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Abstract

In this work, we propose a novel method to involve
full-scale-features into the fully convolutional neural
networks (FCNs) for Semantic Segmentation. Current
works on FCN has brought great advances in the task
of semantic segmentation, but the receptive field, which
represents region areas of input volume connected to
any output neuron, limits the available information
of output neuron’s prediction accuracy. We investigate
how to involve the full-scale or full-image features into
FCNs to enrich the receptive field. Specially, the full-
scale feature network (FFN) extends the full-connected
network and makes an end-to-end unified training struc-
ture. It has two appealing properties. First, the intro-
duction of full-scale-features is beneficial for predic-
tion. We build a unified extracting network and ex-
plore several fusion functions for concatenating fea-
tures. Amounts of experiments have been carried out to
prove that full-scale-features makes fair accuracy rais-
ing. Second, FFN is applicable to many variants of FCN
which could be regarded as a general strategy to im-
prove the segmentation accuracy. Our proposed method
is evaluated on PASCAL VOC 2012, and achieves a
state-of-art result.

Introduction

Fully convolution network (FCN) has brought great break-
through on semantic segmentation task (Long, Shelhamer,
and Darrell 2015). By building the deep convolutional
neural network (DCNN) fully convolutional, FCN could
take input of arbitary size and produce pixel-wise predica-
tion. Recently, many FCN-based models are proposed and
achieve striking results on semantic segmentation bench-
marks (Chen et al. 2016; Lin et al. 2015; Zheng et al. 2015;
Lin et al. 2016).

Looking into the current FCN models especially the fail-
ure examples, we found that most of the failure examples
have large or full-image objects. In these examples, large
objects cannot be efficiently detected because of the con-
fined receptive field of FCN, as shown in Fig. 1. For en-
larging the receptive field and enriching the prediction in-
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Figure 1: The limited receptivity of FCN cannot effectively
segment the large objects. True scale of object is marked in
the red bounding box.

formation, there are two main successful methods to obtain
a better prediction results on large objects. The first one
is employing multi-scale features from different layers of
DCNN (Long, Shelhamer, and Darrell 2015) or from resized
scale of input image to get a larger receptive field (Chen
et al. 2016; Szegedy et al. 2014; Mostajabi, Yadollahpour,
and Shakhnarovich 2015; Ding et al. 2016). The second type
of methods is employing a global postprocessing technique,
like Conditional Random Field (CRF) (Liu et al. 2015;
Lin et al. 2015; Zheng et al. 2015), to fuse the entire image
features.

By employing multi-scale features, FCNs could achieve a
larger receptive field and make a more accurate prediction.
Some of these FCNs (Long, Shelhamer, and Darrell 2015)
concatenate the different layers of network, combining the
deep, coarse layer’s semantic information with shallow, fine
layer’s appearance information. This type of methods ex-
pand the receptive field in a certain extent (enlarged from
128 pixels to 224 pixels) but are still insufficient for large
objects (width up to 400 or 500 pixels) filled in the whole
image. Larger receptive fields will bring much more compu-
tation as well. By employing full-connected CRF (Chen et
al. 2016), the final output results of FCN will be treated as
a prediction prior and then be integrated for the whole im-
age segmentation. Because this type of methods often take a
two-step process, the training time is usually long.

From another aspect, detecting large-size objects is more
like locating the objects instead of segmentation. The state-
of-art object detection methods (Redmon et al. 2015; Ren et
al. 2015; He et al. 2015; Jifeng Dai 2016) have achieved ex-



cellent performance by making full advantage of the Deep
Convolutional Neural Network (DCNN) features. We notice
that most of them utilize the information from the whole im-
age, or namely full-scale feature, as an essential detection
feature. Inspired by this observation, to overcome the hur-
dles for detecting large objects in semantic segmentation, we
propose to integrate the full-scale-features network on FCN's
in a unified network model.

In this paper, we model the full-scale-features in a full-
connected way and use a sub-sampling network to get
out of the dilemma of tremendous computation from full-
connected layer. A global-to-local scale transform network
is designed to concatenate the different features. An advan-
tage of our method is that our full-scale-features extracting
network (FFN) is independent, which means the FFN could
be applicable and effective to most of the FCN-based net-
work.

As best as we know, there’s only one previous work try-
ing to utilize the full-scale image features (Liu, Rabinovich,
and Berg 2015) to improve segmentation accuracy. They use
global pooling method to generate global or full-scale fea-
tures, replicate the global feature into target size, and then
apply L2 Norm to fuse these different features. For further
exploiting the global contextual information, we take a dif-
ferent network to model the full-scale features which can
produce a grid-based prediction feature maps. In this way,
we could not only synthesize the whole image but also give
a regional-based full-scale features. We design a multi-layer
scale transform module to concatenate the different types of
features. Finally, our method outperforms Liu’s model and
make a state-of-art prediction result on PASCAL VOC 2012
dataset.

The main contributions of this paper are as follows:

e We propose an end-to-end network FFN, to extract the
full-scale-features in FCNs for semantic segmentation.

e We propose a module for transforming the various scale’s
features into an unified network.

e The proposed full-scale-features network (FFN) can be
easily adapted for enhancing other FCN-based method
and improving the prediction accuracy.

e Our method outperforms the other full-scale or global-
feature methods and achieves a state-of-art result on the
Pascal VOC 2012.

In the next section, we review related work on FCNs with
multi-scale features and FCNs with CRFs. Some object de-
tection methods are also reviewed for employing the full-
scale features in the related work. Model Architecture sec-
tion introduces the proposed method and the performance
evaluation is shown in Experiments section. Finally, we
make a conclusion and present more results in final section.

Related work

Our method draws on the success of FCN with its improved
models for multi-scale features and CRF finetuning. Ob-
ject detection models also inspire the design of full-scale-
features network.

Fully Convolutional Networks

By replacing the fully-connected layer of Classcification
Neural Network (CNN) with convolution layer, Fully con-
volutional Network (FCN) could make a pixel-level clas-
sification prediction (Long, Shelhamer, and Darrell 2015).
For the semantic segmentation task, FCN and its variants
have demonstrated state-of-art performance. In particular,
our networks are experimented on the original FCN and
Deeplab models (Chen et al. 2016; Liu et al. 2015). Amounts
of further improvement on FCNs are mainly focused on the
multi-scale feature learning or using CRF to refine the seg-
mentation results.

Multi-Scale Features

It is well-known that multi-scale features are beneficial for
object detection and segmentation in computer vision. The
original FCN-8s defines a skip architecture that combines
the deep layer with shallow layer to refine the coarse pre-
diction into detailed segmentation. DeepLab-MSc (Chen et
al. 2016) proposed a MultiLayer Perceptrons (MLP) to ex-
tract multi-scale features, and its improved model, DeepLab-
Attention (Chen et al. 2015), trained an attention-to-scale
model to learn a softly weighted multi-scale features. (Liu
et al. 2015) resized the input image with different scales
and fuse these multi-scale features for Conditional Ren-
dom Field’s (CRF) unary prior. (Mostajabi, Yadollahpour,
and Shakhnarovich 2015) employed the “zoom-out” fea-
tures that maps the superpixels to rich feature representa-
tions extracted from its nested regions.

Full-scale Features

Different from the multi-scale features, full-scale features
are required to integrate the whole feature maps. ParseNet
(Liu, Rabinovich, and Berg 2015) employs global-pooling,
L2 normalization and simple replicated unpooling for aggre-
gating the whole-image’s features to provide global contex-
tual information. Our method takes a similar pipeline with
Liu’s method but the differences between ParseNet with our
full-scale-features network are significant. Instead of simply
replicating the global features into pixels, we employ a gird-
based global-features training structure and, further more,
design a multi-layer fusion network to concatenate the full-
scale features. Our method also performs better prediction
result than ParseNet. More explanations and details will be
discussed in Model Architecture Section. (Dai, He, and Sun
2015) proposed a multi-task learning method for instance-
aware semantic segmentation. In its model, the region-scale
features are extracted in a full-connected way for segmen-
tation mask learning. Our method builds a similar feature
extracting network but for the whole-image features.

Conditional Random Field

Another method to fuse the whole image features is applying
a Conditional Random Field (CRF) to the FCN’s prediction
results which could involve both context and pixel informa-
tion. (Chen et al. 2014) first proposed to use CRF for fine-
tuning the semantic segmentation results. They treated the



CRF as an independent postprocess and the prediction re-
sults of FCN are incorporated as unary prior of CRF. Since
this method takes a two-step training process, many follow-
ing works are focused on the unified training model for FCN
and CRF. (Liu et al. 2015) proposed a CNN-Based model
solving the CRF optimization iteration through one pass of
network forwarding. (Zheng et al. 2015) modeled the op-
timization iterations of CRF as an RNN (Recurrent Neu-
ral Networks) network and thus they made an end-to-end
training method for FCN with CRF. They also utilized the
message passing to learn the CRF inference in their unified
model. By involving more superpixels and object-detection
prior to CREF, (Lin et al. 2015) proposed a piece-wise train-
ing method for pixel-level prediction.

Object detection

Current advance on object detection is another inspiration
for our model. Faster RCNN (Ren et al. 2015) employed a
SPP-Net to detect different scale and ratio objects in an im-
age. SPP-Net (He et al. 2014) employed different shape of
convolution kernels and thus could help detect multi-scale
and multi-ratio objects. Another successful object detection
model is YOLO (Redmon et al. 2015), which treats the lo-
calization task as a regression problem. It takes an FCN-like
network to extract basic features, and divides the whole im-
age input several grid. YOLO predicts whether the center of
an object falls into a grid cell and uses the basic features
to predict the specific bounding box’s size and location. In-
spired by YOLO, we split the middle feature map into grid
too. We reframe the full-scale feature learning task into a
low-resolution segmentation task but the output is feature
vectors instead of feature maps. The low-resolution but full-
scale features are further convoluted and fused with FCN
prediction to generate a context-aware result.

Model Architecture

This section discusses the model architecture of our Full-
Scale-Features Network (FFN), including the feature ex-
tracting model and the fusion function design.

Full Scale Features Extracting

The specific network architecture for Full-Scale Features
Network (FFN) is shown in Fig. 2. The key idea of gener-
ating the full-scale features is including a fully-connected
layer to fuse the whole image feature map, but the com-
plexity and computation costs make the combination hard to
work. In our method, a fix-sized sub-pooling is employed to
project the big CNN features space into a small, acceptable
feature space. After the pooling layer, two full-connected
layers are designed to calculating the final full-scale fea-
tures. To concatenate the full-scale features, a backward-
remap layer is required to reshape the feature vectors into
feature maps.

The fully-convolutional feature maps, which are gener-
ated after amounts of convolution layers, can be of arbitrary
size based on its subsampling coefficients and the size of
input image while the fully-connected layers require fixed-
size input features. This transformation from arbitrary fea-
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Figure 2: Full Scale Features extracting network.

ture map to fixed maps has been explored by spatial pyra-
mid pooling. Our fixed-size subpooling takes a similar form
of network but for semantic segmentation instead of object
detection. In this way, we divide the final full-scale feature
maps into S x S grid, and the result maps will have C chan-
nels (S =7 and C = 21 in our experiments). These setups
mean that we will obtain the full-scale feature maps with
size of 21 x 7 x 7 and the full-scale feature vectors with size
of 1029 (=21 x 7 x 7).

Looking into the full-scale features extracting submodule,
we found that this sub-network is actually independent of
the semantic segmentation which means the FFN could draw
full-scale features from any convolutional feature maps. For
another independent aspect, the FFN could be supervised by
a low-resolution segmentation label that makes the network
multi-task. This selection will be experimented comparing
with the no-supervised FFN in the following section.

Feature Fusion

After getting the these full-scale features, We explore the
fusing functions for integrating with original FCN’s local-
scale features. Because of the fix-sized sub-sampling layer,
the FFN’s output features is downsampled and coarse. In
order to fuse these coarse full-scale features with high-
resolution FCN’s features effectively, we are required to
make a concatenation and refinement layer.

Notation We denote by x the image values and y the
segmentation final predication after deconvolution and un-
pooling layers. The middle layer features which are gener-
ated before deconvolution and after convolution are denoted
as m, more specifically for example the output of conv5
of VGG16 network. As mentioned before, our full scale
features extracting network could be indenpendent, so that
the network output can be denoted as an independent func-
tion of m: FFN(m). Some of the FCN variants also have
a post-feature generating network, such as the fc6, fc7 layer
in VGG16 network, and we denote the prediction result after
these post-feature generating networks as PFG(m).

Before concatenating the different types of features, we



are first required to normalize the features. Unnormalized
features training can lead to weight unbalance between the
large scale features and small scale features. Inspired by
ParseNet, we include a scale layer after each feature to learn
the adequate transforming scales for each type of feature. A
bilinear interpolation layer is added to unpool the fix-size
feature maps (21 x 7 x 7 in our experiments) onto the FCN
feature maps size.

After normalization, our model is trying to fuse the full-
scale features with FCN results. A trivial design of fusion
function (denoted as Fuse(m)) could be formulate of,

Fuse(m) = FFN(m) + PFG(m) (1)

where the ‘4’ represents the element-wise sum of each fea-
ture.

Note that the FFN(m) could be regarded as a middle latent
features for the final pixel results. Concatenating the middle
features with each other could reasonably make a better pre-
diction than the trivial design, and the formulation become,

Fuse(m) = FFN(m) + PFG(m) 2)

where the ‘4’ represents the channel concatenation of each
feature.

While the post-feature generating network is not nec-
essary for some FCN variants, these models will directly
use the extracting features to make pixel classification. The
PFG(m) term is not available in the situation. For integrat-
ing the full-scale features into these models, we modified the
fusion function into an iteration way,

Fuse(m) = FFN(m) + m 3)

Experiments have shown that this type of fusion function
make similar amount of accuracy improvement for seman-
tic segmentation with function (2). Inspired by this function
transform, we finally proposed a multi-layer fusion function
to explore the detection ability of full-scale features. The for-
mulation could become like,

Fuse(m) = FFN(m) + m 4+ PFG(m) 4

These fusion functions are illustrated in Fig. 3.

In experiments, we contrast these fusion functions on
PASCAL VOC val dataset and employ the network in Fig.
3(d) for its best performance in our final architecture to con-
catenate the full-scale features. More specifically, we fuse
the full-scale feature with the fcn feature firstly and then
concatenate with the output of deeper fully-convolutional
networks. The final concatenated features are utilized for
predicting segmentation results.

Training and Loss Function

Our full-scale extracting network are basically built on the
FCN models. So that the models of our method are all pre-
trained by the original FCN model or it variants. For adding
the FFN into FCNs gracefully, we adopt a two-step training
method which firstly learns the FFN parameters with FCN’s
parameters fixed. After amounts of iterations, the second
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Figure 3: Fusion Functions for concatenating the full-scale
features.

step train the whole unified network including both the con-
volutional and connected layers to improve prediction accu-
racy.

FFN predict the final pixel-level classification results for
semantic segmentation. But as we referred in the model ar-
chitecture section, the independent result of full-scale fea-
tures results could be treated as a sub-pooled segmentation
task. In our setups, the segmentation task only need to pre-
dict the 7 x 7 grid of image labels. By specific denotation,
these singe-task training and multi-task network’s loss func-
tion could formulated as,

Loss(m) = L1(Fuse(m)) ®)

and

Loss(m) = L1(Fuse(m)) + L2(FFN(m))  (6)

Here, L1, L2 represent the loss term of concatenating fea-
tures results and full-scale feature results. The comparison
experiments for the different loss functions will be carried
out in the next section.

Comparison to ParseNet

Our method builds a similar pipeline with ParseNet for in-
tegrating the full-scale feature but the specific modeling are
quite different. The ParseNet used the replicating full-scale
features and we employ a full-connected grid-based full-
scale features. We investigate the possible fusion functions
for concatenating different scale of features instead of the
concat-feature fusion described in ParseNet. In ParseNet, the
fusion functions is fixed to concatenation but the Fusion pe-
riods are classified as early fusion, concatenate the full-scale
features directly, and late fusion which adds an additional
layer to full-scale features first. In our method, we tried to
enlarge the detail information of full-scale features by re-
fusing the FFN(m) with m. This refusing function is shown
to be more effective than simple concatenation. And for the
results, our method outperforms ParseNet equally evaluated
based on the DeepLab-LargeFOV model for PASCAL VOC
2012.



Experiments

In this section, we mainly evaluate our method on VOC 2012
benchmark dataset (Everingham et al. 2010). The VOC 2012
dataset has 20 object classes with an extra background class.
The original datasets are labeled with 1464 train images and
1449 validation images. (Hariharan et al. 2011) labels addi-
tional 9118 images with segmentation annotations which are
commonly used for training semantic segmentation models.
We use these additional annotations and test our method on
both validation and test datasets.

We use the mean intersection over union (Mean IoU) re-
sults as the standard evaluation score to compare our method
with others. For fairly comparing our improved models
with original FCN-based models, we have reproduced all of
the FCN-based segmentation model in our experiments and
trained these methods from their pre-trained models such as
VGG16 classification models (Chatfield et al. 2014).

SGD with mini-batch is used for training. A training mini-
batch of 10 images is taken and the initial learning rate is le-
9 with a step learning policy that multiplied by 0.1 each 20k
iterations. We use the momentum of 0.9 and the weight de-
cay of 0.0005. Fine-tuning the model on a NVIDIA GeForce
TiTan GPU costs about 1 to 1.5 days. Our full-scale features
model is implemented in the Caffe framework and will be
published soon.

FCN-based Baselines

Since our FFN network is a promoting network, we are re-
quired to reproduce the FCN-based basic models firstly so
as to append our FFN to these model. We make experiments
on the original FCN models and Deeplab models.

FCN-8s is the first and the basic model we utilize for ex-
periments. The FCN-8s model transfers the full-connected
layers into fully-convolution and employs a skip net to com-
bine the deep layer’s prediction with shallow layer’s fea-
tures. By being aware of the shallow layer, FCN-8s could
predict in a finer resolution which performs 1/8 size of orig-
inal image. In the reproduction of FCN-8s, we found that
bilinear-interpolation uppooling layers not only speeds up
the training but also makes a better prediction result. Yet
after all-at-once training of FCN-8s, this model achieves
62.7% mean IoU accuracy of validation dataset, that is 2.6%
lower than the reported accuracy (Long, Shelhamer, and
Darrell 2015). The reason of the accuracy gap between our
reproduction and published results probably is the lack of
more training iteration (we train the network for 60k iter-
ations) and a smaller learning rate. Because our full-scale
features model only makes a promotion to the current FCN
models, it’s still fair for us to evaluate our method on the
reproduction FCN networks.

DeepLab is another network we experiment. DeepLab
employs the same fully-convolutional network structure for
segmentation and uses a full-connected CRF as postprocess-
ing to finetune the results. The DeepLab-LargeFOV enlarges
the receptive field of Deeplab and employs a smaller kernel
size of 3 x 3 for the last prediction layer in VGG16 network,
which makes it easier to converge and train. We reproduced
the DeepLab-LargeFOV model and achieved a 67% mean

IoU accuracy of validation dataset which is comparable with
the reported results of (Chen et al. 2016).

Results and Analysis

We have experimented our method on PASCAL VOC 2012
validation dataset. For implementing details, We set the full-
scale features map size to be 21 x 7 x 7, and use two full-
connected layers with 1024 neurons. We evaluate the differ-
ent fusion functions firstly on FCN-8s. We train the FCN-8s
in an all-at-once method which is pre-trained on the pub-
lished model from (Long, Shelhamer, and Darrell 2015).
Because our trainings are carried on the additional annota-
tion dataset, the validation dataset is slitted into trained im-
ages and non-trained images. Only the non-trained imageset
which contains 736 images are validated on our model.

PASCAL VOC Validation Mean IoU

FCN-8s 62.7%
FCN-8s-FFN(a) 57.4%
FCN-8s-FFN(b) 64.2%
FCN-8s-FFN(d) 64.5%

Table 1: Results for different fusion functions for FCN-8s
with FEN on the PASCAL VOC 2012 validation dataset.
FCN-8s-FFN(a), (b), (d) are the models with different fu-
sion functions shown in Fig. 3.

From Table 1, we can see that the introduction of our full-
scale feature network is basically beneficial. In further, the
concatenating fusion functions are outperforming the simply
summation of different features. In particular, we observe
that the summation fusing function, FCN-8s-FFN (a), gets
a worse accuracy than FCN-8s baseline. The fail of perfor-
mance probably comes from the low-resolution FFN middle
prediction thus causing a big interference in the summation
fusion functions.

Because of the successful reproduction of DeepLab and
DeepLab-LargeFOV, we conduct more experiments on the
DeepLab models. When training the DeepLab models and
the FFN extensions, a mini-batch of 5 images and 60k it-
erations of training are conducted. Because of the poor
result on the FCN-8s model, we don’t prefer to experi-
ment the fusion function (a) on DeepLab anymore. Tabel
2 shows the Deeplab results on the same validation dataset.
For a fair comparison, all of the DeepLab-based models are
post-processed by a independent full-connected CRF layer
(Koltun 2011) to finetune the predictions. The CRF parame-
ters are cross-validated in validation dataset to maximize the
accuracy.

The sub-Supervision experiments on the FFN are con-
ducted on the validation dataset. For supervised learning for
full-scale features with size of 21 X 7 x 7, weseeitasa 7 x 7
grid classification problem and the 21 channels just corre-
spond to 21 different object classes in PASCAL VOC 2012
dataset. While adding the additional Supervision results in
a slight decrease in the prediction accuracy as shown in Ta-
ble. 2 . we think the extracted full-scale features should not
be regarded as prediction result but a latent variables which
need to be further fused into local-features.



PASCAL VOC Validation Mean IoU
DeepLab-LargeFOV 67.7%
DeepLab-LargeFOV-FFNwithSuper 67.4%
DeepLab-LargeFOV-FFN(b) 69.3%
DeepLab-LargeFOV-FFN(d) 69.7 %

Table 2: Results for DeepLab with FFN on the PASCAL
VOC 2012 validation dataset.

As shown in Table 2, the Deep-Lab-FFN(b) and (d)
achieve 2% accuracy promotion for the base DeepLab
model. For fairly comparing our method with former
method, we train the DeepLab-FFN network for VOC 2012
test dataset, and make a broader comparison. Note that our
Deep-Lab-FFN is only trained on the PASCAL VOC 2012
train and val datasets with additional annotations from (Har-
iharan et al. 2011), so that we don’t compare our method
with MSCOCO dataset (Lin et al. 2014) finetuned models or
Resnet-based models. These two methods have been proved
to be a great help for semantic segmentation task. Our FFN
can be performed as a submodule for generating full-scale
features for these methods and datasets. More experiments
on these state-of-art methods will be conducted in our future
work.

PASCAL VOC Test 2012 Mean IoU
Zoom-out 69.6%
DPN* (Liu et al. 2015) 74.1%
RNN* (Zheng et al. 2015) 72.0%
Piecewise* (Lin et al. 2015) 70.7%
DeepLab-LargeFOV (Baseline) 70.3%
DeepLab-LargeFOV-MSc 71.6%

DeepLab-LargeFOV-ParseNet 69.8%
DeepLab-LargeFOV-FFN(b) 71.2%
DeepLab-LargeFOV-FFN(d) 71.3%

Table 3: Results Comparison experiments on VOC 2012
test dataset. The segmentation accuracy results are provided
from PASCAL VOC evaluation server leaderboard or pub-
lished by the author. We only compare the models train-
ing on the trainval dataset with additional annotation. Ap-
proaches unify the CRF-learning are marked with *.

We compare our final FFN models with other state-of-art
methods in Table 3. Firstly we focus on the comparing with
ParseNet, for their similar pipelines and motivation. The re-
sults reveal that our method outperforms the ParseNet which
makes it a more effective approach to involving the full-scale
image features. Secondly from considering our method with
the comparable DeepLab-LargeFOV-MSc which resizes the
input images and produces a multi-scale feature, we notice
that involving the full-scale image feature makes a similar
amount of improvement with multi-scale features. Yet the
multi-scale features and full-scale features are not conflict-
ing. Our full-scale features could be added to each resized
feature of the multi-scale features to enrich the final predic-
tion.

By comparing with the other state-of-art methods, we

(c) DeepLab (d) DeepLab+FFN

(a) Image (b) Label

Figure 4: More results comparing the DeepLab agianst
DeepLab-FFN.

found that the unified CRF training methods are outperform-
ing the single FCNs or two-step training with CRF. The in-
dependence of our FFN makes it applicable to all of these
method and only need to add only a little and controllable
extra computation for the network.

Conclusion

We proposed Full-Scale Feaures Network (FFN) to involv-
ing the whole-image features into semantic image segmen-
tation, which has two appealing properties. First, FFN is
proven effective for learning the full-scale features which
could be utilized for improving the FCN-based segmentation
methods while recognizing large objects. Second, the inde-
pendence of network module enables our method to fine-
tune most of the current FCN-based methods. Adding the
sub-network FFN to learning full-scale features only costs a
little and controllable amount of computation. More results
are shown in Fig. 4.

The DeepLab with FFN achieves state-of-art performance
on VOC2012 trained only by trainval dataset with additional
annotation and our method outperforms the previous works
on involving full-scale features. Future directions include
experimenting FFN onto more multi-scale or CRF unifying
methods, making the full-scale features a single and inde-
pendently trainable FFN subnetwork to effectively make up
a multi-task model.
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