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Abstract— To make the problem of multilabel classification
with many classes more tractable, in recent years, academia
has seen efforts devoted to performing label space dimension
reduction (LSDR). Specifically, LSDR encodes high-dimensional
label vectors into low-dimensional code vectors lying in a latent
space, so as to train predictive models at much lower costs.
With respect to the prediction, it performs classification for any
unseen instance by recovering a label vector from its predicted
code vector via a decoding process. In this paper, we propose
a novel method, namely End-to-End Feature-aware label space
Encoding (E2FE), to perform LSDR. Instead of requiring an
encoding function like most previous works, E2FE directly learns
a code matrix formed by code vectors of the training instances
in an end-to-end manner. Another distinct property of E2FE
is its feature awareness attributable to the fact that the code
matrix is learned by jointly maximizing the recoverability of
the label space and the predictability of the latent space. Based
on the learned code matrix, E2FE further trains predictive
models to map instance features into code vectors, and also
learns a linear decoding matrix for efficiently recovering the
label vector of any unseen instance from its predicted code
vector. Theoretical analyses show that both the code matrix and
the linear decoding matrix in E2FE can be efficiently learned.
Moreover, similar to previous works, E2FE can be specified
to learn an encoding function. And it can also be extended
with kernel tricks to handle nonlinear correlations between the
feature space and the latent space. Comprehensive experiments
conducted on diverse benchmark data sets with many classes
show consistent performance gains of E2FE over the state-of-
the-art methods.

Index Terms— End-to-end feature-aware label space encoding,
label space dimension reduction (LSDR), multilabel classification.

I. INTRODUCTION

AS a generalized version of multiclass classifica-
tion [1]–[5], where each instance is restricted to hav-

ing only one class label, multilabel classification [6]–[23]
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Fig. 1. Illustration of the principles behind traditional multilabel classification
methods (red) and those with LSDR (blue).

allows an instance to be associated with several class labels
to describe its semantic content or attributes more clearly.
Multilabel classification methods are increasingly demanded
by modern applications, such as multilabel text classifica-
tion [6], music emotion categorization [7], and semantic image
annotation [21]–[23]. In addition, many studies on neural net-
works and other learning approaches are also dedicated to the
field, such as the tree-structure based method ML-TREE [20],
the multiview vector-valued manifold regularization method
MV3MR [21], and the label inference method LI-MLC [24].

Recently, due to the emergence of Web-based applications,
multilabel classification problems tend to be large scale, with
new challenges of numerous instances and large label sets (i.e.,
high-dimensional label spaces) coming up. For instance, in the
picture sharing community Flickr, there are billions of images
and each can be annotated with textual labels selected from
millions of candidates. In the community of neural networks
and related learning systems, to handle the challenges, some
works such as [25]–[29] focus on feature dimension reduction
or model simplification, while others such as LI-MLC [24]
focus on shrinking the label space. Here, we follow the latter
one.

As advocated in [8], large label sets cause many exist-
ing effective multilabel classification methods [9]–[18] to be
infeasible, since generally they need to learn a predictive
model for each label independently or with interlabel cor-
relations, and then combine them in a certain manner for
prediction. Specifically, for a multilabel classification problem
with many classes (i.e., a large label set or a high-dimensional
label space), the number of needed predictive models would
generally be large, thus making the training costs, if not
unaffordable, extremely high. To tackle this issue, researchers
have recently proposed to perform label space dimension
reduction (LSDR) [8], [30]–[35], which aims to reduce
the training costs while maintaining acceptable classification
performance. Specifically, for LSDR, as shown in Fig. 1,
the high-dimensional label vector of any training instance is
encoded into a low-dimensional code vector in a latent space.
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Afterward, predictive models are trained to map instance
features into low-dimensional code vectors, whose quantity
is much smaller and thus can significantly reduce the training
costs. As for performing prediction for any unseen instance, a
low-dimensional code vector is first obtained with the learned
predictive models from its features, and then decoded for
recovering its label vector. Generally speaking, if the learned
predictive models and the decoding process are effective and
efficient enough, LSDR usually yields acceptable classification
performance with much lower costs, making the multilabel
classification problem with many classes more tractable.

Prior methods dedicated to LSDR mostly require an encod-
ing function (function-based), e.g., a linear one, to map label
vectors of training instances into code vectors lying in the
latent space. However, due to the following observations, we
argue that learning the code vectors of training instances in
an end-to-end manner, i.e., directly learning them without any
encoding functions, can be feasible and even preferable.

1) From Fig. 1, it can be seen that, to perform prediction,
the encoding process is totally redundant, and thus, any
encoding function is useless during prediction. More-
over, even for training, it is the encoding result (i.e., code
vectors of training instances) that will affect the learning
of predictive models, no matter whether an encoding
function is required or not.

2) Defining an encoding function may limit the searching
space of the to-be-learned code vectors of training
instances. For example, given the tagging matrix Y of
training instances, using a linear encoding function P
can limit the to-be-learned code vectors in the space
YP, thereby preventing them from being searched in
the whole real space that could potentially minimize the
loss of classification performance.

3) In some cases, code vectors of training instances
are required to have specific properties, such as the
orthonormality between code dimensions in this paper.
Although those property requirements can somehow be
transferred to the encoding function, it will inevitably
make the objective function much more complex for
optimization.

In fact, compared with a function-based encoding, an end-
to-end encoding requires no encoding function, and thus can
search the whole real space for the optimal to-be-learned
code vectors. Moreover, for an end-to-end encoding, it would
be direct to add property requirements for the to-be-learned
code vectors, making the objective function less complex for
optimization. To the best of our knowledge, MLC-BMaD [34]
is the only previous research that pioneered end-to-end label
space encoding via Boolean matrix decomposition. However,
as will be shown later, its training is not efficient enough,
and as a result, it may not fully accomplish the goal of
LSDR. Moreover, MLC-BMaD learns the code vectors of
training instances in a feature-unaware manner, meaning that
the correlations between the latent space and the feature space
are not considered. That, as advocated in [33], can probably
make the learned latent space less predictable and thus degrade
the final classification performance. Therefore, further studies
on end-to-end label space encoding are highly expected.

In this paper, we propose a novel method termed E2FE
to perform LSDR via End-to-End Feature-aware label space
Encoding. Specifically, E2FE directly learns a code matrix
formed by code vectors of training instances via jointly
maximizing the recoverability of the label space and the
predictability of the latent space, with the latter considering
the correlations between the latent space and the feature space.
And thus E2FE is feature-aware. Based on the learned code
matrix, predictive models are trained as other LSDR methods,
to predict code vectors from instance features. Meanwhile,
E2FE further learns a linear decoding matrix that can recover
the predicted label vector of any unseen instance from its code
vector generated by the trained predictive models.

Since the predictive models in the proposed E2FE are
open for any effective ones, including neural networks, E2FE
can actually be applied with existing predictive models or
feature dimension reduction approaches in the community to
better tackle the large-scale multilabel classification problem.
Particularly for LSDR, below are three highlighted properties
of E2FE, which are in line with our contributions.

1) We propose an effective LSDR method termed E2FE for
tackling (large-scale) multilabel classification problems
with many classes. To the best of our knowledge, it is the
first to make LSDR both end-to-end and feature-aware.

2) We jointly maximize the recoverability of the label space
and the predictability of the latent space for performing
LSDR in E2FE. The objective function with respect to
the to-be-learned code matrix can be transformed to an
eigenvalue problem, and is sufficiently flexible in the
sense that different optimization strategies can be used
depending on the applications for efficient optimization.

3) We show that E2FE is a generic approach that covers
previous LSDR studies, and it can also be specified
to learn an encoding function. Moreover, it can be
extended with kernel tricks to handle nonlinear corre-
lations between the feature space and the latent space.

This paper is based on our previous work presented in [36],
which was termed FaIE, but it substantially extends that
work by enhancing the proposed method to be more efficient
and effective. The summarized extensions are shown in the
following list.

1) We propose a more efficient optimization method for the
proposed method to learn the code matrix in cases where
n � dx + dy , with n, dy , and dx , respectively, denoting
the number of training instances, the dimensionality of
the label space, and that of the feature space. This is
helpful for practical applications, as such cases are quite
common. Specifically, the newly proposed optimization
method transforms the size of the eigenvalue problem
with respect to the objective function of E2FE from
R

n×n to R
(dx+dy)×(dx +dy), which can be solved more

efficiently and can substantially reduce space costs.
2) We further propose πE2FE, πLinearE2FE, and kernel-

πE2FE, to consider a priori knowledge provided by
the eigenvalue problem with respect to the to-be-learned
code matrix for learning an enhanced decoding matrix.
Experiments comparing πE2FE, πLinearE2FE, and
kernel-πE2FE with their corresponding counterparts,
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i.e., E2FE, LinearE2FE, and kernel-E2FE, show that
enhancing the decoding matrix with such a priori knowl-
edge can help to gain significant performance improve-
ments (on average 48.1% for label-based macroF1
and 33.9% for example-based accuracy).

3) In this paper, we provide a thorough discussion and
experimental validation for that the orthonormality
assumption for columns of the to-be-learned code matrix
in E2FE is reasonable. We also make error analyses
for the proposed E2FE, and derive its error bound.
Additionally, more theoretical analyses, such as those
regarding time complexity and parameter settings, are
also presented here.

4) To better validate the effectiveness of E2FE, we utilize
more widely used benchmark data sets for experiments.
We also conduct the experiments on the full data sets
instead of the sampled ones in [36], so as to demonstrate
the applicability of E2FE for handling larger data sets.
More experimental results are also reported, such as
the significance tests for the improvements gained by
E2FE over compared baselines, and the comparison
of computational costs between the newly proposed
optimization method here and that presented in [36].

The remainder of this paper is organized as follows.
Section II gives an overview of related works. Section III
elaborates on the proposed E2FE. Section IV shows the pro-
posed optimization methods and its corresponding theoretical
analyses. Section V describes the details about enhancing
the linear decoding matrix with a priori knowledge. Then,
Section VI presents the extensions of E2FE, and analyzes
its relations to previous works. Experimental settings, results,
and analyses are given in Section VII. Finally, we present
discussions regarding E2FE in Section VIII and conclude this
paper in Section IX.

II. RELATED WORK

With the explosion of label spaces in real-world appli-
cations, many remarkable effective multilabel classification
methods tend to be infeasible due to the high training costs.
To tackle such multilabel classification problems with many
classes, a lot of effective methods were proposed, such as con-
structing a hierarchy of multilabel classifiers [37], refining the
output of heuristic efficient classifiers [38], performing label
selection to recover the vocabulary with only a subset [39], or
using label inference method based on the use of association
rules to discover label dependences [24]. Recently, LSDR was
also proposed and is attracting more and more attention.

To the best of our knowledge, Hsu et al. [30] are the first
to propose LSDR. Specifically, Hsu et al. [30] exploited the
sparsity of the label space, and proposed to linearly encode it
to a low-dimensional latent space as compressed sensing (CS)
and then train linear regression models with respect to the
derived codes. As for performing classification for an unseen
instance, a code vector is first obtained with the learned
regression models from its features and then decoded with
standard recovery algorithms, such as CoSaMP [40] to derive
the predicted label vector. Kapoor et al. [8] further considered
both label space compression and predictive model learning

TABLE I

CATEGORIZATION OF EXISTING LSDR METHODS AND E2FE

in a single probabilistic model, and derived a Bayesian frame-
work termed BML-CS for multilabel classification via jointly
optimizing over both.

Apart from CS-based methods, Tai and Lin [31] proposed
to perform principle label space transformation (PLST) for
seeking important correlations between labels, which is essen-
tially Principal Component Analysis (PCA) [41] for the label
space. Chen and Lin [33] further enhanced it by proposing
feature-aware conditional principal label space transforma-
tion (CPLST), which actually integrates orthogonally con-
strained canonical correlation analysis into the framework of
PLST for considering the predictability of the latent space.
Both PLST and CPLST performed LSDR via linear encoding
and linear decoding. Zhou et al. [32] proposed another method
termed “compressed labeling,” which takes the signs of the
linear Gaussian random projection results on the original label
vectors as the derived code vectors and utilizes a series of
Kullback–Leibler divergence-based hypothesis tests for decod-
ing. Alternatively, Wicker et al. [34] proposed MLC-BMaD
for LSDR via Boolean matrix decomposition on the binary
tagging matrix, factorizing it as the product of a binary code
matrix and a binary linear decoding matrix. Bi and Kwok [35]
presented an efficient randomized sampling procedure termed
ML-CSSP for selecting a column subset of the tagging matrix
that can well span it, which is a special case of linear encoding.

Actually, the majority of existing methods perform LSDR
in a function-based manner and require an encoding function.
Such approaches, as analyzed in Section I, carry several
drawbacks. To avoid those, performing LSDR in an end-
to-end manner with no need for any encoding function is
highly desired. MLC-BMaD seems to be the only existing
LSDR method that supports end-to-end label space encoding
via boolean matrix factorization. However, MLC-BMaD is
feature-unaware, and thus, the learned latent space could be
less predictable, which can result in performance deterioration.
Therefore, in this paper, we propose E2FE, which performs
LSDR in an end-to-end manner and is also feature-aware.

To sum up, Table I categorizes the remarkable existing
LSDR methods and the proposed E2FE into different combi-
nations of {function-based, end-to-end} and {feature-unaware,
feature-aware}, which well highlights the distinctness of E2FE.

III. PROPOSED APPROACH

A. Preliminaries

Generally, in the case of multilabel classification, the fea-
tures of an instance are represented as a dx -dimensional feature
vector x in the feature space X , i.e., x ∈ X ⊂ R

dx , and its
labels are represented as a dy-dimensional binary label vector
y in the label space Y , i.e., y ∈ Y ⊂ {0, 1}dy . Here, the
i th entry of the label vector y is set as 1 if the instance
is associated with the i th label and 0 otherwise. Suppose
that we are given n labeled instances for training, denoted as
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{(x(i), y(i))}n
i=1, with x(i) and y(i) being the feature vector and

the label vector of the i th training instance. Multilabel clas-
sification will utilize them to learn the mapping F : X → Y
from the feature space X to the label space Y , as shown in
Fig. 1, and then utilize F for predicting the label vector of
any unseen instance based on its feature vector.

As mentioned earlier, to derive the mapping F , many
existing effective multilabel classification methods will learn
a predictive model for each label independently or with
interlabel correlations, and then combine them in a cer-
tain manner for prediction. In that case, the number of the
to-be-learned predictive models will be at least dy , and even
much larger for methods using label powerset [42]. Then,
for a multilabel classification problem with many classes, dy

will become quite large and the training costs of the to-be-
learned predictive models will be extremely high and even
unaffordable. To tackle such a challenge, LSDR was recently
proposed and is attracting more and more attention. With
LSDR, the training process to learn F is transformed into
a two-step learning process. That is, first the label vectors
of training instances are encoded into low-dimensional code
vectors in a latent space Z ⊂ R

dz with an encoding process
P : Y �→ Z , and then, a mapping G : X �→ Z with respect
to the code vectors is learned. Here, dz is the dimensionality
of the latent space Z , and generally, dz � dy . Moreover,
as shown in Fig. 1, P can be performed in a function-
based manner (e.g., linear encoding function) or an end-to-end
manner (e.g., matrix decomposition). Similar to learning F ,
learning G can be based on training dz predictive models, one
for a dimension of Z . As for predicting the labels of any
unseen instance, a dz-dimensional code vector in Z will first
be derived using the learned G with its feature vector, and
then, a dy-dimensional predicted label vector will be recovered
through a decoding process Q : Z �→ Y . For LSDR methods,
with dz � dy , the number of the to-be-learned predictive
models is generally much smaller, and thus, the training costs
are substantially lowered, making the multilabel classification
problem with many classes more tractable. Meanwhile, if the
mapping G and the decoding process Q are effective enough,
the classification performance using LSDR is expected to be
acceptable.

It should be noticed that for LSDR, the latent space Z
is supposed to be derived from the label space Y rather
than the feature space X , even though X can sometimes be
considered for increasing the predictability of Z . And thus
the dimensionality of the latent space (i.e., dz) can either be
higher or lower than that of the feature space (i.e., dx ), but
will always be lower than that of the label space (i.e., dy).
Moreover, for LSDR methods, the mapping G from X to Z is
open for any effective mapping algorithm after Z is derived.
Meanwhile, the decoding process Q generally needs to be
specified before deriving Z , which, from the perspective of
efficiency in prediction, is preferred to be linear, such as those
in PLST, CPLST, MLC-BMad, and ML-CSSP.

B. End-to-End Feature-Aware Label Space Encoding

Before elaborating on the proposed E2FE, to make it more
clear, Table II summarizes the important symbols in this paper.

TABLE II

IMPORTANT SYMBOLS IN THE PROPOSED E2FE

As mentioned previously, E2FE performs LSDR in an end-
to-end manner and directly learns a code matrix Z ∈ R

n×dz

formed by code vectors of training instances. Generally, the
classification performance of LSDR methods depends on both
the predictive mapping G and the decoding process Q. There-
fore, it is crucial for code vectors to be predictable, having a
strong correlation with instance features, as revealed in [43].
Meanwhile, the label vectors should also be highly recoverable
via decoding the corresponding code vectors. Therefore, to
learn Z, E2FE jointly maximizes the recoverability of the label
space and the predictability of the latent space. The former
is denoted as �1(Y,Z) and the latter as �2(X,Z), where
Y ∈ {0, 1}n×dy is the tagging matrix of training instances
formed by their label vectors row by row and X ∈ R

n×dx

is the feature matrix formed by their feature vectors in the
same way. Then, the objective function with respect to Z is
as follows:

� = max
Z

�1(Y,Z)+ α�2(X,Z) (1)

where α ≥ 0 is a parameter for balancing recoverability and
predictability. When α = 0, Z will be derived via merely
maximizing recoverability, implying that Z is just dependent
on Y. On the contrary, when α > 0, correlations between
instance features and code vectors will be further considered
for making Z feature-aware and more predictable.

1) Recoverability of Label Space: To improve the recover-
ability of the label space, the difference between the tagging
matrix Y and the recovered one, which is based on the to-
be-learned code matrix Z, is expected to be minimized. Here,
we denote the difference as L. As mentioned previously, for
efficient decoding, the proposed E2FE learns a linear decoding
matrix Q ∈ R

dz×dy to recover label vectors from code vectors,
following PLST, CPLST, MLC-BMad, and ML-CSSP. Then,
L is formulated as follows:

L = min ‖Y − ZQ‖2
fro (2)

where ‖ · ‖fro is the Frobenius norm of a matrix. Given Z,
the optimal Q to minimize L can be derived as the following
closed-form expression by solving (∂L/∂Q) = 0:

Q = (ZT Z)−1ZT Y. (3)

To mitigate redundant information in the latent space and then
encode the label space more compactly, we assume that the
dimensions of the latent space are uncorrelated, and thus, the
columns of Z are orthonormal, as shown in formula

ZT Z = I (4)
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where I ∈ R
dz×dz is an identity matrix. Actually, as analyzed

later, although such an orthonormality assumption may seem
to be strong, it is still reasonable and important for E2FE. With
formula (4), the optimal Q can be simplified as Q = ZT Y,
and then, formula (2) can be reformulated as follows:

L = Tr[YT Y − YT ZZT Y] (5)

where Tr[·] refers to the trace of a matrix. With Tr[YT Y]
being a constant, minimizing L is identical to maximizing
Tr[YT ZZT Y], which can be seen as an expression of the
recoverability of the label space, i.e., �1(Y,Z). We can thus
derive the following formula:

�1(Y,Z) = Tr[YT ZZT Y] = Tr[ZT YYT Z]
s.t. ZT Z = I. (6)

2) Predictability of Latent Space: As advocated in [43],
to improve the predictability of the latent space, the code
matrix Z is supposed to be strongly correlated with the
instance features. Here, we first consider linear correlations,
and will later handle nonlinear ones with kernel tricks. Con-
sidering a linear projection w for the feature space and a
dimension z of the latent space, i.e., a column of Z, the
correlation between features and z, denoted as r(X, z), can
be defined as follows:

r(X, z) = (Xw)T z
√
(Xw)T (Xw)

√
zT z

. (7)

Due to the orthonormality assumption for Z, i.e., formula (4),
zT z = 1 will hold for any column of Z. Moreover, linearly
rescaling w by a nonzero multiplier will not change r(X, z).
Then, maximizing r(X, z) equals the following formula:

max (Xw)T z s.t. (Xw)T Xw = 1. (8)

Given a dimension z of the latent space, the maximal r(X, z)
reflects its potential maximal correlation with the feature
space, and thus, the maximal r(X, z) can be seen as an
expression of the predictability of z. Specifically, with z fixed,
the optimal w for formula (8), denoted as w∗, can be derived
as follows with the method of Lagrange multipliers:

w∗ = (XT X)−1XT z
√

zT X(XT X)−1XT z
. (9)

Note that following CPLST, here we assume A = XT X to
be invertible. Actually, this assumption usually holds when
n > dx , but it will fail in cases with n < dx , as A will not be
full-rank then. To handle the latter cases, we propose to ensure
A to be invertible via: 1) performing dimension reduction for
the feature space via PCA or alternative methods to make dx

small enough for obtaining a full-rank XT X or 2) adding a
tiny value to the entries on the diagonal of XT X, i.e., A =
XT X + εI1 with I1 ∈ R

dx×dx being an identity matrix and ε
being a tiny value, e.g., 10−6.

By substituting w∗ into formula (7), the predictability of z,
denoted as ψ2(X, z), can be derived as follows:

ψ2(X, z) = (Xw∗)T z
√
(Xw∗)T (Xw∗)

√
zT z

= (Xw∗)T z =
√

zT Hz

(10)

Algorithm 1 Overview of E2FE
Input: Feature matrix Xtr and tagging matrix Ytr of the

training instances, feature matrix Xt s of the test instances,
predefined model parameter α, and latent space dimension-
ality dz

Output: Predicted binary tagging matrix Yt s of the test
instances
Training Process:

1: derive code matrix Ztr via optimizing formula (12)
2: learn predictive models: G(Xtr ) → Ztr

3: derive linear decoding matrix: Q = ZT
tr Ytr

Predicting Process:
4: predict code vectors of test instances: Zt s = G(Xt s)
5: recover the predicted tagging matrix: Yt s = round(Zt sQ)

where H = X(XT X)−1XT ∈ R
n×n . To improve the pre-

dictability of the latent space, each column z of the code
matrix Z is supposed to maximize ψ2(X, z). As maximizing
ψ2(X, z) can be guaranteed by maximizing zT Hz, the overall
predictability of Z can be formulated as follows:

�2(X,Z) =
dz∑

i=1

ZT·,i HZ·,i = Tr[ZT HZ]

s.t. ZT Z = I (11)

where Z·,i (i ∈ {1, 2, . . . , dz}) denotes the i th column of Z.
3) Detailed Objective Function: With �1(Z,Y) and

�2(X,Z) derived, the objective function with respect to the
to-be-learned code matrix Z, i.e., formula (1), can be detailed
as follows:

� = max
Z

Tr[ZT YYT Z] + αTr[ZT HZ]
= max

Z
Tr[ZT (YYT + αH)Z]

s.t. ZT Z = I (12)

where H = X(XT X)−1XT . As analysed in section IV, �
can be transformed to an eigenvalue problem with respect to
YYT +αH, and Z is derived by concatenating the normalized
eigenvectors corresponding to the top dz largest eigenvalues
column by column. With the code matrix Z derived, predictive
models can be trained for mapping instance features into code
vectors.

4) Deriving Linear Decoding Matrix: According to
formula (2) and (3), given Z with ZT Z = I, the optimal linear
decoding matrix Q can be derived as follows:

Q = (ZT Z)−1ZT Y = ZT Y. (13)

And its computational complexity is O(ndydz).
An overview of E2FE is given in Algorithm 1.

C. Error Analysis

As shown in Algorithm 1, following PLST, CPLST, and
ML-CSSP, the proposed E2FE rounds each entry of the
decoding results into its nearest 0 and 1, so as to derive binary
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label vectors. Considering that, we proceed to analyze the root
mean square error (RMSE) of E2FE on the training instances.

Specifically, RMSE is defined as follows:
RMSE = 1√

n
‖round(G(X)Q)− Y‖fro (14)

where G denotes the learned predictive models for map-
ping instance features into code vectors, and round(G(X)Q)
denotes the recovered binary tagging matrix. Then, we can
derive the following lemma regarding the error bound of E2FE.

Lemma 1: For E2FE, its RMSE is bounded by

RMSE ≤ 2√
n
(
√

dz‖Y‖fro‖Z − G(X)‖fro + ‖Y − ZQ‖fro).

For a detailed proof, one can refer to the supplementary
material. Actually, the error bound for E2FE is similar to
those of PLST and ML-CSSP. Namely, it also consists of two
parts. The first part, i.e.,

√
dz‖Y‖fro‖Z−G (X) ‖fro denotes the

weighted training error of predictive models, and the second
part, i.e., ‖Y − ZQ‖fro, denotes the loss of encoding label
vectors into low-dimensional code vectors.

IV. OPTIMIZATION METHODS

For optimizing the objective function � with respect
to the to-be-learned code matrix Z, any column Z·,i (i ∈
{1, 2, . . . , dz}) can be derived with the following optimization
subproblem:

�(i) = max
Z·,i

ZT·,i (YYT + αH)Z·,i

s.t. ZT·,i Z·,i = 1, ZT·, j Z·,i = 0 (∀ j < i). (15)

With the method of Lagrange multipliers, the optimal Z·,i
should satisfy the following optimality condition:

(YYT + αH)Z·,i = λi Z·,i (16)

where λi is the introduced Lagrange multiplier and will also
be the optimal value of the subproblem. It can be seen that
the optimization for Z can be transformed to an eigenvalue
problem. Then, by normalizing the eigenvectors of U =
YYT + αH that correspond to the top dz largest eigenvalues,
we can derive the optimal code matrix Z formed of these
eigenvectors column by column, which satisfies ZT Z = I.

As described in our previous work [36], we can directly
calculate U and then utilize effective methods to derive its
eigenvectors. However, considering that U ∈ R

n×n , for cases
with n � dx +dy , which are common in practical applications,
calculating U will result in high space costs. To avoid that,
we derive the following lemma and further propose a more
efficient optimization method for such cases.

Lemma 2: Given H = X(XT X)−1XT , the matrix
U = YYT + αH can be decomposed as U = VVT with
V ∈ R

n×(dy+dx ). Also, the eigenvectors of U can be derived
from those of VT V, meaning that the size of the eigenvalue
problem with respect to U can be transformed from R

n×n to
R
(dx+dy)×(dx+dy).

Proof: Suppose A = XT X is invertible. Since A ∈ R
dx ×dx

is a real symmetric and positive-semidefinite matrix, A−1 will
be real symmetric and positive semi-definite, and thus, A−1 is

Algorithm 2 Optimization for E2FE

Input: Feature matrix Xtr ∈ R
n×dx and tagging matrix Ytr ∈

R
n×dy of training instances, predefined model parameter α,

latent space dimensionality dz

Output: Learned code matrix Ztr of training instances
1: if XT

trXtr is NOT invertible then
2: Option 1: {dimension reduction for feature space}
3: Xtr = Dim Reduce(Xtr)
4: Option 2: {adding a tiny value to diagonal entries}
5: XT

trXtr = XT
tr Xtr + εI1

6: end if
7: if n � dy + dx then
8: A = XT

tr Xtr

9: [B,	] = diagonali ze(A−1) {A−1 = B	BT }
10: G = Xtr B	

1
2

11: V = [Ytr ,
√
αG]

12: E = eigenvector(VT V, dz) {eigenvectors of VT V cor-
responding to the top dz largest eigenvalues}

13: Ztr = normali ze(VE) {normalizing each column of VE
into a unit vector}

14: else
15: H = Xtr (XT

tr Xtr )
−1XT

tr
16: U = Ytr YT

tr + αH
17: Ẽ = eigenvector(U, dz) {eigenvectors of U correspond-

ing to the top dz largest eigenvalues}
18: Ztr = normali ze(Ẽ) {normalizing each column of Ẽ

into a unit vector}
19: end if

diagonalizable by orthogonal matrices [44]. Namely, A−1 =
B	BT , with 	 being a diagonal matrix having nonnegative
diagonal entries and B being an orthonormal matrix. Then,
A−1 = B	(1/2)	(1/2)BT = (B	(1/2))(B	(1/2))T , where
	(1/2) is a diagonal matrix with each diagonal entry being
the square root of the corresponding diagonal entry in 	.
Furthermore, with G = XB	(1/2) ∈ R

n×dx , H = GGT .
Finally, U = YYT + αH = YYT + (

√
αG)(

√
αG)T =

[Y,√αG][Y,√αG]T = VVT , with V = [Y,√αG] ∈
R

n×(dy+dx ).
Suppose {λ,p} and {σ,q} are, respectively, the paired

eigenvalue/eigenvector of VVT and VT V. According to: 1)
VVT p = λp → (VT V)VT p = VT (VVT p) = λVT p and
2) VT Vq = σq → (VVT )Vq = V(VT Vq) = σVq, we
can see that VVT and VT V share identical eigenvalues, and
the eigenvectors of U = VVT can be derived from those
of VT V based on the second derivation above. Considering
VT V ∈ R

(dx+dy)×(dx+dy), the size of the eigenvalue prob-
lem with respect to U can be transformed from R

n×n to
R
(dx+dy)×(dx+dy). �
With Lemma 2, in different cases, we can utilize different

optimization methods to obtain the eigenvectors of U =
YYT +αH and then derive the code matrix Z, as summarized
in the following and illustrated in Algorithm 2.

1) If n � dy + dx , it is preferable to firstly derive
the matrix V satisfying U = VVT , then calculate
the eigenvectors of VT V corresponding to the top dz
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largest eigenvalues, and finally utilize them to derive
the eigenvectors of U. Since dz � dy and VT V is a real
symmetric matrix, the eigenvalue problem with respect
to VT V can be solved efficiently using iterative methods
such as Arnoldi iteration [45], which can achieve an
optimal computational complexity of O(dxdz

2 +dydz
2).

Here, the computational complexity of deriving V is
O(nd2

x ), while that of calculating VT V and deriving the
eigenvectors of U from those of VT V is O(n(dx +dy)

2).
2) Otherwise, it is preferable to directly calculate U and

then perform an eigenvalue decomposition on it. The
computational complexity for calculating U is at most
O(min{n2dx , nd2

x })+O(n2dx + n2dy). Considering that
generally dz � n and U is a real symmetric matrix,
the eigenvalue problem with respect to U can also be
solved efficiently using Arnoldi iteration with an optimal
computational complexity of O(ndz

2).

V. πE2FE: ENHANCING LINEAR DECODING MATRIX

WITH a Priori KNOWLEDGE

As analyzed in formula (16), each column of the code
matrix Z corresponds to an eigenvalue of U = YYT + αH,
which is also the optimal value for its corresponding opti-
mization subproblem (i.e., formula (15)). Knowing that each
column denotes one dimension of the latent space, for each
column, the eigenvalue with respect to it actually reflects:
1) how predictable its corresponding dimension of the latent
space is and 2) from the dimension how recoverable the label
space is. Specifically, a higher eigenvalue with respect to a
column of Z means that its corresponding dimension of the
latent space is more predictable and the label space is more
recoverable from the dimension.

Here, we propose to consider such a priori knowledge
to derive an enhanced linear decoding matrix for E2FE.
We denote it as πE2FE. Essentially, for a linear decoding
matrix Q, its i th column Q·,i (i ∈ {1, 2, . . . , dy}) acts as
a weighting vector to linearly combine dimensions of the
latent space for recovering the i th dimension of the label
space. Then, for dimensions of the latent space that are more
predictable and make the label space more recoverable, i.e.,
with higher corresponding eigenvalues, they are expected to
be assigned with higher weights in the decoding process.
Therefore, we derive the objective function for Q·,i as follows:

L̃(i) = min
Q·,i

‖Y·,i − ZQ·,i‖2
fro − η

dz∑

j=1

λ j Q2
j,i (17)

where Y·,i is the i th column of the tagging matrix Y, λ j is
the eigenvalue corresponding to the j th column of Z, and
η is a nonnegative weighting factor. It can be seen that, by
considering the a priori knowledge as a regularizer in L̃(i),
a larger λ j can help to lead Q2

j,i to be larger, meaning that
as expected the j th dimension of the latent space is assigned
with a higher weight for decoding. For model simplicity, here
η is shared by all Q·,i (i ∈ {1, 2, . . . , dy}). Then, the objective
function for deriving the linear decoding matrix Q of πE2FE

can be formulated as follows with matrix notations:
L̃ = min

Q
‖Y − ZQ‖2

fro − ηTr[QT �̃Q] (18)

where �̃ is a diagonal matrix with �̃ j, j = λ j . If η is properly
set to make L̃ nontrivial, as discussed later, the optimal
decoding matrix for πE2FE can be derived as follows:

Q = (I − η�̃)−1ZT Y (19)

where (I−η�̃) is a diagonal matrix, and thus, its inverse can be
efficiently calculated. Actually, as dz � dy , the computational
complexity of deriving Q in πE2FE is also O(ndydz).

Note that in formula (18), a large η value can lead L̃ to
become trivial and achieve an optimum of negative infinity.
To cope with that, we derive the following lemma for properly
setting η, where �λ = [λ1, λ2, . . . , λdz ].

Lemma 3: For any η ∈ [0, (1/max(�λ))] with max(�λ) being
the maximal value of �λ, L̃ will be nontrivial for optimization.
For a detailed proof, one can refer to the supplementary
material.

VI. EXTENSIONS AND ANALYSES

A. Function-Based Encoding: A Linear Encoding Case

Though the proposed E2FE requires no encoding function,
it can still be specified to learn an encoding function as
most previous works, given that the encoding function can
be optimized, e.g., a linear one, as described in the following.

Following PLST and CPLST, we use an encoding matrix
P ∈ R

dy×dz to denote the linear encoding function. Then, the
code matrix Z can be expressed as Z = YP. Substituting Z
with YP in the objective function of E2FE, i.e., formula (12),
we can derive the following objective function for P:

� = max
P

Tr[PT (YT YYT Y + αYT HY)P]
s.t. PT YT YP = I. (20)

Similarly, we use the method of Lagrange multipliers and
decompose � into dz optimization subproblems with respect
to each column P·,i of the to-be-learned P. Then, we derive
that P·,i should satisfy the following optimality condition:

(YT YYT Y + αYT HY)P·,i = λi (YT Y)P·,i (21)

where λi is a Lagrange multiplier and will be the optimal
value of the optimization subproblem with respect to P·,i .
It can be seen that the optimization of P is essentially a
general eigenvalue problem. And the normalized eigenvectors
corresponding to the top dz largest eigenvalues will form the
optimal P.

Denoting this case of linear function-based encoding as
LinearE2FE, the linear decoding matrix Q without considering
a priori knowledge is Q = (YP)T Y. Meanwhile, for the
case of utilizing the eigenvalues with respect to P as a
priori knowledge, Q = (I − η�̃)−1(YP)T Y with �̃ being a
diagonal matrix consisting of the eigenvalues, which is termed
πLinearE2FE.
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B. Kernel Version

The proposed E2FE, thanks to kernel tricks, can be extended
to deal with nonlinear correlations between the feature space
and the latent space, which is termed kernel-E2FE.

In kernel-E2FE, each feature vector x(i) is mapped to
the reproducing kernel Hilbert space (RKHS) as φ(x(i)).
In RKHS, the inner product between φ(x(i)) and φ(x( j )) is
equal to κ(x(i), x( j )), where κ(·, ·) is the introduced kernel
function. Using a nonlinear κ(·, ·), the linear correlations
between the RKHS and the latent space actually reflect the
nonlinear correlations between the original feature space and
the latent space. Similar to formula (7), we measure the
correlation r(�, z) by considering a linear projection w1 for
kernel features in RKHS and a column z of the code matrix.
Following [46], here w1 is assumed to be in the span of
sampled kernel feature vectors, i.e., w1 = �T∗ w̃, where �∗
is a matrix built by the sampled kernel feature vectors row by
row and w̃ is an s-dimensional weighting vector with s being
the sampling size. Then, r(�, z) can be measured as follows:

r(�, z) =
(
��T∗ w̃

)T z
√(

��T∗ w̃
)T (

��T∗ w̃
)√

zT z

= (Kw̃)T z
√
(Kw̃)T (Kw̃)

√
zT z

(22)

where K = ��T∗ ∈ R
n×s is a kernel matrix and can be

efficiently derived using the kernel function with the original
feature vectors. Similar to Section III-B.2, the predictability
of z based on nonlinear correlations can be derived from the
maximal r(�, z) and measured as ψ2(�, z) =

√
zT H̃z with

H̃ = K(KT K)−1KT . Then, the objective function of kernel-
E2FE is as follows, which can also be transformed to an
eigenvalue problem:

� = max
Z

Tr[ZT (YYT + αH̃)Z] s.t. ZT Z = I. (23)

Like E2FE, the linear decoding matrix Q for kernel-E2FE
is Q = ZT Y. Meanwhile, when eigenvalues with respect to Z

are considered as a priori knowledge, Q =
(

I − η�̃
)−1

ZT Y,

where �̃ is a diagonal matrix consisting of eigenvalues. Here,
we denote this case as kernel-πE2FE.

C. Relations to Previous Works

If the mean values of the label vectors are shifted as zeros,
the proposed E2FE will degenerate to PLST [31] when only
the recoverability of the label space is considered (i.e., α = 0
in formula (12)). Here, we denote this case as R-E2FE and its
corresponding objective function is given as follows:

� = max
Z

Tr[ZT YYT Z], s.t. ZT Z = I. (24)

The code matrix Z consists of the normalized eigenvectors of
YYT corresponding to the top dz largest eigenvalues, and the
linear decoding matrix without considering a priori knowledge
is ZT Y. Meanwhile, the linear encoding matrix P of PLST is
formed with the normalized eigenvectors of YT Y correspond-
ing to the top dz largest eigenvalues, with the derived code

matrix being YP and the linear decoding matrix being PT .
As in the proof of Lemma 2, we can derive that YYT and YT Y
are positive semidefinite and share the same positive eigenval-
ues. Specifically, provided that λi is the i th largest eigenvalue,
we can derive that: 1) YT YP·,i = λi P·,i ; 2) YYT Z·,i =
λi Z·,i ; 3) (YYT )[YP]·,i = Y(YT YP·,i) = λi [YP]·,i ; and
4) (YT Y)[YT Z]·,i = YT (YYT Z·,i ) = λi [YT Z]·,i . Then, for
R-E2FE and PLST, we can find one-to-one correspondences
between the i th columns of their encoding results (i.e., Z·,i =
([YP]·,i/√λi )), and between the i th rows of their linear decod-
ing matrices (i.e., [ZT Y]i,· = √

λi [PT ]i,·). Therefore, R-E2FE
is equivalent to PLST, with Z(ZT Y) = (YP)PT . However,
when α > 0, the code matrix Z in E2FE will be associated
with instance features and will then differ from PLST.

When coping with linear function-based encoding, i.e.,
formula (20), given the mean values of label vectors and those
of feature vectors shifted as zeros, E2FE is closely connected
to CPLST [33] if only the predictability of the latent space
is considered. We denote this case as P-LinearE2FE, with its
corresponding objective function defined as follows:

� = max
P

Tr[PT YT HYP], s.t. PT YT YP = I. (25)

Meanwhile, the objective function of CPLST is as follows:
�̃ = max

P
Tr[PT YT HYP], s.t. PT P = I. (26)

It can be seen that P-LinearE2FE and CPLST share an identical
objective function but with different constraints. Namely, the
former requires the dimensions of the code matrix (i.e., YP)
to be orthonormal, while the latter requires the dimensions of
the linear encoding matrix (i.e., P) to be orthonormal.

Another useful observation with respect to E2FE is that
E2FE actually performs dimension reduction for both the label
space and the feature space when the predictability of the
latent space is overemphasized with an assumption that the
code matrix can be directly expressed by the feature matrix,
i.e., Z = XW, where W ∈ R

dx ×dz is a regression matrix.
This case is termed OP-E2FE. As the predictability of the
latent space is constant in OP-E2FE, its objective function is
formulated as follows:

� = max
W

Tr[WT XT YYT XW]
s.t. WT XT XW = I. (27)

The optimization for W can again be interpreted as a general
eigenvalue problem, i.e., (XT YYT X)W·,i = λi (XT X)W·,i ,
but it requires dz ≤ dx . Here, Z can be seen as the dimension
reduction result learned from the label space in an end-to-
end manner, or the linear dimension reduction result from the
feature space with W. However, for OP-E2FE, we can observe
the following weak points: 1) the dimensionality of the to-be-
learned latent space cannot be larger than the dimensionality
of the feature space, which can sometimes be too small to
keep enough information of the label space, especially when
dx � dy and 2) the predictive models from the feature space to
the latent space are limited to be linear regression, whereas for
LSDR, they are expected to be open for any effective model.
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TABLE III

STATISTICS OF DATA SETS

VII. EXPERIMENTS

A. Experimental Settings

To validate the proposed E2FE, we use in our experi-
ments five widely used benchmark data sets with relatively
large vocabularies from Mulan [47], i.e., delicious, CAL500,
mediamill, bibtex, and bookmarks. They belong to one of
the following domains: text, music, and video. Moreover,
following CS [30], we also conduct experiments on the image
data set ESPGame [48], and take those tags appearing at least
20 times in the data set to form a large vocabulary, which
almost doubles the size of that used in the experiments of CS.
Each instance in ESPGame is represented by a 516-D feature
vector1 extracted with Lire [49], and it is removed if no tags
are associated. The original statistics of the data sets are given
in Table III.

For performance comparison, we select binary
relevance (BR) [50], CS [30], PLST [31], CPLST and
kernel-CPLST [33], MLC-BMaD [34], and ML-CSSP [35] as
baselines, where BR is a widely used multilabel classification
method that trains a separate BR model for each label. In our
experiments, we use both linear SVM (L-SVM) [51] and
linear ridge regression (L-RR) for BR. And for the latter,
we use 0.5 as a threshold to decide the binary (0 or 1)
classification results. To reduce the computational costs
of L-SVM on bibtex and bookmarks, we perform feature
dimension reduction for both data sets via PCA. We also
follow the reported preprocessing steps of baselines, such
as shifting the mean values of feature vectors to be zeros.
Note that BR in fact does not perform LSDR and thus its
performance is a reference for other algorithms. BML-CS [8]
is not included, since it is sophisticated with numerous
parameters to tune.

For E2FE, we evaluate the following variants.
1) R-E2FE: Considering only the recoverability of the label

space (i.e., formula (24)), theoretically equivalent to
PLST.

2) P-LinearE2FE: Considering only the predictability of
the latent space for linear function-based encoding (i.e.,
formula (25)), similar to CPLST.

3) OP-E2FE: Overemphasizing the predictability of the
latent space (i.e., formula (27)).

4) LinearE2FE: Linear function-based encoding (i.e., for-
mula (20)).

5) πLinearE2FE: Identical to LinearE2FE except that the
linear decoding matrix is learned with a priori knowl-
edge.

1516-D feature vector: 60-D Gabor, 192-D FCTH, 80-D Edge Histogram,
120-D Color Layout, and 64-D RGB Color Histogram

6) E2FE: End-to-end feature-aware label space encoding
(i.e., formula (12)).

7) πE2FE: Identical to E2FE except that the linear decod-
ing matrix is learned with a priori knowledge.

8) kernel-E2FE: Kernel version of E2FE
(i.e., formula (23)).

9) kernel-πE2FE: Identical to kernel-E2FE except that the
linear decoding matrix is learned with a priori knowl-
edge.

In our experiments, each data set is evenly and randomly
divided into five parts. Five runs of each algorithm are then
performed on the data set, taking each time one part for testing
and the rest for training without duplication. Experimental
results are measured with widely used metrics in the field
of multilabel classification, i.e., label-based macroF1 and
example-based Accuracy [52], and then averaged over the
five runs. Higher label-based macroF1 and example-based
Accuracy means better performance. Specifically, for each run,
label-based macroF1 is calculated as follows:

macroF1 = 1

dy

dy∑

i=1

2 piri

pi + ri

s.t. pi = |Gi ∩ Pi |
|Pi | , ri = |Gi ∩ Pi |

|Gi | (28)

where dy is the number of all labels, Gi and Pi are, respec-
tively, the sets of the ground truth and the predicted positive
instances for the i th label, and ∩ and ∪ are the operations of
intersection and union between two sets. Meanwhile, example-
based Accuracy is given by the following formula:

Accuracy = 1

nt

nt∑

j=1

∣
∣G′

j ∩ P ′
j

∣
∣

∣
∣G′

j ∪ P ′
j

∣
∣ (29)

where nt is the test set size, and G′
j and P ′

j are, respectively,
the ground truth and the predicted label set of the j th test
instance.

Moreover, for each run of any algorithm, we conduct
5-fold cross validation on the training set for selecting
model parameters via grid search in predefined value ranges.
Specifically, α in the proposed E2FE and its variants is
selected from {10−1, 100, . . . , 104}, τ for MLC-BMaD is
chosen from {0.1, 0.2, . . . , 1.0}, and the predefined sparsity
level in CS is selected from {1, 2, . . . ,M} with M being
the maximal number of labels in an instance, and so on.
Additionally, for η in πE2FE/πLinearE2FE/kernel-πE2FE, we
set η = ξ(1/max(�λ)) for each data set and select ξ from
{0, 2−10, 2−9, . . . , 2−1, 1} via cross validation. Following most
previous works, such as [8], [31], [33], and [35], we utilize
L-RR as predictive models to learn the mappings from instance
features to code vectors. As for kernel-CPLST, kernel-E2FE,
and kernel-πE2FE, we empirically utilize the Gaussian kernel
function and set the smoothing parameter σ as twice the
mean Euclidean distance between feature vectors for each
data set. Accordingly, we utilize kernel ridge regression as
predictive models for them to learn the nonlinear mappings
from instance features to code vectors. Moreover, following
PLST, CPLST, and ML-CSSP, we round each continuous entry
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TABLE IV

EXPERIMENTAL RESULTS: Label-Based macroF1 ON Delicious, CAL500, Mediamill, ESPGame, Bibtex, AND Bookmarks, WITH VARYING dz/dy

of the decoding results into its nearest 0 or 1 to get the binary
label vectors for test instances.

B. Experimental Results of LSDR

We run all algorithms on the six data sets with different
values of dz/dy (mostly from 10% to 50%) where dz and dy

are, respectively, the dimensionality of the latent space and
that of the label space. Particularly, for ESPGame, dz/dy is
varied from 5% to 25%, as it has a much larger vocabulary.

1) Performance Comparison With Baselines: The exper-
imental results of compared baselines and variants of the
proposed E2FE are reported in Tables IV and V.

A close look at the achieved results reveals: 1) the proposed
E2FE as well as its linear function-based variant LinearE2FE
generally outperform the compared baselines on each data set,
which clearly demonstrates their effectiveness; 2) E2FE out-
performs LinearE2FE on all data sets, reflecting the superiority
of learning code vectors in an end-to-end manner rather than
a function-based manner; 3) E2FE outperforms R-E2FE and
LinearE2FE outperforms P-LinearE2FE, which implies that
jointly considering predictability and recoverability will obtain
better performance; 4) OP-E2FE yields inferior performance
to E2FE and cannot even perform LSDR on CAL500 when
dz/dy ≥ 40%, as the dimensionality of the feature space will
be smaller than dz; that points out the weakness of OP-E2FE
and further validates the superiority of keeping a good tradeoff
between predictability and recoverability; 5) R-E2FE yields
nearly the same performance as PLST, as predicted by our
theoretical analyses about their equivalence; 6) with an iden-
tical objective function but different orthogonality constraints,

P-LinearE2FE seems to be slightly superior to CPLST, which
validates the reasonableness of assuming the columns of the
code matrix to be orthonormal; 7) kernel-E2FE outperforms
E2FE on nearly all data sets, showing its effectiveness to
handle the nonlinear correlations between the feature space
and the latent space; moreover, kernel-E2FE achieves superior
performance to kernel-CPLST, which outperforms CPLST.
And 8) On all data sets, as dz/dy increases, the performance
of E2FE does not vary dramatically due to the orthonormality
constraint in formula (4), which leads E2FE to compactly
encode the label space with a smaller dz . Similar phenomenon
occurs when applying PLST and CPLST, because both are
also orthogonally constrained. Actually, we find that this
phenomenon still remains when dz/dy > 50%.

Actually, to evaluate the significance of the performance
improvements gained by E2FE over the baselines, we also per-
form paired-sample t-test [53] for both label-based macroF1
and example-based Accuracy on all data sets with varying
dz/dy . Experimental results show that nearly all P-values in
significance tests are less than the typical significance level
0.01, and thus, the performance improvements gained by E2FE
over baselines are statistically significant. For details about
the experiments of significance tests, one can refer to the
supplementary material.

2) Experimental Validation for Enhancing Decoding Matrix
with a Priori Knowledge: Here, on each data set we compare
LinearE2FE, E2FE, and kernel-E2FE with their counterparts
that learn the linear decoding matrix with a priori knowledge,
i.e., πLinearE2FE, πE2FE, and kernel-πE2FE, as presented
in Tables VI and VII. Note that in all pairwise comparisons,
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TABLE V

EXPERIMENTAL RESULTS: Example-Based Accuracy ON Delicious, CAL500, Mediamill, ESPGame, Bibtex, AND Bookmarks, WITH VARYING dz/dy

TABLE VI

PERFORMANCE COMPARISONS BETWEEN LINEARE2FE, E2FE, Kernel-E2FE AND πLINEARE2FE, πE2FE, Kernel-πE2FE ON Delicious, CAL500,
Mediamill, ESPGame, Bibtex, AND Bookmarks WITH VARYING dz/dy , IN TERMS OF Label-Based macroF1

we also present the relative performance improvements gained
by πLinearE2FE/πE2FE/kernel-πE2FE.

From the comparisons, we can see that in nearly all cases,
πLinearE2FE outperforms LinearE2FE, πE2FE outperforms
E2FE, and kernel-πE2FE outperforms kernel-E2FE. Specifi-
cally, on average, considering a priori knowledge for learning
the decoding matrix can achieve a relative improvement of
48.1% for label-based macroF1 and 33.9% for example-based
Accuracy. Meanwhile, the maximal gained relative improve-
ment for the former is 111%, and that for the latter is 86%.
Such significant performance improvements well demonstrate

the effectiveness of our proposal to further consider the
eigenvalues corresponding to each column of the code matrix
as a priori knowledge to enhance the linear decoding matrix
in E2FE and its variants.

C. Analyses of Training Costs

1) Comparison with Baselines: For E2FE and compared
baselines, apart from classification performance, here we also
compare their training costs theoretically and experimentally.

Considering that the training costs of all algorithms mainly
differ in those of performing LSDR, i.e., learning the code
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TABLE VII

PERFORMANCE COMPARISONS BETWEEN LINEARE2FE, E2FE, Kernel-E2FE AND πLINEARE2FE, πE2FE, Kernel-πE2FE ON Delicious, CAL500,
Mediamill, ESPGame, Bibtex AND Bookmarks WITH VARYING dz/dy , IN TERMS OF Example-Based Accuracy

TABLE VIII

TIME COMPLEXITY OF COMPARED ALGORITHMS TO PERFORM LSDR

vectors of training instances and the decoding process, here we
summarize the time complexity of each algorithm, as presented
in Table VIII. From the time complexity analysis, it can be
seen that MLC-BMaD has the highest time complexity, while
CS, PLST, and ML-CSSP have the lowest.

Moreover, in Table IX, we also report the average time
costs for E2FE and the compared baselines on performing
LSDR and training predictive models over five runs on deli-
cious, ESPGame, and bookmarks, which have the largest label
sets, with dz/dy = 10%. As a reference, the time costs
of BR are also provided. All algorithms are conducted with
MATLAB R2013a on a server with two Intel Xeon E5-2430
CPUs and 64-GB RAM, except that BR with L-SVM is
conducted using LIBLINEAR [51]. Looking at the results
of this comparison, we can draw the following conclusions:
1) compared with BR, nearly all LSDR methods can help
to reduce the total training costs; 2) for performing LSDR,
E2FE generally needs slightly higher costs than CS, PLST,
CPLST, and ML-CSSP, though with superior classification
performance; also, its training cost is much lower than
MLC-BMaD; and 3) like the previous theoretical analysis, the
training cost of MLC-BMaD is the highest while those of CS,
PLST, and ML-CSSP are the lowest.

2) Evaluation of the Newly Proposed Optimization Method:
To evaluate the optimization method proposed in this
paper for efficiently learning the code matrix in cases

with n � dx + dy , we also conduct experiments on delicious,
ESPGame, and bookmarks to compare its efficiency with
that of the optimization method presented in our conference
paper [36]. Here, we, respectively, denote the former as E2FE
and the latter as FaIE.

Considering that FaIE needs to calculate the matrix
U ∈ R

n×n and thus needs much memory space for large
data sets, to avoid biases brought by high memory space
costs, here we follow the experimental settings in [36] and
sample 5000 training instances for evaluating the time costs
of both optimization methods to perform LSDR. Note that
here n � dx + dy is still ensured for the sampled training
instances. Experimental results on the three data sets with
dz/dy = 10% are reported in Table X. It can be seen that
the time costs of the newly proposed optimization method are
significantly lower than those of the one presented in [36]. That
clearly demonstrates the effectiveness of the newly proposed
optimization method for cases with n � dx + dy .

D. Parameter Sensitivity Analyses

For a more detailed view, we also conduct experiments to
see the effects of α (i.e., formula (12)) on the performance
of the proposed E2FE. Fig. 2 shows how the performance of
E2FE changes as α varies in {10−2, 10−1, . . . , 104, 105} in a
run on the largest delicious, ESPGame, and bookmarks with
dz/dy = 10%. It can be seen that on these three data sets, the
performance of E2FE, in terms of label-based macroF1 and
example-based Accuracy, first increases and then decreases as
α increases from 10−2 to 105. That further demonstrates the
reasonableness of jointly considering the recoverability of the
label space and the predictability of the latent space, as a good
tradeoff between both yields superior performance. Moreover,
we can observe that for these three data sets, the optimal α
value for E2FE is near [103, 104].

By fixing α = 103, we further analyse the effects of η
(i.e., formula (18)) on the performance of πE2FE. Specif-
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TABLE IX

AVERAGE TRAINING COSTS (IN SECONDS) OF COMPARED ALGORITHMS (“PERFORMING LSDR + TRAINING PREDICTIVE MODELS”) WITH dz/dy = 10%

Fig. 2. Effects of α on the performance of E2FE on delicious (left), ESPGame (center), and bookmarks (right), with dz/dy = 10%.

Fig. 3. Effects of η = ξ(1/max(�λ)) on the performance of πE2FE on delicious (left), ESPGame (center), and bookmarks (right), with dz/dy = 10%.

TABLE X

AVERAGE TIME COSTS (IN SECONDS) FOR THE NEWLY PROPOSED

OPTIMIZATION METHOD (E2FE) AND THAT PRESENTED IN OUR

PREVIOUS CONFERENCE PAPER (FaIE) TO PERFORM

LSDR WITH dz/dy = 10%

ically, on the largest delicious, ESPGame, and bookmarks
with dz/dy = 10%, we rewrite η = ξ(1/max(�λ)) and vary
ξ in {0, 2−10, 2−9, . . . , 2−1, 1} based on Lemma 3 to see
how the corresponding learned linear decoding matrix affects
the performance of πE2FE, as shown in Fig. 3. It can be
seen that on the three data sets, as η increases from 0
(i.e., ξ = 2−inf = 0) to (1/max(�λ)) (i.e., ξ = 20 = 1),
the performance of πE2FE, in terms of label-based macroF1
and example-based Accuracy, tends to first increase and then
decrease in most cases, with the optimal η value being
near (0.5/max(�λ)) (i.e., ξ = 2−1). Actually, η = 0 makes

πE2FE degenerate to E2FE, and it generally yields inferior
performance than η > 0, which further demonstrates the
reasonableness of considering the eigenvalues with respect to
columns of the code matrix as a priori knowledge to learn an
enhanced linear decoding matrix.

VIII. DISCUSSION

The proposed E2FE assumes that the columns of the to-be-
learned code matrix Z are orthonormal. Though this assump-
tion seems to be strong, it is still reasonable and brings useful
properties to E2FE.

1) As each column of Z denotes one dimension of the latent
space, adding an orthonormality assumption, similar to
PLST and CPLST, allows us to mitigate the redundant
information among dimensions of the latent space and
then enable E2FE to encode the label space more com-
pactly.

2) As can be seen in formula (2)–(6), adding the orthonor-
mality assumption can simplify the objective function of
E2FE and enable it to be transformed into an eigenvalue
problem for efficient optimization.
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TABLE XI

PERFORMANCE COMPARISONS BETWEEN E2FE AND E2FENOORTH ON

ALL DATA SETS, WITH p = 5 FOR ESPGame AND p = 10 FOR OTHERS

3) By enabling the objective function to be transformed
into an eigenvalue problem, from formula (15) and (16),
we can see that adding the orthonormality assumption
actually helps to ensure E2FE obtaining global optima.

Here, we also try dropping the orthonormality assumption
from the objective function of E2FE and conduct experiments
on all data sets to evaluate it. We denote it as E2FENoOrth,
with its objective function given as follows:

� = max
Z,Q

−‖Y − ZQ‖2
fro + αTr[ZT HZ]

= min
Z,Q

‖Y − ZQ‖2
fro − αTr[ZT HZ]

s.t. ∀i ∈ {1, 2, . . . , dz}, ZT·,i Z·,i = 1. (30)

Note that ZT·,i Z·,i = 1 is still required due to formula (7).
Like other matrix factorization methods [54], [55], we can
derive the code matrix Z and the linear decoding matrix Q by
using gradient descent methods to iteratively and alternatively
optimize one while keeping the other fixed until convergence.
For more details, one can refer to the supplementary material.

The performance of E2FENoOrth on all data sets, using
random initial values for Z and Q to perform optimization, is
presented in Table XI. It can be seen that E2FENoOrth is inferior
to E2FE. In fact, even using the derived Z and Q of E2FE
as initial values, E2FENoOrth can hardly gain performance
improvement over E2FE. It is mainly attributed to that, without
the orthonormality assumption: 1) more redundant informa-
tion rather than complementary information exists between
dimensions of the latent space and 2) global optima cannot
be ensured for Z.

Moreover, we also evaluate the time costs for E2FENoOrth
to perform LSDR on the largest delicious, ESPGame, and
bookmarks with dz/dy = 10%, as reported in Table XII.
We can see that E2FENoOrth costs much more time than
E2FE, because its objective function is more complex for
optimization. Its time costs are even higher than those of the
BR model L-RR (Table IX).

TABLE XII

AVERAGE TIME COSTS (IN SECONDS) FOR PERFORMING LSDR
IN E2FE AND E2FENOORTH WITH dz/dy = 10%

Therefore, dropping the orthonormality assumption does
not bring substantial performance improvements and instead
will increase the time costs for optimization. On the contrary,
keeping the orthonormality assumption gains a good tradeoff
between efficiency and effectiveness for LSDR.

IX. CONCLUSION

Aiming to address the multilabel classification problem with
many classes, in this paper, we have proposed an effective
method termed E2FE to perform LSDR via end-to-end feature-
aware label space encoding. In contrast to most previous
works, E2FE requires no encoding functions, and it directly
learns a feature-aware code matrix via jointly maximizing the
recoverability of the label space and the predictability of the
latent space. Subsequently, a linear decoding matrix is further
learned for efficiently recovering the predicted label vectors
of unseen instances from their corresponding code vectors
generated by trained predictive models. The proposed E2FE
has close connections to several previous works. It can also
be specified to learn an encoding function as previous works,
or extended with kernel tricks to handle nonlinear correlations
between the feature space and the latent space.
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