It is made up of
1 million base vectors, 10k query vectors, and 100k vectors for
model training. The second dataset is GIST1M [25] containing
960-dimensional GIST [55] descriptors. This dataset contains
1 million vectors as the base, 1k vectors as query set and 100k
training vectors.

As introduced in the contributions, RGVQ is robust to noise,
which is favorably demanded by the real-world applications
like Internet image retrieval. To validate the superiority of
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TABLE II

THE STATISTICS OF DATASETS

RGVQ to the original VQ for image retrieval, we also conduct
experiments on two widely used real-world image retrieval
dataset. The first dataset is CIFAR-10 [56] which has 60k
images from 10 kinds of objects, such as “dog” and “truck”.
This dataset is a subset of 80M Tiny Image [57] which
is constructed by collecting the images returned by search
engines (like Google) using an object name as the query.
Each image is represented as a 512-dimensional GIST feature.
For this dataset, 50k images are used as the base and the
other 10k images form the query set. The second dataset is
NUS-WIDE [58] which is collected from the user uploaded
images in Flickr. This dataset has 186, 577 images and each
images is annotated by at least one of ten concepts from the
users. The 500-dimensional bag-of-visual-word feature based
on SIFT is utilized for image representation. 1% (1, 866)
images are used as the queries and the other as the data-
base. From the construction methods of these real-world
datasets (search engine returned images or user uploaded and
annotated images), we can see they are very noisy, making
them ideal benchmarks for testing the robustness of various
approaches.

The statistics of the datasets are summarized in TABLE II.

B. Settings

Since the primary purpose of this paper is to enhance
the robustness and the generalization of existing state-of-the-
art VQ approaches, we therefore consider three representa-
tive approaches, Iterative Quantization (ITQ) [8], (Optimized)
Product Quantization (PQ) [10], [12], and Additive Quanti-
zation (AQ) [13]–[15]. Specifically, we extend the original
approaches from the �2,2-norm based VQ framework into the
proposed �p,q-norm based RGVQ framework and then opti-
mize them based on Algorithm 1. When no further statement is
given and no ambiguity is triggered, we set p = 2 and q = 1
for most experiment scenarios and we denote the enhanced
versions as ITQ+, OPQ+, and AQ+ respectively.

For each sample, we can adopt VQ or RGVQ approaches to
quantize it into a fixed-length codes, whose length is denoted
as L. When constructing the codes, the below settings are
adopted. For ITQ which focuses on learning binary hash-
codes, following [8], the original sample is firstly projected
into a L-dimensional space by PCA and the rotation matrix
R ∈ R

L×L is learned in the L-dimensional space. Then we
use the sign function on the rotated data to get the hashcodes
and the distance between a query and a sample is given
by the Hamming distance (the number of different bits).
For PQ and AQ, following [10], [14] the size of each sub-
codebook is set as k = 256 such that the integer index Im(xi )

needs exact 1 byte (8 bits). Therefore, to learn 64-bit codes,
we should construct C = 64/8 = 8 sub-codebooks. Moreover,
we adopt the asymmetric distance computation for computing
the distance as we introduced in the previous part of this paper.

For all approaches, including both VQ and RGVQ, itera-
tive optimization algorithms are adopted for learning quan-
tization models. As suggested by the original literatures
[10], [14], [21], their learning procedures can converge with
200 iterations. In the upcoming parts, we will show that RGVQ
can also converge fast. Therefore, for all VQ and RGVQ
approaches, the maximum number of iterations is consistently
set to 200.

C. Robustness Study

We firstly investigate the robustness of RGVQ against the
noise and outliers. Specifically, we adopt the ANN search task
using the SIFT1M and GIST1M datasets. To better investigate
this property we have manually added some noise to the
training data. In particular, each dimension of each manually
added noisy point is sampled from 100 × N (0, 1) where
N denotes a Gaussian distribution. Obviously, the distribu-
tion of noisy data is different from the that of the original
data. A robust algorithm should pay more attention to the
normal data. To understand the boundary of the algorithm,
we continuously change the noise ratio (NR: the ratio between
the manually added noise points and the original points), and
evaluate the �2-norm similarity search performance of different
approaches.

Following the settings in [10], [15], and [21], we use
Recall@R as the metric to evaluate ANN search performance,
which reflects the ratio between the number of the true
positives in the first R retrieved points given by VQ or RGVQ
approaches and the total number of the true positives in the
database. More precisely, the true positives for each query
are defined as the top l nearest neighbors of the query in the
database by running a brute-force linear scan measured by the
�p-norm distance.

The comparison between RGVQ (ITQ+, OPQ+, and AQ+)
and VQ (ITQ, OPQ, and AQ) under different code lengths
and noise ratios is shown in Fig. 3, 4, and 5. It can be
observed that RGVQ is better than VQ at all situations,
including different approaches, code lengths, and noise ratios,
in terms of the Recall. On average, ITQ+, OPQ+ and
AQ+ have improved the recall over ITQ, OPQ, and AQ by
12.2%, 10.8%, and 9.85% when NR = 5%, demonstrating
that RGVQ with �p,q -norm (q = 1) loss is indeed more robust
to the noise than the original VQ with squared loss. Moreover,
it is worthwhile to point out that the results actually reveal the
following properties of the proposed RGVQ framework.

Firstly, RGVQ performs observably better than VQ in most
cases even when applying to the original dataset where no
manual noise is added to the training data (i.e., NR = 0). The
major reason is that the data are from the real-world dataset,
on which the noises and outliers have existed. Therefore,
it turns out that noisy data and outliers in the real-world dataset
are indeed influential in the performance of VQ because their
large errors may dominate the total distortion due to the
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Fig. 3. Performance comparison between ITQ+ and ITQ w.r.t. the noise ratio. We set l = 10 for ground truth. (a) SIFT1M, 32 bits. (b) SIFT1M, 64 bits.
(c) SIFT1M, 128 bits. (d) GIST1M, 32 bits. (e) GIST1M, 64 bits. (f) GIST1M, 128 bits.

Fig. 4. Performance comparison between OPQ+ and OPQ w.r.t. the noise ratio. We set l = 100 for ground truth. (a) SIFT1M, 16 bits. (b) SIFT1M, 32 bits.
(c) SIFT1M, 64 bits. (d) GIST1M, 16 bits. (e) GIST1M, 32 bits. (f) GIST1M, 64 bits.

squared loss. In contrast, in RGVQ, we adopt the q-th (q < 2)
order loss function that can effectively suppress the effect of
noisy data and outliers as the learned parameters can better
capture the intrinsic information in the dataset. In other words,
the proposed RGVQ is better suited to deal with data in the
wild.

Secondly, When NR gets increased from 0 to 5%, the sim-
ilarity search performance of all VQ approaches degrades
rapidly. This phenomenon once again demonstrates that VQ is
sensitive to noise and outliers in data because of the squared
loss, as we have mentioned before. On the contrary, RGVQ
approaches show relatively more stable performance in most

cases when we increase NR. More importantly, it can be
seen that the performance gap between the correspond-
ing approaches from RGVQ framework and VQ framework
becomes even larger when increasing NR. This again demon-
strates the superior robustness of the proposed RGVQ against
the noise.

Moreover, it is observed that ITQ+ is more robust than
OPQ+ and AQ+ since the performance drop of ITQ+ when
NR raises from 0 to 5% is less significant. One possible reason
is that ITQ+ focuses on binary quantization while OPQ+ and
AQ+ adopt real-value quantization. As we will show later,
ITQ+ has larger distortion because the binary quantization is
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Fig. 5. Performance comparison between AQ+ and AQ w.r.t. the noise ratio. We set l = 100 for ground truth. (a) SIFT1M, 16 bits. (b) SIFT1M, 32 bits.
(c) SIFT1M, 64 bits. (d) GIST1M, 16 bits. (e) GIST1M, 32 bits. (f) GIST1M, 64 bits.

Fig. 6. Performance comparison between RGVQ and VQ on CIFAR-10. (a) Mean Average Precision. (b) Precision-recall curve, 16 bits. (c) Precision-recall
curve, 64 bits.

Fig. 7. Performance comparison between RGVQ and VQ on NUS-WIDE. (a) Mean Average Precision. (b) Precision-recall curve, 16 bits. (c) Precision-recall
curve, 64 bits.

not that flexible. In this case, the influence of large-distortion
entries is relatively smaller in ITQ+ as the majority of entries
has large distortion to some extent. Moreover, as OPQ+ and
AQ+ have better performance at first, it is more likely that
their performance drops more significantly.

D. Image Retrieval Results

From the application perspective, the robustness of RGVQ
enables us to search similarity in wild data such as

Internet images. To demonstrate the superiority of RGVQ over
VQ, we adopt two widely used image benchmark datasets
collected from Web, CIFAR-10 and NUS-WIDE, for the image
retrieval task. In particular, in this task, the true positives
for each query are defined as the images in the database
which share at least one semantic labels/concepts with the
query, following [8], [17], [59]. To evaluate the performance,
we adopt the Precision-recall curve as the metric, which
reflects the precision (the ratio between the number of true
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Fig. 8. The effect of q on RGVQ. (a) SIFT1M, 64 bits, ITQ+. (b) SIFT1M, 32 bits, OPQ+. (c) SIFT1M, 32 bits, AQ+. (e) CIFAR-10, 64 bits.
(f) GIST1M, 64 bits, ITQ+. (g) GIST1M, 32 bits, OPQ+. (h) GIST1M, 32 bits, AQ+. (i) NUS-WIDE, 64 bits.

positives and that of retrieved images) at different recall levels.
Generally, a higher curve indicates that the true positives
have higher ranks which is desired for image retrieval task.
Moreover, mean Average Precision (mAP) is also utilized as a
numeric evaluation metric. It is defined as the area under the
Precision-recall curve and a larger value stands for a better
performance.

The results of RGVQ approaches and VQ approaches on
CIFAR-10 and NUS-WIDE are presented in Fig. 6 and Fig. 7
respectively. It can be seen that RGVQ consistently outper-
forms VQ with observable margins with different code length
on two datasets. In fact, the real-world image sets are always
noisy. Unfortunately, existing approaches fail to consider the
influence of noise data. As we have analyzed around Eq. (5),
when q is large, the learning procedure prefers to decrease the
loss of large-distortion entries, while it focuses more on the
small-distortion entries when q is small. In the VQ approaches,
the squared Euclidean distance is employed to measure the
loss to which the noisy samples may contribute significantly
since the square operation puts larger weight to the entries
with larger distance which are more likely to be noise.
Consequently, the models pay too much attention to the noise
such that the intrinsic structure of data is not well exploited.
On the other hand, by utilizing the q-th order (q < 2) of the
Euclidean distance, the noisy samples contribute less to the
loss function than the squared one. The superior performance
of RGVQ again demonstrates that considering the influence of
noise, like by setting q = 1 in RGVQ framework, is indeed
helpful to build effective and efficient ANN search systems in
the real-world applications, like image retrieval.

E. Effect of Parameter q

There is one important parameter q in RGVQ which con-
trols the order of the distortion. Here, we investigate how the
approaches will behave when varying q . To do so, we change

the value of q and plot the corresponding performance of
RGVQ approaches on the benchmark datasets with different
binary code length and noise ratios. The results are illustrated
in Fig. 8. It is noticed that VQ is a special case of RGVQ when
q = 2. We have the observations below from the results.

Firstly, in all settings, we can find a Bell-shape curve for
all approaches. Basically, the model is affected by both noise
and normal data. With a large q (say, q > 1.5), RGVQ
will increase the weight of those large-distortion entries such
that the model will be biased by them. Unfortunately, due
to the existence of noisy entries and their large distortions,
the learned model will deviate significantly to fit the outliers
from the one which best suits to the normal data. Therefore,
the performance of all RGVQ approaches degrades signifi-
cantly when we increase q from 1.5 to 2, especially in more
noisy settings, e.g., NR = 5%. On the other hand, if q is
too small (say, q < 0.5), we cannot obtain good results either.
According to the principle, the difference between normal and
noisy data becomes smaller in this case, though the effect
of outliers is suppressed. In the extreme case where q = 0,
every entry has the same distortion 1 such that any model
is the solution for this case. Thus, it is almost impossible to
find the optimal model for normal data. This interprets why
RGVQ approaches perform worse when we decrease q from
0.5 to 0.25, especially when there is less noise, e.g., NR = 0.
In Fig. 8, we can see that RGVQ approaches perform stably
good when q ∈ [0.75, 1.25] where the effect of outliers on the
model is effectively suppressed and that a model which can
well fit to the normal data is learned.

Secondly, we can observe that the performance-vs-q curve
behaves differently at different noise levels. Specifically, given
a small NR, e.g., NR = 0, RGVQ approaches seem more
sensitive to q when q < 1, because the the performance
changes dramatically when varying q in this range. On the
other hand, given a large NR, e.g., NR = 5%, they become
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Fig. 9. Performance comparison between ITQ+ and ITQ for �p -norm similarity search. (a) SIFT1M, p = 2. (b) SIFT1M, p = 1.5. (c) SIFT1M, p = 1.
(d) GIST1M, p = 2. (e) GIST1M, p = 1.5. (f) GIST1M, p = 1.

Fig. 10. Performance comparison between OPQ+ and OPQ for �p-norm similarity search. (a) SIFT1M, p = 2. (b) SIFT1M, p = 1.5. (c) SIFT1M, p = 1.
(d) GIST1M, p = 2. (e) GIST1M, p = 1.5. (f) GIST1M, p = 1.

more sensitive when q > 1. The reason is analogous to
our analysis in the last paragraph. When there is little noise,
the primary target of RGVQ is to fit the normal data. In this
case, the performance may degrade rapidly if q is too small
because the the loss is too indiscriminative. On the other hand,
as a result of the increasing noise, the primary target of RGVQ
becomes to suppress the influence of noise. Thus, increasing
the value of q when q > 1 leads to much worse performance.

F. �p-Norm Similarity Search

As stated as an important property of RGVQ, it can
support similarity search with different metrics based on the
demand specified by the users while the original VQ only

focuses on the �2-norm similarity search. In this subsec-
tion, we will demonstrate the effectiveness of RGVQ for
general �p-norm similarity search. For RGVQ, we can set
the parameter p depending on the specific task and we set
q = 1 consistently. Specifically, we consider the �2-norm
(Euclidean distance), �1.5-norm, and �1-norm (Manhattan
distance) similarity search. In the specific task, the ground
truth is obtained by running a brute-force linear scan measured
by the �p-norm (p = 2, 1.5 and 1) distance in the three tasks
respectively.

The recall curves (which reflects the recall level w.r.t.
the number of retrieved points) of RGVQ approaches and
VQ approaches for three different tasks on two datasets with
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Fig. 11. Performance comparison between AQ+ and AQ for �p -norm similarity search. (a) SIFT1M, p = 2. (b) SIFT1M, p = 1.5. (c) SIFT1M, p = 1.
(d) GIST1M, p = 2. (e) GIST1M, p = 1.5. (f) GIST1M, p = 1.

Fig. 12. Convergence study, ITQ+, SIFT1M, 64 bits. (a) p = 2, q = 1.5. (b) p = 2, q = 1. (c) p = 1.5, q = 1. (d) p = q = 1.

Fig. 13. Convergence study, OPQ+, SIFT1M, 32 bits. (a) p = 2, q = 1.5. (b) p = 2, q = 1. (c) p = 1.5, q = 1. (d) p = q = 1.

different code length are summarized in Fig. 9, 10, and 11.
Here, we use �2-norm retrieval performance as the reference
as the original VQ approaches are designed for this task.
We can observe that RGVQ approaches have relatively more
stable performance on different tasks whereas VQ approaches
perform much worse on other two tasks than on �2-norm
task. For example, the Recall@1000 of ITQ drops from 0.651
for �2-norm to 0.474 for �1-norm on SIFT1M with 64 bits,
that of OPQ drops from 0.690 for �2-norm to 0.527 for �1-
norm, and that of AQ drops from 0.774 for �2-norm to 0.619
for �1-norm on SIFT with 32 bits. Consequently, the per-
formance gap between the corresponding RGVQ approaches
and VQ approaches becomes much larger when we change
p from 2 to 1.5 and 1. In addition, combining with the

results in Fig. 2(c) and 2(d), we can see that the learning
algorithms of VQ approaches may unavoidably lead to larger
�p-norm distortion, which is the minimizing objective, with
more iterations since it adopts �2 loss, thus resulting in worse
ANN search performance. Fortunately, the RGVQ framework
takes the issue into consideration and it is formulated as a
more general �p,q -norm loss function which can be applied
to different settings such that it can well support the general
�p-norm similarity search.

G. Convergence Study

As an important theoretical contribution of this paper,
we propose an efficient optimization algorithm, Algorithm 1,
for optimization the challenging orthogonality constrained
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Fig. 14. Convergence study, AQ+, SIFT1M, 32 bits. (a) p = 2, q = 1.5. (b) p = 2, q = 1. (c) p = 1.5, q = 1. (d) p = q = 1.

�p,q -norm minimization problem. We have rigourously proved
that Algorithm 1 leads to nonincreasing objective value.
Now, we empirically investigate its convergence property
by conducting the experiment on SIFT1M dataset. Because
Algorithm 1 is designed for the general �p,q-norm loss func-
tion, we assign different values to p and q and plot the function
value of three specific approaches. The objective function
value for ITQ+, OPQ+, and AQ+ w.r.t. the number of itera-
tions with different settings are plotted in Fig. 12, 13, and 14
respectively. As can be seen, the objective value decreases
steadily with more iterations and can achieve a nearly stable
value within less than 100 iterations, which verifies the effec-
tiveness of Algorithm 1.

VI. CONCLUSION

In this paper, we have presented an enhanced VQ frame-
work, termed RGVQ, which changes the �2,2-norm loss in
the original VQ framework to a more general �p,q-norm loss.
The benefits are twofold. On the one hand, the algorithm
becomes more robust to the noise, which potentially makes
RGVQ better suited to search similarity in the real-world data.
On the other hand, promoting to �p,q-norm loss allows RGVQ
to handle various applications, where different distance mea-
surements are requested. The major technical challenge comes
from minimizing the new �p,q-norm loss function, which is a
non-smooth and non-convex optimization problem. To solve
this orthogonality constrained �p,q-norm minimization prob-
lem, we propose an efficient algorithm and rigorously prove
its convergence. We specify the algorithm to three celebrated
approaches. Comprehensive experiments on two NN search
benchmarks demonstrate that RGVQ performs significantly
better than VQ, and validate that RGVQ is robust to noise
and works well for �p-norm similarity search. Moreover, from
the application perspective, the extensive results on two image
retrieval benchmarks also verify that RGVQ works better than
VQ on real-world scenarios as it is more general and robust.
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