
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Learning to Hash with Optimized Anchor

Embedding for Scalable Retrieval
Yuchen Guo, Guiguang Ding, Li Liu, Jungong Han, and Ling Shao, Senior Member IEEE

Abstract—Sparse representation and image hashing are power-
ful tools for data representation and image retrieval respectively.
The combinations of these two tools for scalable image retrieval,
i.e., Sparse Hashing (SH) methods, have been proposed in recent
years and the preliminary results are promising. The core of
those methods is a scheme that can efficiently embed the (high-
dimensional) image features into a low-dimensional Hamming
space while preserving the similarity between features. Existing
SH methods mostly focus on finding better sparse representations
of images in the hash space. We argue that the anchor set utilized
in sparse representation is also crucial, which was unfortunately
underestimated by the prior art. To this end, we propose a novel
SH method that optimizes the integration of the anchors such that
the features can be better embedded and binarized, termed as
Sparse Hashing with Optimized Anchor Embedding. The central
idea is to push the anchors far from the axis while preserving
their relative positions so as to generate similar hashcodes for
neighboring features. We formulate this idea as an orthogonality
constrained maximization problem and an efficient and novel
optimization framework is systematically exploited. Extensive
experiments on five benchmark image datasets demonstrate that
our method outperforms several state-of-the-art related methods.

Index Terms—Sparse Representation, Hashing, Retrieval, S-
calability, Orthogonality, Optimization

I. INTRODUCTION

Approximate Nearest Neighbor (ANN) search has become

a fundamental paradigm in various applications, such as image

recognition and image retrieval [1], [2]. Its aim is to find some

approximate nearest neighbors for a query from a collection

of data. To cope with large-scale data, many techniques

for fast ANN search have been proposed in the past. One

popular pathway is based on trees, e.g. kd-tree [3], which

has logarithmic retrieval complexity for low-dimensional data.

However, most tree-based methods may reduce to exhaustive

linear scanning for high-dimensional data because of the

curse of dimensionality. Another pathway, called hashing [4],

represents data by a sequence of binary codes. Benefiting

This research was supported by the National Natural Science Foundation
of China Grant No. 61571269 and 61271394, the National Basic Research
Project of China Grant No. 2015CB352300, and the Royal Society Newton
Mobility Grant IE150997. (Corresponding authors: Guiguang Ding; Jungong
Han.)

Yuchen Guo and Guiguang Ding are with the School of Software, Ts-
inghua University, Beijing 100084, China. Email: yuchen.w.guo@gmail.com,
dinggg@tsinghua.edu.cn.

Li Liu and Jungong Han are with the Department of Computer and
Information Sciences, Northumbria University, Newcastle upon Tyne, NE1
8ST, UK. Email: li2.liu@northumbria.ac.uk, jungong.han@northumbria.ac.uk.

Ling Shao is with the School of Computing Sciences, University of East
Anglia, Norwich NR4 7TJ, U.K. Email: ling.shao@ieee.org.

Manuscript received XX XX, 2016.

from the binary representation, the storage can be dramatically

reduced and the search can be quite efficient, even with a large-

scale dataset [5], [6], [7], [8], [9], [10]. With proper designs,

hashing will not necessarily degrade the search accuracy. In

view of the above advantages, hashing methods have drawn

increasing attention recently from the industry and academia.

The key problem in hashing is how to embed the original

features, which are usually high-dimensional floating-point

number representations, into the low-dimensional binary Ham-

ming space while the similarity between the original features

can be preserved. Locality Sensitive Hashing (LSH) [11], as

the most notable and fundamental hashing method, adopts

random projections to generate hashcodes. Theoretically, the

Hamming distance between those hashcodes can progressively

approximate the Euclidean distance between the original fea-

tures. But in practice, very long hashcodes (say, 1, 024 bits)

are required in this approach so as to achieve satisfactory

performance. To address this issue, several learning based

methods have been proposed, such as PCA Hashing [12],

Spectral Hashing [13], and Iterative Quantization [14]. Though

better performance can be obtained, compared to LSH, these

methods still suffer from two shortcomings due to the linear

projections employed by them: 1) they may fail to preserve

the non-linear manifold structure of data; and 2) they may

achieve high precision but low recall as the feature space is

segmented so finely that data may be scatted in the Hamming

space, which leads to extremely low collision probability [15].

Alternatively, methods exploiting non-linear projections [6],

[16], [17] have gained increasing popularity due to their

superior performance. Specifically, these methods, thanks to

the non-linear projections, can better preserve the complicated

geometric structure of data, especially the manifold struc-

ture. One representative framework is called Sparse Hashing

(SH) [6], [16], [17], [18], [19], [20] since it is based on

the Sparse Coding (SC) that was successfully used in im-

age representation [21], [22], classification [23], and denois-

ing [24]. Basically, the algorithm is carried out by two forms

of transformation. First, a non-linear transformation converts

the original features to the sparse representations. Second, a

linear transformation further transfers the sparse representa-

tions generated in the previous step to the Hamming space.

Generally, non-linear SH methods are capable of overcoming

two shortcomings of the linear methods if a proper learning

strategy is deployed. However, these two problems, i.e., how

to generate effective sparse representations for hashing and

how to transform the sparse representation into the Hamming

space with data similarity preserved, still need to be solved.

In this paper, we propose a novel SH method, aiming at

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

preserving the non-linear manifold structure of the original

features in the Hamming space. In particular, motivated by

Locally Linear Embedding (LLE) [25] and Anchor Graph [17],

we learn a non-linear locality-preserving dimension reduction

function via the sparse representation of data. This non-linear

function secures similar low-dimensional representations for

neighboring points. After such an effective dimension reduc-

tion, we can easily generate binary hashcodes from the em-

bedded low-dimensional features. When learning this function,

previous works [6], [16], [17], [18], [20] only looked into

the sparse representation of data but ignored the importance

of the anchors [17] utilized in constructing the sparse rep-

resentation. We notice that the low-dimensional embedding

of the anchors has a significant impact on the hash function.

Specifically, it is discovered that pushing anchors far from

axis while preserving the geometric structure of them during

the anchor embedding usually leads to high-quality hashcodes.

We investigate this phenomenon and mathematically formulate

the implementation of this idea to an orthogonality constrained

maximization problem which optimizes the anchor embedding

with the aim to avoid generating two different hashcodes for

neighboring low-dimensional points. With such an optimiza-

tion, the locality of original features can be well preserved and

better ANN search performance can be achieved. Moreover,

we put forward an efficient learning algorithm to solve the

complicated orthogonality constrained optimization problem.

The rest of this paper is organized as follows. In Section II,

we briefly describe some preliminaries and review the related

hashing works. The proposed SHODE is introduced detailedly

in Section III. The experimental results and discussion are

given in Section IV, and we draw conclusions in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Formulation

Given a set of d-dimensional features X = [x1, ...,xn] ∈
R

d×n, we can design a hash function h(·) to generate k-

bit binary representations, i.e., hashcodes, for them as bi =
h(xi) ∈ {−1, 1}k1, such that the similarity between features

can be preserved, i.e., similar features have similar hashcodes.

This idea can be formulated as the following learning problem,

min
h

∑

i,j

sijdH(h(xi), h(xj)), s.t. C(h), (1)

where dH is the Hamming distance between hashcodes, sij is

the similarity between xi and xj , and C(h) is the constraints

applied to h, for example, we always expect the hashcodes to

be balanced (
∑

i bi = 0k) and uncorrelated (BBT = nIk).

Since it is difficult, if not impossible, to design an effective

hash function by directly converting X to hashcodes, a two-

step strategy is widely adopted [12], [13], [14], [16]. In the

first step, the original features X are projected into a k-

dimensional space as Y = [y1, ...,yn] ∈ R
k×n by a projection

function φ(·). Because we usually have k < d, this step

can be regarded as a dimension reduction step. Then, the

low-dimensional embedded representations Y are quantified

1In implementation, we can use {0, 1}. In fact, these two representations
are equivalent. So we use {−1, 1} in this paper for convenience as in [17].

TABLE I: Notations and descriptions in this paper

Notation Description Notation Description

X data matrix n #samples

Y projected matrix d #features

B binary Hashcode k #Hashcode

P projection matrix m #anchors

D anchor set p #NN

A sparse matrix t #iterations

S similarity matrix h, φ, ρ functions

R rotation matrix τ step size

into binary codes by, in most cases, the sign function as

B = [b1, ...,bn] = sign(Y), where sign(x) = 1 if x > 0 or

−1 otherwise. By doing so, the overall hash function becomes

h(·) = sign(φ(·)). In this way, learning h can be achieved by

learning φ instead. However, the sign function still makes the

learning intractable in many cases [13]. A common solution is

to remove the sign function and to further relax the learning

problem as a real-valued problem,

min
φ

∑

i,j

sijd(φ(xi), φ(xj)), s.t. C(φ). (2)

B. Linear Hashing

Several methods [13], [16], [26], [27], [28], [29] assume a

linear projection for φ, i.e., φ(x) = Px, where P ∈ R
k×d is a

linear projection matrix. After proper algebra operations and

transformations, the learning problem can be rewritten into a

simple formulation as follows:

max
P

tr(PXSXTPT) , s.t. PPT = Ik, (3)

where tr(·) is the trace function, S = [sij] is the similarity

matrix among training samples, and the orthogonal constraint

requires the selected directions to be uncorrelated. S de-

termines what kind of information is preserved depending

on the intentions of different methods. The statistics reveal

that the majority of existing works choose to preserve the

local manifold structure of data [13], [30]. After the above

assumption and operations, the problem defined in Eq. (3)

can be easily solved. However, since only linear projections

are used, these methods may still fail to preserve the similarity.

C. Sparse Hashing

To preserve the non-linear manifold structure, Sparse Hash-

ing [6], [16], [17], [18], [20], which learns a non-linear φ,

has attracted considerable attention. Given a set of anchors

D = [d1, ...,dm] ∈ R
d×m, a sparse presentation A =

[a1, ..., an] ∈ R
m×n is constructed by A = ρ(X,D). This

can be done by conventional sparse reconstruction [31] as

min
A

‖X−DA‖2F +R(A), s.t. C(A), (4)

where R(A) denotes regularization terms, such as ℓ1-norm

regularization for sparsity, and other terms like Graph regu-

larization [32], and C(A) is a constraint on A. Obviously,

this method is non-linear. In [19], [33], such schemes are

employed, and the sparse codes are then encoded into a set

of integers which are composed of the nonzero indices. This

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

index set sacrifices the advantages of efficient storage and

speedy binary code matching. Alternatively, in [20], Zhu et

al. proposed an encoding method in which the binary codes

are generated by setting nonzero elements in A as 1 and the

others as 0. The problem of this method lies in its incapability

of generating compact and balanced representations because of

the sparsity of A, thereby degrading the quality of hashcodes.

In addition, Ye et al. [34] proposed the Compact Structure

Hashing that combines the linear projection learning in Eq.

(3) and sparse reconstruction in Eq. (4) in a unified objective

function to simultaneously exploits the non-linear structure of

data and finds the optimal projection function. However, this

method intrinsically adopts a linear projection to the Hamming

space such that it still suffers from the low-recall problem.

A possible way of solving this problem is the usage of the

Anchor Graph [17], in which each anchor is either randomly

sampled from the data or the cluster centroids after applying

a data clustering algorithm, such as Kmeans. The sparse

representation can be build in the Anchor Graph as follows:

aji =

{

exp(−‖xi−dj‖
2/σ2)∑

j′∈N(xi)
exp(−‖xi−dj′‖

2/σ2) , ∀j ∈ N (xi)

0, otherwise
, (5)

where N (xi) is the p-NN of xi in D and σ is the bandwidth

parameter. The obtained sparse representation is claimed to

preserve the similarity between data. Obviously, ai has at

most p nonzero elements, implying that a is sparse. Finally,

φ(·) is constructed by projecting the sparse representation to

a low-dimensional space, i.e., φ(x) = Pρ(x,D). To preserve

the similarity, Liu et al. [17] proposed the Anchor Graph

Hashing that constructs P by solving an eigenvalue problem

on the Anchor Graph. Lin et al. [16] proposed the Compressed

Hashing in which the sampled pij from N (0, 1/k) can con-

struct a projection satisfying Restricted Isometry Property [35]

in Compressed Sensing theory [36]. Similarly, Shen et al. [6]

proposed an inductive method to construct P. Zhu et al. [37]

proposed a sparse embedding and least variance encoding

approach to hashing, which constructs P by solving a recon-

struction problem and adjusts the projected representation to

minimize the variance for preserving similarity. Even though

promising results have been obtained, how to design effective

ρ and P is still an open issue, which is the focus of this paper.

Moreover, it is noticed that in recent years many works

have attempted to combine the deep convolutional neural

network [38] with hashing, i.e., deep hashing [39], [40],

[41], [42], [43]. For example, Liong et al. [39] proposed a

deep hashing method in which the output of the networks is

required to preserve the supervised similarity. Lai et al. [40]

proposed a piece-wise function for the network to address

the discrete optimization problem in deep hashing. Zhang

et al. [41] presented a network using similarity regularized

triplet loss for person re-identification. However, it should be

pointed out that these deep hashing approaches should be

categorized into the supervised hashing methods in which

supervised knowledge (e.g., label information) is required

for model training. As is known to all, collecting sufficient

supervised knowledge is expensive in many applications [44].

On the contrary, this paper, and many SH methods focus on

the unsupervised hashing which only exploits the intrinsic

unsupervised information of data and thus they are free from

the lack of the supervised knowledge.

III. THE PROPOSED METHOD

Our method follows the framework of SH. Firstly, we

construct a sparse representation for the original features in

a non-linear manner. Secondly, we linearly project the sparse

representation into the low-dimensional space. Thirdly, we

obtain hashcodes from low-dimensional embedding using the

sign function. The special properties of our projection are 1)

the low-dimensional embedding preserves the local manifold

structure of original data, and 2) the similarity structure is

preserved as well after the sign quantization. The following

two subsections will elaborate on them one by one. Since all

involved steps take data similarity preservation into account,

the obtained hashcodes, without saying, will naturally preserve

the similarity relationship of original features, thus resulting

in superior ANN search and image retrieval performance.

A. Locality-preserving Dimension Reduction

In this subsection, we will provide an effective method for

non-linear dimension reduction based on Sparse Coding which

can well preserve the non-linear local manifold structure.

Locality-preserving dimension reduction aims to find low-

dimensional embedding which can preserve the neighborhood

structure or manifold structure of the original data. One

representative and seminal work is Locally Linear Embedding

(LLE) [25] which can find a linear embedding for non-

linear manifold. However, LLE does not provide an explicit

dimension reduction function for the out-of-sample data (data

which is not in the training set). Another celebrated method is

called Locality Preserving Projections (LPP) [30] which learns

an explicit linear projection function instead. Despite its ability

of easily addressing the out-of-sample data, the linear function

adopted by LPP may perform worse than the non-linear ones.

Although LLE does not provide the projection function for

out-of-sample data, it still reveals an important property of

the non-linear manifold: local linearity. That is, the manifold

structure is locally linear even though it is non-linear globally.

Such a property is also utilized in [45], [46], which can be

further interpreted below. Given some points D = [d1, ...,dm]
and their corresponding low-dimensional embeddings Y =
[y1, ...,ym] obtained by non-linear methods like LLE, the low-

dimensional embedding y for a new data point x is given by

y←
∑

i∈N (x)

aiyi, (6)

where N (x) is the p-NN of x in D, and ai is the correspond-

ing weight. One straightforward way to compute ai is based on

Eq. (5). But it should be noticed that such a formulation only

defines the weight and does not reflect the relative position

between x and N (x). Therefore, the embedding y relying on

the weight may lose important information. Therefore, to make

use of the local linearity better, in this paper, we propose to

generate a by a sparse reconstruction procedure as follows:

min
a
‖x−Da‖2F , s.t. ai ≥ 0, aj = 0 if j /∈ N (x). (7)

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

(a) by Eq. (5) (b) by Eq. (7)

Fig. 1: Sparse representation by different methods.

Here, we require a to be nonnegative so that it can serve as

“weight”. Moreover, only N (x) is used to reconstruct x for

preserving the locality. Obviously, the solution a is sparse in

the sense that it has at most p nonzero elements (p≪ m).
By combining Eq. (6) and Eq. (7), the overall dimension

reduction can be summarized as follows: 1) An anchor set

D is generated from training data by K-means clustering; 2)

We find the locality preserving embedding Y for it by a non-

linear method, called Laplacian Eigenmap [47]. As this step

is only conducted for the anchor set, there is no need to learn

a projection function for the out-of-sample data; 3) For a new

data point x, the sparse representation a is obtained by solving

Eq. (7); 4) The low-dimensional embedding y is obtained by

Eq. (6). As a result, the projection function P in our method

can be considered as the low-dimensional embedding Y of

the anchor set. Due to the non-linearity in Eq. (7), the entire

procedure is non-linear as in LLE. Meanwhile, it also has an

explicit projection function (Eq. (6) and (7)) for out-of-sample

data. Hence, it can be concluded that our method combines the

advantages of LLE and LPP but gets rid of their shortcomings.

Seen from Eq. (6) and Eq. (7), two points that are close

in the original feature space will also have similar low-

dimensional representations after the projection, because they

will choose similar p-NN anchor sets from D. In other words,

these two points will finally lie very close to the embeddings

of their corresponding anchor sets, which are also similar.

Here, we discuss the difference between our sparse repre-

sentation constructed by Eq. (7) and the widely used version

expressed in Eq. (5). In principle, representations based on Eq.

(5) fail to consider the relative position of x and N (x) while

using Eq. (7) can achieve this goal. An intuitive illustration

is shown in Figure 1, in which x1 and x2 have the same p-

NN anchors d1 and d2. If we adopt Eq. (5), they will end up

with the same sparse representation (shown in bracket) because

they have the same distances to the anchors, and the same low-

dimensional representation because only distance to anchors

is considered, even though they might be different. On the

contrary, using Eq. (7) will generate the similar representations

but with different values, which is more reasonable in reality.

The above analysis clearly states that Eq. (7) and Eq. (6)

can lead to non-linear locality-preserving dimension reduction.

Then, how to solve Eq. (7) becomes the next problem. Since

we are aware of that some elements aj are definitely zero if

Good

Bad

(a) Original embedding

Rotation

(b) Optimized embedding

Fig. 2: The influence of anchor embedding.

j /∈ N (x), it is possible to simplify Eq. (7) by discarding zero

elements and only focusing on the possibly non-zero ones:

min
ã

‖x− D̃ã‖2F s.t. ãi ≥ 0, (8)

where D̃ ∈ R
d×p is the p-NN of x in D and ã ∈ R

p. Since D̃

contains mixed signs and ã is constrained to be nonnegative,

Eq. (8) is actually a Semi-nonnegative Matrix Factorization

(SNMF) problem, which has been extensively studied in [48].

An effective and efficient optimization algorithm for Eq. (8)

consists of two steps: 1) ã is randomly initialized by non-

negative values, and 2) the following multiplicative updating

rule is iteratively applied until ã arrives at a stationary point,

ãi ← ãi

√

(D̃Tx)+i + [(D̃T D̃)−ã]i

(D̃Tx)−i + [(D̃T D̃)+ã]i
, (9)

where M+ = 1
2 (|M| + M) and M− = 1

2 (|M| −M). The

above updating rule guarantees a local convergence of the

optimization. Please refer to [48] for more details. In our

experiments, we find that 10 to 20 iterations can lead to

satisfactory performance because p is usually quite small such

that the optimization problem is simple enough in most cases.

B. Optimized Anchor Embedding

Until now, we have introduced the non-linear locality-

preserving dimension reduction method, which can exploit the

non-linear manifold structure and has an explicit function for

out-of-sample data. However, there is a sign function between

the low-dimensional representation and the hashcode. In order

to preserve manifold structure in the final hashcodes, it is

necessary to further consider the influence of the sign function.

From Eq. (6) and Eq. (7) in the previous subsection, it can

be observed that a point will fall close to the low-dimensional

embedding of its p-NN anchors. Hence, the embedding of the

anchor set is certainly influential on the quality of hashcodes.

We take Figure 2(a) as an example to further explain it. In

this figure, red triangles represent embeddings of anchors.

The surrounding circles represent points that lie close to the

corresponding anchors2. In good cases, near points in a circle

are in the same quadrant so that they will obtain the same

2We use circles for the convenience of illustration. The real-world situation
is surely more complicated but intrinsically it has the same problem.

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

hashcodes after that sign function. In this way, the similarity

between data can be preserved. On the contrary, in bad cases,

points in a circle may fall into different quadrants resulting in

different hashcodes after applying the sign function. In such

situations, the similarity is no longer preserved in hashcodes.

To avoid the bad cases, we need to adjust the embedding of the

anchor set such that it can better preserve the similarity after

the sign function while the initial properties in the embedding

are retained, as illustrated in Figure 2(b). Previous SH method-

s [6], [16], [17], [18], [20] mostly ignored the influence of the

anchor set but focused on the sparse representation only. From

the above discussion, the conclusion is clear: the anchor set

embedding plays an important role in SH methods. Next, we

continue to introduce how to optimize the anchor embedding.

From Figure 2, we can observe that the bad cases usually

happen when the embeddings of anchors lie close to the

coordinate axis because such a point by nature is likely to

fall into the other side of axis and thereby obtain different

hashcodes after the sign function. To prevent it, our intuitive

idea is to push the close-to-axis anchors far from axis while

preserving the geometric structure. We carry out a two-step

scheme here to implement our idea, in which an anchor-

embedding initialization step is followed by an anchor rotation

step. In our scheme, the initial embedding of anchors Y is

obtained by means of Laplacian Eigenmap [47] which solves

the optimization problem below,

min
Y

tr(YLYT), s.t. YMYT = Ik,YM1m = 0, (10)

where SD ∈ R
m×m is a pD-NN graph constructed from

D, M is a diagonal matrix with elements Mii =
∑

j Sij ,

and L = M− SD is the Laplacian of the graph. This prob-

lem can be transferred to a generalized eigenvalue problem

Lv = λMv, and can be solved by selecting the eigenvectors

corresponding to the smallest k positive eigenvalues. After the

above initialization step, it is very likely that many anchor

embeddings are close to axis, which is harmful for hashing

as we have explained before. In the second step of our

scheme, we apply a rotation to Y subject to a condition

that the optimized anchor embedding Ỹ after rotation is also

the solution to Eq. (10). To do so, one good choice is the

exploitation of an orthogonal rotation matrix R ∈ R
k×k

(RRT = Ik and RTR = Ik), and set Ỹ = RY. Because

we have tr(RYLYTRT) = tr(YLYT), RYMYTRT =
RIkR

T = Ik, and RYM1m = R0 = 0, Ỹ turns out to be

also a solution of Eq. (10), meaning that the original geometric

structure in Y is perfectly preserved after a rotation operation.

At this point, our goal becomes finding an orthogonal

rotation matrix R for Y such that fewer points after the

rotation operation (i.e., in RY) lie close to the axis, which

can be formulated as maximizing the total distance between

RY and axis below

max
R

O =
∑

ij

|(RY)ij |
r, s.t. RRT = RTR = Ik. (11)

In fact, there is still an argument: a rotation can push a close-

to-axis anchor far from the axis, and meanwhile, it can also

make a far-from-axis anchor closer to the axis. This is true,

but the problem is not that vital. Seen from Figure 2, pushing

Algorithm 1 Learning SHODE

Input: Training features X; Parameters k, m, pD;

Output: Anchor set D; Projection P;

1: D = Kmeans(X,m);
2: Construct pD-NN graph for D;

3: Compute SD , M and L;

4: Solve Eq. (10) for initial Y;

5: Initialize R0 by a random orthogonal matrix, t = 0;

6: repeat

7: Compute upgradient Ut by Eq. (12);

8: Compute skew-symmetric matrix Wt by Eq. (13);

9: Update Rt+1 by Eq. (15), t = t+ 1;

10: until Convergence.

11: Return D and P = RtY;

a close-to-axis anchor far is more important, because a subtle

change in a close-to-axis anchor can significantly reduce the

number of points falling into different quadrants which results

in different hashcodes. However, even a huge change in a far-

from-axis anchor may not make any difference as long as it

is not very close to the axis. In view of this observation, we

set the power parameter r ∈ (0, 1) such that the change in the

smaller entries has more effect on O than the larger entries.

Next, we need to solve this orthogonality constrained op-

timization problem (11). The basic idea is to construct a

gradient flow in the feasible set which keeps increasing O
until it reaches a stationary point [49]. Specifically, we adopt

an iterative algorithm, in which the rotation R is randomly

initialized. At the t-th iteration, the upgradient of O at Rt is:

Ut = −DO(Rt) = −r · sign(RtY) ◦ |RtY|
r−1YT , (12)

where ◦ denotes element-wise multiplication between two

matrices, |·|r−1 refers to the element-wise power operation for

a matrix3. A traditional gradient method will move the current

point along this direction with a proper step size to obtain

the next point. However, the new point will fail to satisfy

the constraint, i.e., it is not in the feasible set. Instead, the

upgradient is first transformed to a skew-symmetric matrix

Wt = UtR
T
t −RtU

T
t . (13)

We use a Crank-Nicolson-like scheme [50] for the next point:

Rt+1 = Rt − τWt(
Rt +Rt+1

2
), (14)

where τ is a step size satisfying Armijo-Wolfe conditions [51].

Solving the above equation offers us the updating rule below:

Rt+1 = (Ik +
τ

2
Wt)

−1(Ik −
τ

2
Wt)Rt. (15)

The above rule is called Cayley transformation. Considering

Wt is a skew-symmetric matrix, i.e., WT
t = −Wt, the matrix

Ik+
τ
2Wt is definitely invertible and Rt+1 is orthogonal. Such

an updating rule will increase the value of O until conver-

gence. Please refer to Lemma 3 in [49] for the detailed proof.

The overall learning algorithm for SHODE is summarized

3Because r ∈ (0, 1), a numeric problem may happen if (RY)ij = 0. So

in the implementation, we add a small number ǫ (say, 10−6) to |(RY)ij |.

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

TABLE II: The statistics of datasets.

#database #training #query #feature

CIFAR-10 50k 10k 10k 512

MNIST 60k 10k 10k 784

NUS-WIDE ∼ 184k 10k 1, 866 500

SIFT1M 1m 10k 10k 128

CIFAR-100 50k 10k 10k 1, 024

in Algorithm 1, which at last outputs two key parts for the

hashing function φ: the anchor set D and the projection P.

For a new data point x, we first find p-NN from D and

obtain D̃. Afterwards, we generate sparse representation a by

solving Eq. (8). Next, we obtain a low-dimensional embedding

y = Pa. Finally, the binary hashcode is given by h = sign(y).

C. Complexity Analysis

The training time of Algorithm 1 basically consists of 3

parts. The first part is the K-means in line 1. Suppose Kmeans

stops at the t1-th iteration, the time complexity is O(nmdt1).
The second part is to seek the initial embedding described

in lines 2 to 4. Precisely, constructing a pD-NN graph needs

O(m2d + mpD), and solving Eq. (10) requires O(mkpDt2)
if the Lanczos algorithm [52] is adopted, where t2 means

the iteration number which is usually rather small [53]. The

third part is learning R, which can be further decomposed

into computing Ut by Eq. (12) (O(mk2)), computing Wt

by Eq. (13) (O(k3)), and computing Rt+1 by Eq. (15)

(O(k3)). Suppose the iteration depicted from lines 6 to 10

converges at t3, the total time complexity for learning R is

O((mk2 + k3)t3). Adding them up, the overall complexity

will be O(nmdt1 +m2d+mpD +mkpDt2 +(mk2+ k3)t3).
Given a new data point x, the complexity to generate hash-

codes is as follows. Searching p-NN from D needs O(pmd).
Solving Eq. (8) via Eq. (15) requires O((pd + p2d + p2)t),
where t is the number of iterations. And generating the low-

dimensional representation by Eq. (6) has the complexity of

O(pk). Therefore, the overall complexity is O(pm + (pd +
p2d+p2)t+pk). Because t and p are usually small in practice,

this complexity is comparable to the method in [16], [17].

IV. EXPERIMENTS

A. Datasets, Metrics, Baselines and Details

To demonstrate the effectiveness of SHODE, we adopt five

widely used benchmark datasets for evaluation. The first one

is CIFAR-10 [54] consisting of 60, 000 images which are

manually divided into 10 classes each with 6, 000 images.

Each image is represented by a 512-dimensional GIST [55]fea-

ture. The second one is MNIST which has 70, 000 images of

handwritten digits from ‘0’ to ‘9’. The 784-dimensional gray

scale feature is utilized to represent each image. The third

dataset is NUS-WIDE [56] with 186, 577 images and each

image is annotated by at least one of ten classes. Each image is

represented by a 500-dimensional bag-of-visual-words feature

based on SIFT [57]. The forth dataset is SIFT1M [12] which

contains more than 1 million SIFT points. The fifth dataset

is CIFAR-100 which is similar to CIFAR-10. It has 100

classes and each class has 600 images. For CIFAR-100, we

adopt the deep features for images which are extracted by the

ILSVRC2014 challenge winner GoogLeNet [58] pre-trained

on ImageNet. Specifically, we adopt the outputs of the last

fully-connected layer as the feature for each image which

is a 1, 024-dimensional vector. For CIFAR-10, MNIST, and

CIFAR-100, 10, 000 samples are randomly selected as the

query set and the remaining samples form the database. For

NUS-WIDE, 1% (1, 866) images are randomly sampled as the

query set, while the remaining images make up the database.

We refer to TableII for more detailed statistics of them.

We adopt two retrieval procedures, i.e., Hamming rank-

ing and hash lookup. Hamming ranking first computes the

Hamming distance between the query and all points in the

database and then sorts points by the distance. Points with

smaller distances are first returned. Hamming ranking needs a

linear scanning of the database. But since only bit operations

are required, it is usually very fast in practice. Hash lookup

emphasizes more on retrieval speed because it has constant

query time [17] with a single hash table. Following [13], [17],

we search within Hamming radius 2 to retrieve neighbors for

each query. For a Hamming ranking, we employ Precision-

recall curve, Precision curve and Recall curve as evaluation

metrics, in which the former shows the precision at different

recall levels, the middle reflects the precision level w.r.t. the

number of retrieved samples, and the latter reflects the recall

level w.r.t. the number of retrieved samples. On top of them,

mean Average Precision (mAP) defined as the area under

Precision-recall curve is also used. For hash lookup, we use

F-measure and Recall within Hamming radius 2 as metrics,

in which the former is the harmonic average of precision and

recall. For CIFAR-10, MNIST, NUS-WIDE and CIFAR-100,

images sharing class labels with the query are considered as

true positives. For SIFT1M, following [6], [59], the closest

2 percent of database points to the query measured by the

Euclidean distance are defined as the true positives of a query.

We employ the following unsupervised hashing methods as

baselines, Anchor Graph Hashing (AGH) [17], Compressed

Hashing (CH) [16], Compact Structure Hashing (CSH) [34],

Harmonious Hashing (HamH) [59], Inductive Manifold Hash-

ing (IMH) [6] with LE and ITQ, Isotropic Hashing (IsoH) [60],

Iterative Quantization (ITQ) [14], Sparse Embedding and

Least Variance Encoding (SELVE) [37], and Spectral Hashing

(SpH) [13]. For Ch, CSH, and HamH, we implemented them

ourselves. And we used the author-provided codes for the other

methods. IMH, AGH, and CH, as well as Sparse Hashing

methods like SHODE, rely on two parameters. The first is the

size of the anchor set, i.e., m, and the second is p for searching

p-NN from anchor set to construct sparse representation a for

a new data point. For a meaningful comparison, we perform

grid search (m ∈ [100 : 100 : 2000] and p ∈ [1 : 10]) and

report the best results of them. For the other baselines like

ITQ, we use the default settings provided by their authors since

most of them do not have important model parameters. More-

over, because this paper focuses on the unsupervised setting

where no supervision is provided, thereby not comparing it to

the supervised hashing methods, like Kernelized Supervised

Hashing [61] and deep hashing methods shown in Section II.

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

8 16 24 32 40 48 56 64 96
0

0.05

0.1

0.15

0.2

0.25

Code length

F
−

m
e

a
s
u

re

SHODE

AGH

CH

CSH

HamH

IMH

IsoH

ITQ

SELVE

SpH

(a) F-measure in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.1

0.2

0.3

0.4

0.5

Code length

R
e

c
a

ll

(b) Recall in Hamming 2

8 16 24 32 40 48 56 64 96
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Code length

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(c) mean Average Precision

0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

Recall

P
re

c
is

io
n

(d) Precision-recall curve, 64 bits

0 1000 2000 3000 4000 5000
0.15

0.2

0.25

0.3

0.35

0.4

#Retrieved

P
re

c
is

io
n

(e) Precision curve, 64 bits

0 5000 10000
0

0.1

0.2

0.3

0.4

#Retrieved

R
e

c
a

ll

(f) Recall curve, 64 bits

Fig. 3: Results on CIFAR-10 dataset.

8 16 24 32 40 48 56 64 96
0

0.1

0.2

0.3

0.4

0.5

0.6

Code length

F
−

m
e

a
s
u

re

SHODE

AGH

CH

CSH

HamH

IMH

IsoH

ITQ

SELVE

SpH

(a) F-measure in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.2

0.4

0.6

0.8

Code length

R
e

c
a

ll

(b) Recall in Hamming 2

8 16 24 32 40 48 56 64 96

0.2

0.4

0.6

0.8

Code length

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(c) mean Average Precision

0 0.5 1

0.2

0.4

0.6

0.8

Recall

P
re

c
is

io
n

(d) Precision-recall curve, 64 bits

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

#Retrieved

P
re

c
is

io
n

(e) Precision curve, 64 bits

0 5000 10000
0

0.2

0.4

0.6

0.8

#Retrieved

R
e

c
a

ll

(f) Recall curve, 64 bits

Fig. 4: Results on MNIST dataset.

When compared to baselines, we consistently use the fol-

lowing settings. To generate the anchor set, we run K-means

and stop at the 100th iteration, and the anchor set size is

m = 1, 000. To generate initial embedding Y by Laplacian

Eigenmap, we set pD = 5 with the Heat kernel. In Algorithm

1, the power parameter r is set to 0.5, p is set to 3 for

constructing sparse representation a, and when solving ã

iteratively by Eq. (8), we terminate at the 20th iteration. The

effect of two key parameters, m and p, will be shown later.

Experiments are conducted on a computer with Intel Core

i7-2600 CPU and 16GB RAM. All numeric results reported

in this paper are the average values of 25 repeated runs.

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

8 16 24 32 40 48 56 64 96
0

0.1

0.2

0.3

0.4

0.5

Code length

F
−

m
e

a
s
u

re

SHODE

AGH

CH

CSH

HamH

IMH

IsoH

ITQ

SELVE

SpH

(a) F-measure in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.1

0.2

0.3

0.4

0.5

Code length

R
e

c
a

ll

(b) Recall in Hamming 2

8 16 24 32 40 48 56 64 96
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Code length

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(c) mean Average Precision

0 0.5 1

0.35

0.4

0.45

Recall

P
re

c
is

io
n

(d) Precision-recall curve, 64 bits

0 1000 2000 3000 4000 5000
0.35

0.4

0.45

0.5

#Retrieved

P
re

c
is

io
n

(e) Precision curve, 64 bits

0 20000 40000
0

0.1

0.2

0.3

0.4

#Retrieved

R
e

c
a

ll

(f) Recall curve, 64 bits

Fig. 5: Results on NUS-WIDE dataset.

8 16 24 32 40 48 56 64 96
0

0.05

0.1

0.15

0.2

0.25

0.3

Code length

F
−

m
e

a
s
u

re

SHODE

AGH

CH

CSH

HamH

IMH

IsoH

ITQ

SELVE

SpH

(a) F-measure in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.2

0.4

0.6

0.8

Code length

R
e

c
a

ll

(b) Recall in Hamming 2

8 16 24 32 40 48 56 64 96
0.1

0.2

0.3

0.4

0.5

Code length

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(c) mean Average Precision

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
re

c
is

io
n

(d) Precision-recall curve, 64 bits

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

#Retrieved

P
re

c
is

io
n

(e) Precision curve, 64 bits

0 20000 40000
0

0.1

0.2

0.3

0.4

0.5

#Retrieved

R
e

c
a

ll

(f) Recall curve, 64 bits

Fig. 6: Results on SIFT1M dataset.

B. Results and Discussions

The results on five datasets are shown in Figures 3 to

7 respectively. It can be observed that SHODE significantly

outperforms the baselines. Besides, the results also reveal the

following important points. 1) SHODE and IMH achieve the

best performance, especially when measured by F-measure

with long hashcodes. This is because they adopt non-linear

projection which can better preserve the manifold structure. In

addition, their non-linear function can avoid over-segmentation

of space as in linear methods like ITQ, which increases

the collision probability in the hashtable. Thus, they can

retrieve more points (high recall) with high precision, which

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

8 16 24 32 40 48 56 64 96
0

0.05

0.1

0.15

0.2

0.25

Code length

F
−

m
e

a
s
u

re

SHODE

AGH

CH

CSH

HamH

IMH

IsoH

ITQ

SELVE

SpH

(a) F-measure in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.2

0.4

0.6

0.8

Code length

R
e

c
a

ll

(b) Recall in Hamming 2

8 16 24 32 40 48 56 64 96
0

0.05

0.1

0.15

0.2

0.25

Code length

m
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

(c) mean Average Precision

0 0.5 1
0

0.1

0.2

0.3

0.4

Recall

P
re

c
is

io
n

(d) Precision-recall curve, 64 bits

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

#Retrieved

P
re

c
is

io
n

(e) Precision curve, 64 bits

0 5000 10000
0

0.2

0.4

0.6

0.8

1

#Retrieved

R
e

c
a

ll

(f) Recall curve, 64 bits

Fig. 7: Results on CIFAR-100 dataset.

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

m (× 100)

m
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

MNIST
SIFT1M

(a) Effect of m (p = 3)

1 2 3 4 5 6 7 8 9 10 50
0.17

0.18

0.19

0.2

0.21

0.22

p

m
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

CIFAR−10
CIFAR−100

(b) Effect of p (m = 1, 000)

0 50 100 150 200
2.9

2.95

3

3.05

3.1

3.15

3.2

#iterations

O
b

j.
 V

a
lu

e
 (×

1
0

3
)

MNIST @ 32 bits

(c) Convergence study

0 10 20 30 40 50 60 70 80 90 100
0.35

0.4

0.45

#iteration

m
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

NUS−WIDE
SIFT1M

(d) mAP w.r.t. #iteration

Fig. 8: Effects on parameters (all under 32 bits).

highlights the advantage of SH. 2) SHODE takes the influence

of anchors on hashcodes into consideration and finds the op-

timal embedding of anchors, thereby improving the quality of

hashcodes. In comparison with other Sparse Hashing methods

that completely neglect the effect of anchor embedding, e.g.,

IMH and AGH, our performance is much better than theirs.

In addition, to evaluate the significance of the improvements

by SHODE over the other baseline methods, we perform

paired-sample t-test on all datasets with different hashcode

length. In our experiment, we perform 25 repeated runs for

each hashcode length with random data split and all methods

follow the same data split. For each method, we take the

corresponding mAP values of 25 runs as samples from its

mAP distribution, and compare them between algorithms for

the significant tests. The significance level is set to 0.01 as

a typical value. The results show that the p-value in almost

all significance tests between SHODE and the other baseline

methods is smaller than 10−7, which is far less than the sig-

nificance level 0.01, indicating that the improvements gained

by SHODE over the baselines are statistically significant.

The effects of m and p on system performance are shown

in Figures 8(a) and 8(b) respectively. Seen from the results,

on the one hand, if m is too small, the non-linear manifold

cannot be well preserved. On the other hand, increasing m can

help to improve the performance in the beginning but it will

be saturated at a certain point, which means further increase

of m after this point does not improve the performance that

much. Differently, varying value p within a certain range

(e.g., p < 20) does not seem to influence the performance

dramatically in the sense that the p-mAP curve looks like a

flat line. However, if p is too large (say, 50), anchors not

close to data will be selected to compute a, which will break

the locality and decrease the performance. Figure 8(c) shows

the objective function value in Eq. (11) w.r.t. the number of

iterations. We can observe the objective function can increase

steadily with more iterations and will converge within 100

iterations, which validates the effectiveness of Algorithm 1.

Figure 8(d) plots the mAP w.r.t. the number of iterations

in Algorithm 1. It can be observed that mAP value keeps

increasing with more iterations until the algorithm converges.

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

In addition, there is an important result we need to mention

that the mAP of SHODE at iteration 0 is much worse than the

optimal mAP. In fact, at iteration 0, the anchor embedding is

not optimized at all. This phenomenon demonstrates that 1)

the anchor embedding is indeed important for sparse hashing

and optimizing the embedding of anchors does lead to higher

hashing quality, and 2) with better anchor embedding, SHODE

performs better, which is also the motivation of this paper.

V. CONCLUSION

In this paper, we proposed a novel Sparse Hashing method,

namely SHODE, for scalable retrieval. Based on the sparse

representation, a non-linear locality-preserving dimension re-

duction method was presented. Moreover, we discovered the

importance of the anchor embedding for Sparse Hashing

and proposed a novel method to find the optimized anchor

embedding. An efficient learning algorithm was given for op-

timization. Extensive experiments on five benchmark datasets

have verified our motivation and the superiority of SHODE.

REFERENCES

[1] X. Yang, X. Qian, and T. Mei, “Learning salient visual word for scalable
mobile image retrieval,” Pattern Recognition, vol. 48, no. 10, pp. 3093–
3101, 2015.

[2] X. Yang, X. Qian, and Y. Xue, “Scalable mobile image retrieval by
exploring contextual saliency,” IEEE Trans. Image Processing, vol. 24,
no. 6, pp. 1709–1721, 2015.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1977.

[4] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality
search via collective matrix factorization hashing,” IEEE Trans. Image

Processing, vol. 25, no. 11, pp. 5427–5440, 2016.

[5] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via
probability-based semantics-preserving hashing,” IEEE Trans. Cybernet-

ics, vol. DOI: 10.1109/TCYB.2016.2608906, 2017.

[6] F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang, and H. T.
Shen, “Hashing on nonlinear manifolds,” IEEE Trans. Image Processing,
vol. 24, no. 6, pp. 1839–1851, 2015.

[7] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han, “Sequential
discrete hashing for scalable cross-modality similarity retrieval,” IEEE

Trans. Image Processing, vol. 26, no. 1, pp. 107–118, 2017.

[8] X. Lu, X. Zheng, and X. Li, “Latent semantic minimal hashing for image
retrieval,” IEEE Trans. Image Processing, vol. 26, no. 1, pp. 355–368,
2017.

[9] X. Li, Q. Guo, and X. Lu, “Spatiotemporal statistics for video quality
assessment,” IEEE Trans. Image Processing, vol. 25, no. 7, pp. 3329–
3342, 2016.

[10] Y. Guo, G. Ding, X. Jin, and J. Wang, “Learning predictable and
discriminative attributes for visual recognition,” in Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp.
3783–3789.

[11] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Annual IEEE Symposium

on Foundations of Computer Science, 2006, pp. 459–468.

[12] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716, 2012.

[13] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances

in Neural Information Processing Systems, 2008, pp. 1753–1760.

[14] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, 2013.

[15] W. Liu, C. Mu, S. Kumar, and S. Chang, “Discrete graph hashing,” in
Advances in Neural Information Processing Systems=, 2014, pp. 3419–
3427.

[16] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li, “Compressed hashing,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 446–451.

[17] W. Liu, J. Wang, S. Kumar, and S. Chang, “Hashing with graphs,” in
Proceedings of the 28th International Conference on Machine Learning,
2011, pp. 1–8.

[18] T. Ge, Q. Ke, and J. Sun, “Sparse-coded features for image retrieval,”
in British Machine Vision Conference, 2013.

[19] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang, “Sparse multi-
modal hashing,” IEEE Trans. Multimedia, vol. 16, no. 2, pp. 427–439,
2014.

[20] X. Zhu, Z. Huang, H. Cheng, J. Cui, and H. T. Shen, “Sparse hashing
for fast multimedia search,” ACM Trans. Inf. Syst., vol. 31, no. 2, p. 9,
2013.

[21] C. L. J. W. D. Zhang, J. Han and X. Li, “Detection of co-salient objects
by looking deep and wide,” International Journal of Computer Vision,
vol. 120, no. 2, pp. 215–232, 2016.

[22] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background
prior-based salient object detection via deep reconstruction residual,”
IEEE Trans. Circuits Syst. Video Techn., vol. 25, no. 8, pp. 1309–1321,
2015.

[23] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” in Advances in Neural Information Processing

Systems, 2008, pp. 1033–1040.
[24] Y. Guo, G. Ding, J. Zhou, and Q. Liu, “Robust and discriminative

concept factorization for image representation,” in Proceedings of the 5th

ACM on International Conference on Multimedia Retrieval, Shanghai,

China, June 23-26, 2015, 2015, pp. 115–122.
[25] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by

locally linear embedding,” Science, 2000.
[26] L. Chen, D. Xu, I. W. Tsang, and X. Li, “Spectral embedded hashing

for scalable image retrieval,” IEEE Trans. Cybernetics, vol. 44, no. 7,
pp. 1180–1190, 2014.

[27] J. Wang, O. Kumar, and S. Chang, “Semi-supervised hashing for scalable
image retrieval,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2010, pp. 3424–3431.
[28] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple infor-

mation sources,” in Proceeding of the 34th International ACM SIGIR

Conference on Research and Development in Information Retrieval,
2011, pp. 225–234.

[29] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing
for efficient multimedia search,” in ACM Multimedia Conference, 2013,
pp. 143–152.

[30] X. He and P. Niyogi, “Locality preserving projections,” in Advances in

Neural Information Processing Systems, 2003, pp. 153–160.
[31] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding

algorithms,” in Advances in Neural Information Processing Systems,
2006, pp. 801–808.

[32] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative
matrix factorization for data representation,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 33, no. 8, pp. 1548–1560, 2011.
[33] A. Cherian, “Nearest neighbors using compact sparse codes,” in Pro-

ceedings of the 31th International Conference on Machine Learning,
2014, pp. 1053–1061.

[34] R. Ye and X. Li, “Compact structure hashing via sparse and similarity
preserving embedding,” IEEE Trans. Cybernetics, vol. 46, no. 3, pp.
718–729, 2016.

[35] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[36] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,

vol. 52, no. 4, pp. 1289–1306, 2006.
[37] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least variance

encoding approach to hashing,” IEEE Trans. Image Processing, vol. 23,
no. 9, pp. 3737–3750, 2014.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems, 2012, pp. 1106–1114.
[39] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing

for compact binary codes learning,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 2475–2483.
[40] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning

and hash coding with deep neural networks,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 3270–3278.
[41] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable

deep hashing with regularized similarity learning for image retrieval
and person re-identification,” IEEE Trans. Image Processing, vol. 24,
no. 12, pp. 4766–4779, 2015.

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

[42] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing
for fast image retrieval,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2016.
[43] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised

hashing with pairwise labels,” in Proceedings of the Twenty-Fifth In-

ternational Joint Conference on Artificial Intelligence, 2016, pp. 1711–
1717.

[44] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” Tech. Rep., 2011.

[45] M. Belkin and P. Niyogi, “Using manifold stucture for partially labeled
classification,” in Advances in Neural Information Processing Systems,
2002, pp. 929–936.

[46] B. Shen, B. Liu, Q. Wang, Y. Fang, and J. P. Allebach, “SP-SVM:
large margin classifier for data on multiple manifolds,” in Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015,
pp. 2965–2971.

[47] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[48] C. H. Q. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative
matrix factorizations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 1, pp. 45–55, 2010.

[49] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Math. Program., vol. 142, no. 1-2, pp. 397–434,
2013.

[50] D. Goldfarb, Z. Wen, and W. Yin, “A curvilinear search method for p-
harmonic flows on spheres,” SIAM J. Imaging Sciences, vol. 2, no. 1,
pp. 84–109, 2009.

[51] J. Nocedal and S. Wright, “Numerical optimization,” 1999.
[52] G. H. Golub and C. F. van Loan, Matrix computations (3. ed.). Johns

Hopkins University Press, 1996.
[53] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast

similarity search,” in Proceeding of the 33rd International ACM SIGIR

Conference on Research and Development in Information Retrieval,
2010, pp. 18–25.

[54] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech Report. Univ. of Toronto, 2009.

[55] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal

of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.
[56] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE:

a real-world web image database from national university of singapore,”
in Proceedings of the 8th ACM International Conference on Image and

Video Retrieval, 2009.
[57] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[58] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1–9.
[59] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, “Harmonious hashing,”

in Proceedings of the 23rd International Joint Conference on Artificial

Intelligence, 2013, pp. 1820–1826.
[60] W. Kong and W. Li, “Isotropic hashing,” in Advances in Neural

Information Processing Systems, 2012, pp. 1655–1663.
[61] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang, “Supervised hashing

with kernels,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2012, pp. 2074–2081.

Yuchen Guo received his B. Sc. degree from School
of Software, and B. Ec. from School of Economics
and Management, Tsinghua University, Beijing, Chi-
na in 2013, and currently is a Ph. D. candidate in
School of Software in the same campus. His research
interests include multimedia information retrieval,
computer vision, and machine learning.

Guiguang Ding received his Ph.D degree in elec-
tronic engineering from Xidian University, China,
in 2014. He is currently an associate professor of
School of Software, Tsinghua University. Before
joining school of software in 2006, he has been a
postdoctoral research fellow in the Department of
Automation, Tsinghua University. He has published
80 papers in major journals and conferences, includ-
ing the IEEE TIP, TMM, TKDE, SIG IR, AAAI,
ICML, IJCAI, CVPR, and ICCV. His current re-
search centers on the area of multimedia information

retrieval, computer vision and machine learning.

Li Liu received the Ph.D. degree from the Depart-
ment of Electronic and Electrical Engineering, The
University of Shefeld, Shefeld, U.K., in 2014. He
is currently a Research Fellow with the Department
of Computer and Information Sciences, Northumbria
University, Newcastle upon Tyne, U.K.

Jungong Han is a senior lecturer with the Depart-
ment of Computer Science at Northumbria Universi-
ty, UK. Previously, he was a senior scientist (2012-
2015) with Civolution Technology (a combining
synergy of Philips CI and Thomson STS), a research
staff (2010-2012) with the Centre for Mathematics
and Computer Science, and a researcher (2005-
2010) with the Technical University of Eindhoven
in Netherlands.

Ling Shao (M09-SM10) is a professor with the
School of Computing Sciences at the University of
East Anglia, Norwich, UK. Previously, he was a
professor (2014-2016) with Northumbria University,
a senior lecturer (2009-2014) with the University of
Sheffield and a senior scientist (2005- 2009) with
Philips Research, The Netherlands. His research
interests include computer vision, image/video pro-
cessing and machine learning. He is an associate
editor of IEEE Transactions on Image Processing,
IEEE Transactions on Neural Networks and Learn-

ing Systems and several other journals. He is a Fellow of the British Computer
Society and the Institution of Engineering and Technology. He is a senior
member of the IEEE.

