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Abstract Deep learning has been the most popular feature
learning method that is used for a variety of computer vision
applications in the past 3 years. Not surprisingly, this
technique, especially the convolutional neural networks
(ConvNets) structure, is exploited to identify the human
actions, achieving great success. Most algorithms in
existence directly adopt the basic ConvNets structure, which
works pretty well in the ideal situation, e.g., under stable
lighting conditions. However, its performance degrades
significantly when the intra-variation in relation to image
appearance occurs within the same category. To solve this
problem, we propose a new method, integrating the
semantically meaningful attributes into deep learning’s
hierarchical structure. Basically, the idea is to add simple yet
effective attributes to the category level of ConvNets such
that the attribute information is able to drive the learning
procedure. The experimental results based on three popular
action recognition databases show that the embedding of
auxiliary multiple attributes into the deep learning
framework improves the classification accuracy
significantly.

Keywords Action Recognition, Convolutional Neural Net-
work, Attribute

1 Introduction

An action is a sequence of human body movements,
indicating the person’s intentions and thoughts. From the
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perspective of computer vision, the recognition of an action
is to parse the video sequence in order to learn about the
action, and in turn, the learned knowledge is employed to
identify similar actions when they appear again. As a key
component in human behavior analysis and understanding,
automatic action recognition facilitates many applications
such as human computer interaction, video
surveillance [1] [2] [3] and video analysis &
retrieval [4] [5] [6], which is shown in Fig.1.

(a) interaction (b) surveillance (c) video analysis

Fig. 1: Application Exemplars where action recognition can
be used.

Currently, the popular methods for action recognition can
be generally divided into two categories. Traditional
methods employ efficient handcrafted feature descriptors to
represent an action, in which the appearance and texture
information are commonly encoded. The representatives
include HOG (Histogram of Oriented Gradient) [7], HOF
(Histogram of Optical Flow) [8] and MBH (Motion
Boundary Histogram) [9]. Alternatively, moving
trajectory [10] is also well investigated and the descriptors
based on it achieve success in some applications. On the
other hand, emerging techniques try to adapt learning-based
feature representations to human action recognition area.
For example, BoW (Bag of Words) [11] model and sparse
coding [12] have been extensively adopted, which are
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capable of handling the diversity of local features. The
information from multi-view depth images has also been
focused [13]. Recently, deep learning methods, such as
data-driven convolutional neural network [14], are used to
obtain intrinsic representation from the training samples,
which have shown compelling preliminary results.
Additionally, some attempts combine the temporal
handcrafted features and deep learning methods [15]. In
contrast to the handcrafted feature descriptors, learning
based feature representations tend to be domain agnostic,
and are able to learn additional feature bases that cannot be
represented through any of the handcrafted features.

Although deep learning framework has been employed in
human action recognition, the performance of the algorithm
is still far from satisfactory, especially when dealing with the
practical situations. A crucial problem is that there is a huge
"gap" between the deep learned features and the semantic
actions due to the fact that such methods usually learn
features from the raw image. With respect to the action
recognition, the semantic patterns such as temporal changes
of the feature may help to describe action. To this end, one
potential idea is allowing the semantic information to
supervise the feature learning in the deep learning
framework.

Inspired by the above analysis, in this paper, a human
action recognition algorithm based on deep learning
framework is proposed, into which we successfully integrate
the semantic-level attribute information. Our work differs
from the existing work in two aspects.

1. We propose a novel deep learning model supervised by
the attribute information, namely Attribute-based Supervised
Deep Learning Model. With the semantic-level attribute
integrated, the learned features are more robust to the
changes of image appearance that arise within the same
category.

2. We propose two simple yet effective attributes
describing human action at the semantic level, one of which
indicates the background information, and the other one
describes the video super category. These attributes are
successfully integrated into the category level of ConvNets.
On the one hand, the involvement of such attributes in CNN
framework makes the whole system more efficient, reducing
the annotation work required in the training procedure. On
the other hand, the way of embedding attribute information
into the inflexible deep learning framework provides an
implementation example, which may inspire the research
attempting to modify the ConvNets model.

2 Related Work

As our work is a sort of improved work of deep learning
based feature representation, we focus on discussing feature
extraction by means of learning techniques.

Learning-based feature representation have been
extensively adopted to encode local features. BoW [11]
model is a popular tool to quantify varies local features into
a unified feature space. In computer vision, BoW model
usually treats local image features as words and generates a
sparse histogram over the whole feature space by counting
the occurrence of features. It provides a way to decrease the
descriptors’ amount, and to help learn and generate an image
descriptor using a long and sparse vector. Despite its
excellent feature representation capability, BoW model has
some limitations, in which one of the disadvantages is the
neglect of the spatial relationships among image patches.
Sparse coding [12] is another common unsupervised method
to find valid representations that capture higher-level
features, given unlabeled input data. At its training stage,
sparse coding method tries to learn a small number of bases
to represent the input data, which minimize the object
function. Then the bases can be used to encode the data, thus
obtaining the feature representation. Using a sparse matrix
to store the features can save a lot of space with the cost of
sacrificing little information in an acceptable degree.
PCA [16] (Principal components analysis) is a technology
that simplifies and extracts the feature representation. PCA
methods obtain the principal components and their feature
weights of input data, through performing characteristics
decomposition for covariance matrix. Finally it contains the
features which have maximal contributions to the data, and
the dimension of feature representation is reduced
significantly. PCA can also remove the noise existed in the
input data. Moreover, Liu et al. [17] [18] propose multi-task
method for multiple/single view human action grouping and
recognition. Xu et al. [19] introduce a Multi-modal and
Multi-view Interactive dataset to solve the problem of cross
domain. Liu et al. [20] propose a human action recognition
method via coupled hidden conditional random fields model.
Yang et al. [21] and Zhu et al. [22] propose some methods
to improve the quality of images and videos. Y Gao et
al. [23] [24] [25] introduce some learning method for 3D
Object Retrieval and classification. X Lu et al. [26] [27]
propose some hash and semi-supervised learning methods.

Deep learning methods lead to another branch of the
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learning method. They usually use convolutional neural
networks with multiple layers to learn the feature
representation. Recently, deep learning technology has
achieved huge success in image recognition and
analysis [28], which attracts a lot of efforts from both
academia and industry. As its extension, video recognition
research has been largely driven by the advances in image
recognition methods [29].

A.Karpathy et al. [15] use CNNs(Convolutional Neural
Networks) to process the task of large-scale video
classification. They provide extensive experimental
evaluations of multiple approaches in order to extend CNNs
into the video classification. The algorithm processes the
input at two spatial resolutions, improving the runtime
performance of CNNs at no cost in accuracy. Such a method
obtains significant performance improvement when applying
their networks to the UCF-101 dataset. K.Simonyan et
al. [29] exploit a Two-Stream ConvNets model to
incorporate spatial and temporal networks simultaneously, in
which video frames and optical flow are put into the two
streams respectively. Finally, the integration of spatial and
temporal information improves the accuracy of video
classification. Ryoo et al. [30] introduce a Pooled times
series representation called PoT, which captures ego motion
information in first-person videos. The idea is to keep track
of the change of element in per-frame descriptor vectors
over time. The algorithm applies multiple pooling operators
to the time series, and generates the efficient PoT feature
representation for a video. Wang et al. [31] come up with a
novel video feature descriptors called TDD, which combines
the deep learning method and temporal handcraft features.
They first set up Two-Stream ConvNets to extract the deep
learned feature maps, then extract the TDD feature
descriptors by using feature map normalization and
trajectory pooling operation. Specifically, in the trajectory
pooling step, the deep learned feature map and handcrafted
local features are linked closely by the trajectory pooling
operation.

Regarding action recognition task, an interesting but
important question is how to define an action. The
definitions of event and action are unfortunately ambiguous
in most computer vision literature [32]. As a result, there is a
"gap" between the action described by people and the
essential features in video, which is an obstacle to learn the
valid feature representation.

3 Attribute-Based Supervised Deep Learning
Model

In this section, we discuss the main contributions of the
paper after explaining the motivation of our scheme. Then,
we demonstrate the limitations of current ConvNets from the
perspective of a practical action recognition task. We show
the system overview with respect to our Attribute-Based
Supervised Deep Learning Model, and finally describe our
idea in a formulating way.

3.1 Motivation

This idea originates from the essence of action recognition
task. Action classification is much more complex than
image classification due to the dynamics of objects, scenes
and trajectories, which all confuse people when determining
the action category.

In the traditional ConvNets, the models usually extract
the appearance features from the input data. However, some
videos with similar appearances may belong to totally
different categories, which may result in a wrong
classification. To solve this problem, adding some high-level
semantic information to ConvNets will be helpful. It’s better
for ConvNets to process their learning procedures under the
guidance of the semantic information. That’s why we
introduce the attributes information.

3.2 Challenges

Our challenge comes from a true dilemma that we
encountered in the action recognition task: when
recognizing the actions from UCF101 dataset [33], we
notice that most video categories with high classification
accuracy have relatively simple background, however, the
classification accuracy is generally low if the video’s
background is complex and varying, as shown in Figure 2.

To intuitively interpret this problem, we conduct several
experiments, as depicted in Figure 3, where we directly feed
the raw images covering various backgrounds into the CNNs.
The observations can be summarized as follows:

1. If the previous several input frames contain bright back-
ground, it is easy to set the parameters for ConvNets.

2. If there are some images in the sequence belonging to
the same category with dark background, the ConvNets
have to adjust their parameters to fit in the new
circumstance.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2: Different background conditions in video. The pic-
tures in the first row show a Surfing action with similar back-
grounds, and the pictures in the second row demonstrate the
action of Pizza Tossing under various background conditions

CNNs

Category 1 Category 1

Category 2

Category 3

Category 2

(Confused)

Fig. 3: The simple exemplars when CNNs get confused by
the inputs. Here, each rectangle represents one video. In
the first three categories, the backgrounds have only minor
changes in one action category while the background changes
dramatically in the category four. The observation is that C-
NNs get confused and does not adjust the parameters properly
in the last case.

3. However, if there are frames with interlaced bright
background and dark background, which means the
background varies with relatively large difference, the
ConvNets will get confused and eventually end up with
a poor performance. Compared to the case where the
background is slightly changed, the last case illustrates
that the ConvNets cannot handle the situation where
large changes occur in the background. For this case,
it’s difficult for the ConvNets to adjust their parameters
correctly.

The key factor of this problem is that some features are
not able to truly distinguish the current action category and
the other categories. The pixel-level convolutional operation
used in ConvNets mainly investigates the spatial relation of
the pixels, which may not be suitable for extracting temporal
features.

In order to enhance feature representation, we propose to
convey some extra message to ConvNets. An intuitive idea is
using the attribute to describe the input data, and to guide the
learning procedure of ConvNets.

3.3 System Overview

Based on the analysis above, we propose our
Attribute-Based Supervised Deep Leaning model, which is
illustrated in Figure 4.

Compared to the original ConvNets model employed in
most existing works, our model has some complementary in
both input and output modules of the network. We add some
attributes attached to the category of the videos, which
means that the videos in the same category share the same
value in the attribute space. When processing the input data,
we put the input data and their labeled category into network
as usual, on top of it, we also add the attribute values for
each input data. At the output layer, we extend the
traditional category output layer to several parallel attribute
output layers, which represent the feature map in
corresponding attribute field respectively. The components
in the green box represent the standard skeleton for
ConvNets whereas the components in the red box show how
we add the attribute information.

3.4 Formulation of the Proposed Idea

In the Attribute-Based Supervised Deep Learning Model,
each training sample is denoted as

datat = {I, P}, (1)

where I is the input data and P is the prediction target.
Specifically, we can utilize a single frame or frame difference
as the input I.

In this paper, we propose to construct an extensive predic-
tion target, which is

P = {C, A1, A2, ...}. (2)

Here, C ∈ {0, 1}c is the category vector indicating the
membership between the training sample and c categories,
and Ai ∈ {0, 1}(ai) denotes the vector for the i − th kind of
attribute indicating the relationship between the sample and
ai attributes. We will introduce how to construct Ai in more
details later in the next section.

Overall, the basic loss function is defined as:

ζ = −
1
m
{

m∑
i=1

[
k∑

æ=1

y(iæ) ∗ log(hæ(x(i)))]}, (3)

where m is the number of data, k is the category range, y(iæ)

means the ground truth of data i, and hæ(xi) denotes the
output in j column of data i.
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Fig. 4: The basic structure of Attribute-Based Supervised ConvNets. CO represents category output and AO represents
attribute output.

Our loss function is:

ζT = ζC +

r∑
p

ςpζAp , (4)

where r is the number of attributes, ζT is the total loss value,
ζC is the origin loss for category classification and ζAp is the
loss for attribute p.

In the conventional deep learning model, only the
category vector is utilized in the training phase, i.e., we have
P = {C} and ζT = ζC . As we have discussed above,
incorporating the attributes as the side information can
improve the performance, which definitely differs to the
existing works.

4 Implement Details

In this section, we introduce our implementation details
about the Attribute-Based Supervised Deep Learning Model,
including the network structure, preparation for input data
and other important issues.

First of all, we implement the basic ConvNets model and
other two extra derived ConvNets models. Based on it, we
further construct attribute output layers in ConvNets to
supervise the ConvNets using backward propagation. Before
the training stage starts, videos are notated with some tags.
In our implementation, we only define attributes at the

category level rather than at the video level, which
significantly reduces the workload. Then, we transport these
data with their attributes into the Attribute-Based Supervised
Deep Learning Model. At the testing stage, attribute
information is invisible, and we obtain the category output
layer as a foundation for classification results.

4.1 Basic ConvNets structure

The structure of our model mainly refers to the basic
ConvNet used in ImageNet [34] classification. The
ConvNets exploit single frames as the input, where a
224*224 sub-image is randomly cropped from the selected
frame. There are 5 convolutional layers followed by 2 full
connect layers, and the last category output layers contain
the classification information. We set the initial learning rate
to 10−3 and decay 5 ∗ 10−4 after each 10k iteration. To make
ConvNets converge quickly, we train our ConvNets on the
pre-trained Caffe [35] model of ImageNet [34].

4.2 Input Data Preparation

With respect to the spatial data information, we use the
single frame image serials sample for each video and choose
L = 10, which is the number of single frames, to extract our
input images from each video. Regarding the temporal
information, we exploit the frame difference between
consecutive frames due to its low-computational cost and
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obvious temporal characteristic. We abandon the dense
trajectory or optical flow features [36], because such features
are not easy to extract in terms of the computational load.
Additionally, we aim at investigating the effect of adding
attribute information in the CNNs framework, rather than
obtaining a high classification accuracy, so we choose the
simple and intuitive frame difference. The simpler our input
data is, the easier for us to analyze the effectiveness caused
by the attributes.

The serials of frame differences are calculated as follows.
In a video, we extract the images and their subsequent frame
images. At each pixel position, we calculate the color RGB
value difference in each channel, respectively. Here, we adopt
the tolerance and amplification mechanism to remove noise in
the image, and stress out the variety area. For the last image
in the video, we consider the first image as its next image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: single frame and frame difference

We use the Single Frame(SF) and Frame Difference(FD)
as the input data for a basic ConvNets alone, and use them
together in the Two-Stream ConvNets structure. We expect it
to reflect the impact in different domain information caused
by attribute supervision.

4.3 Extra Network Structure Implementation

4.3.1 Group Pooling Model

The Group Pooling ConvNets model is setup according to
the the model proposed in [37], which optimizes the
ConvNets by max pooling operation. We arrange the input
data group by group, which means that continuous
L(L = 10) frames come from the same video. Afterwards,
we add a custom Group-Pooling layer behind the 5th
pooling layer to aggregate all feature maps in one video. The
operation of group pooling would take out the max value at
each position of the feature map for all images in a video.
Finally, the max-pooling results are propagated forward into
the 6th full-connected layer. Other similar structures in the
ConvNets can also be adopted.

4.3.2 Two-Stream Model

This Two-Stream ConvNets model is implemented according
to the model in Two-Stream ConvNets [29]. Basic spatial
networks are constructed as suggested in section 4.1, which is
used to capture the image static appearance cues. Structures
of another temporal stream are similar to the spatial stream,
but they take in the frame difference as the input data. Finally,
we manage to enable the two streams converge after the two
fc7 layers using a concatenation layer.

4.4 Classification Policy

Since the direct output of ConvNets is the frame feature map
and a video may consist of many of these features, there are
many methods that can be chose for the final classification.
One of the intuitive approaches is to classify each image into
its category then to adopt a voting mechanism to pick up the
category for a video. An alternative is to take out the value at
the last layer of ConvNets as the feature representation, then
stack all the features for a video into a long global feature
vector, and eventually train a linear SVM model as the
classifier.

It is noted that the output layers of Group Pooling
ConvNets model are identical for all images in the same
video due to the pooling operation. If we put the feature
representation into a SVM, its length is 1/10 of others, thus
leading to a pretty bad result. Therefore, we do not perform
the SVM policy for Group Pooling Model.

4.5 Attribute-Based Supervised Deep Learning Model

On the basis of above foundation work, we establish several
parallel attributes output layers with the last category output
layer, and connect them with each corresponding ground
truth label layer as a loss layer. In this way, the input label
information can control the attribute output layers by the
loss function, and both the category output layer and the
attribute output layers are able to regulate the fc7 layer in
ConvNets by backward propagation. That is how the
supervision function is realized.

To help on understanding the concept, we give a concrete
example. For UCF101 dataset [33], we use two types of
attributes: single background and upper classes. The former
one is the sub-category information while the latter one is
the super-category information. Each video has two possible
values (either 0 or 1 on single background attribute), which
indicates that whether the background varies in the category
or not. Similarly, each type of video belongs to one upper
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class of five possible values described in UCF101 dataset,
which are Human-Object Interaction, Body-Motion Only,
Human-Human Interaction, Playing Musical Instruments
and Sports. We add two attribute output layers with 2 and 5
output nodes respectively, in which each of them is
connected to a label layer by a loss layer. The input data can
be described as (data,C, A1, A2), where data indicates the
path to image file, C refers to the category from 101
categories, A1 is the 0 or 1 about whether background is
single, and A2 is the ID of upper class for this video.

5 Experiments

We evaluate our proposed model on the popular video action
datasets KTH [38], UCF101 [33] and HMDB51 [39],
according to the standard procedure. In this section we
present our experiments plans and results, then discuss some
observations.

5.1 Dataset

5.1.1 UCF101

UCF101 [33] is a common action recognition dataset
collecting realistic action videos. There are totally 13320
videos of 101 action categories in this dataset. It has large
diversity and variation in camera motion, object appearance,
human pose and object scale, which provides the possibility
for the recognition algorithms to test and verify their
robustness and effectiveness in the realistic situation. We
split the dataset into training and testing data according to
the standard rules.

5.1.2 KTH

KTH [38] is a video database containing six types of human
actions(walking, jogging, running, hand waving and hand
clapping). The tiny differences between action categories
specially require the precise feature extraction ability of
algorithm.

5.1.3 HMDB51

HMDB51 [39] is provided by Serre Lab. The videos are
collected from various sources, mostly from movies.
Compared to UCF101 dataset, the action categories in
HMDB51 are much more highly summarized. There can be
various different scenes and activities rolled in these video,

and the only common characteristic is that the protagonist
has made the target action in the video.

Most of current methods could hardly achieve over 50%
classification accuracy in HMDB51, reflecting its challenge
for most of action recognition approaches. Following the
standard procedure, We split the dataset into training and
testing sets.

5.2 Baseline

Our baseline algorithm is just the basic ConvNets proposed
by Karpathy [15], as we intend to show how the
performance can be improved by adding attributes into the
network. For some datasets, such as UCF101, we also
compare our algorithm with existing algorithms including

For KTH [38] and HMDB51 dataset [39], although there
are many relevant research results, most of them are based
on hand-crafted feature descriptors or complex ConvNets
models. It is unsuitable to compare the classification
accuracy under different conditions. We have been taught in
the primary school that the most important principle in
experiments is to control the variables. In order to observe
the effectiveness of the attribute supervision, we used the
results of the same basic ConvNets structure in UCF101
dataset [33] as the baseline, and then we add extra attribute
layers and inspect the positive effect caused by attribute
supervision.

5.3 Experiment Details

We use a open-source deep learning framework Caffe [35] to
implement our convolutional neural network model. The
basic input data for our Attribute-Based Supervised Deep
Learning Model is serials of single frame and frame
difference, which have been introduced in section 4.2. For
the three datasets mentioned above, we adopt the similar
policy to deal with the videos, that is, splitting the training
and testing set, extracting static frames from video and
calculating the frame difference for each frame.

With Caffe [35] tools, we establish the basic ConvNets
similar to the model used for ImageNet [34] classification
task, which is convenient for us to execute the fine tune
operation later. Besides the basic network structure, we
modify the source code in Caffe [35] to achieve two extra
network. The first one is the Group Pooling Model,
executing max pooling operation after the 5th pooling layer
among all the frames within one video. The other one is the
Two Stream Model, referring to the idea of Two-Stream
ConvNets [29]. We use a contacting layer to put the spatial
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and temporal feature map together. We have tried many
places to add the concatenation layer, finally chosen the
position after fc7 layer.

When obtaining our model, we have two policies to use
the ConvNets output. One is to use the softmax layer
directly followed by a vote strategy among video frames to
calculate the final result. Another solution is taking out the
softmax layer value and stacking them to a long vector as the
feature representation for a video. We also achieve a plan
which stacks the single frame and frame difference to one
vector as the SVM input. The tool we use to train the SVM
model is called LibSVM [40]. Finally, we use the SVM
model as a classifier to execute action recognition task.

After the above preparation step for baseline and
benchmark, finally we add the attribute layers to implement
our Attribute-based Supervise Deep Learning Model. As
described in Section 4, we use several attribute output layers
to represent certain attribute values, and use corresponding
label layers as the ground truth to supervise the learning
procedure.

The types of attributes for each dataset are introduced as
follows. For UCF101 dataset [33], we find that some types
of videos that have similar background within category while
others do not. And, those classification results for the videos
with various backgrounds are always not good. In view of
this, we choose an attribute to indicate whether background
is single within a category. Besides, we get 5 super class
information from the dataset official information, we also use
them as another type of attribute.

For KTH [38], we select an attribute that indicates
whether the persons in video are moving. In the first three
types of videos, people only stand on the spot doing some
action, while the other three are just the opposite.

For HMDB51 [39], almost every category of video
contains various background. That’s possibly why most
deep learning methods have unsatisfactory effect in
HMDB51. In this case, denoting attribute the background is
meaningless. Fortunately, we find the the super class
information in the official website of HMDB51, and we thus
use them as the only attribute for HMDB51.

Table 1 shows the overview about the experimental results.
In Table 1, "BC" represents the "Basic CNNs" and "Attr"

represents "Attribute". "BC+Attr" means that we use Basic
CNNs with attribute supervision and "BC+SVM" means that
we use the feature maps from Basic CNNs to train a SVM
model. "BC+Attr+SVM" means we combine the policy of
Basic CNNs with attribute supervision and SVM model.

Table 2 shows the comparison of our method with other

Table 1: A overview about experimental results

Dataset UCF101 KTH HMDB51

Baseline 63.30% - -
BC 64.74% 79.00% 34.38%
BC+Attr 66.64% 81.23% 36.14%
BC+SVM 69.71% 88.76% 37.56%
BC+Attr+SVM 71.48% 87.95% 38.69%

Table 2: Comparison with other methods in UCF101

Type Method Accuracy

None Trajectories STIP+BoVW [33] (2012) 43.6%
Karpathy et al. [15] (2014) 63.3%
MDI [41] (2016) 70.9%
Our Method 71.48%
Ensemble-based(RSM) [42] (2015) 75.05%

Trajectories-
based

Two-Stream [29] (2014) 88.0%

TDD. [31] (2015) 91.5%

popular methods.
Our method can obtain a minor improvement, compared

to basic deep feature methods. However, our performance is
lower than the method, called Ensemble-based(RSM), which
uses the Random Subspace Method (RSM) [43] to divide all
features into random group and then integrates multiple
classifiers in the framework.

Apparently, trajectories-based methods, like optical flow,
iDT and Trajectory-Pooled descriptors, obtain much better
results due to the fact that trajectory can be considered as a
sort of semantic level feature. However, extracting such
features requires additional computation load. In our system,
We only pick up simple attributes from video in spatial
domain, which is not comparable to the complicated
features.

5.4 Exploring Attribute Effect on Different Aspect

5.4.1 Attribute effect on spatial/temporal feature

Firstly, we evaluate the effect of attribute on the basic
network, where input data are chosen to be spatial frames
and temporal frame differences. The experimental results
can be seen in Table 3, where SF represents Single Frame,
FD refers to Frame Difference, attr1 indicates whether
background has less change and attr2 is the super class
attribute.

In Table 3, "attr1" and "attr2" represent the attribute
"single background" and "upper class" respectively. "SF"
and "FD" indicate the "Single Frame" and "Frame
Difference". "SF+SVM" means we use Single Frame as
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Table 3: Result of spatial/temporal basic ConvNets for
UCF101

Scheme BC BC+attr1 BC+attr2 BC+attr1&2

SF 64.74% 65.08% 66.35% 66.64%
FD 57.74% 64.05% 63.39% 65.35%
SF + SVM 64.97% - - 66.83%
FD + SVM 64.90% - - 64.53%
SF+FD+SVM 69.71% - - 71.48%

input data and train SVM model with the feature maps,
"FD+SVM" and "SF+FD" are similar.

Seen from the results, using SVM leads to better result
than conducting classification in the last output layer
directly. Meanwhile, attribute layers have positively help for
deep learning procedure. The attributes in relation to
background and super class both contribute to the
performance, and their combination achieves even better
result. We believe that there still exist many semantic
attributes that we haven’t adopted in this experiment.

The result of dataset KTH and HMDB51 can be viewed in
Table 4 and Table 5. The meanings of abbreviations are as
same as those in Table 3.

Table 4: Result of spatial /temporal basic ConvNets for KTH

Dataset BC BC+Attr

SF 79.00% 81.23%
FD 85.00% 87.49%
SF + SVM 84.13% 86.33%
FD + SVM 89.46% 87.60%
SF+FD+SVM 87.76% 87.95%

Table 5: Result of spatial/temporal basic ConvNets for H-
MDB51

Dataset BC BC+Attr

SF 34.38% 36.14%
FD 32.55% 31.90%
SF + SVM 35.10% 36.41%
FD + SVM 33.46% 32.75%
SF+FD+SVM 38.56% 38.69%

5.4.2 Attribute effect on Pooling feature

We conduct our attribute-based supervised model for Group
Pooling model. The results are listed in Table 6.

In Table 6, "BC" is for "Basic CNNs", "PM" represents
"Pooling Model" and "PM+Attr" represents the Pooling
Model with attribute supervision.

We notice that the effectiveness of using attribute is not
clear for the pooling model. In KTH and HMDB51 dataset,

Table 6: Result of pooling model for datasets

Dataset UCF101 KTH hMDB51

Scheme SF DF SF DF SF DF
BC 64.74% 57.74% 79.00% 85.00% 34.38% 32.55%
PM 67.01% 66.22% 85.16% 88.00% 39.61% 35.10%
PM+Attr 68.99% 66.35% 82.16% 85.28% 37.12% 35.21%

we obtain even worse when adding attributes. Another
interesting observation is that when we add the background
attribute to UCF101 dataset on max-pooling feature, it fails
to train a model, which means that the network never
converges. Therefore, We only use the super-class attribute.
From the result above, it implies that the max pooling
operation may change the video frames into incredible
feature maps, which are invisible and cannot be explained by
semantic description. Consequently, it is no longer suitable
to be described by our handcrafted attributes.

5.4.3 Attribute effect on Two-stream feature

We also apply our plan to two stream model, and the results
are in Table 7.

Table 7: Result of two-stream ConvNets for datasets

Dataset UCF101 KTH HMDB51

BC 64.74% 79.00% 34.38%
TS 63.10% 79.23% 32.35%
TS+Attr 65.13% 77.63% 34.48%

In Table 7, "BC" is also for "Basic CNNs", "TS"
represents "Two Stream" and "TS+Attr" represents the Two
Stream Model with attribute supervision.

From the above table we can find out that attribute-based
supervision has positive effect on this two-stream network,
except for the KTH dataset. One possible reason may be that
our temporal input data are not very useful. Nevertheless, as
we explained previously, attributes play a supervision role
here to govern the ConvNets how to learn better. It has to
know which features should be learned or not. Two-stream
model provides with more information than single network,
therefore in two-stream network, ConvNets have more
choices at the same time, and they can easily pick up the
valid feature maps from a temporal stream or a spatial
stream or a part of them, according to the guidance by
attributes. That is the mission we expect the attribute to
accomplish.
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5.5 Analysis

As the results above show, our Attribute-Based Supervised
Deep Learning Model outperforms some basic deep learning
models, such as Deep Nets [15]. That means our way of using
attribute has indeed helped the deep learning procedure.

Our experiments demonstrate that among deep learning
methods, utilizing attribute to supervise the learning
procedure can promote the ability of Deep ConvNets further.
We feel that our performance improvement is impeded
because of two restrictions that existed in the current
scheme. Firstly, our ConvNets structure is only based on an
ordinary network, and we have not designed each layer with
careful adjustment for the certain dataset. Additionally, our
selected attributes are rather simple. We only select a small
number of category level labels to avoid lots of tagging
work. If we add more valuable attributes which depict the
action precisely and explore their best combinations, the
experimental results can be much better.

6 Conclusion

Deep learning model is popular in the field of computer
vision, and it is a practical solution for action recognition
task. In this paper, we proposed a novel semi-supervised
deep learning model, called Attribute-Based Supervised
Deep Learning Model, which redeems the drawbacks of
basic ConvNets for recognizing the realistic actions.
Attribute-Based Supervised Deep Learning Model takes
attributes of input data as a sort of known information to
supervise and guide the learning process of a convolutional
neural network. We evaluated our proposed models on three
challenging datasets, and compared the performance with
basic ConvNets methods. Experiments showed that with
only a small change to receive attribute information,
ConvNets can promote the classification execution accuracy
in various situations. Therefore, it is convincing that, with
attribute-based supervised, ConvNets can extract more
precise features and improve the performance of that action
recognition.
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